Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
1.
Nanomedicine (Lond) ; : 1-13, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225142

RESUMO

Aim & objective: Combinatorial delivery of Doxorubicin (DOX) and Baicalein (BAC) has a potential to improve breast cancer treatment by mitigating the cardiotoxicity induced by DOX. The nanoformulation has been optimized and subjected to pharmacokinetic studies using LC-MS/MS.Materials & methods: Nanoformulation bearing DOX and BAC was optimized using quality by design approach and method validation was done following USFDA guidelines.Results: The particle size, PDI and zeta potential of developed nanoformulation were 162.56 ± 2.21 nm, 0.102 ± 0.03 and -16.5 ± 1.21 mV, respectively. DOX-BAC-SNEDDs had a higher AUC0-t values of 6128.84 ± 68.71 and 5896.62 ± 99.31 ng/mL/h as compared with DOX-BAC suspension.Conclusion: These findings hold promise for advancing breast cancer treatment and facilitating therapeutic drug monitoring.


[Box: see text].

2.
Chem Biol Drug Des ; 104(2): e14611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39152534

RESUMO

Radiation resistance is a crucial factor influencing therapeutic outcomes in colorectal cancer (CRC). Baicalein (BE), primarily derived from Scutellaria baicalensis, has demonstrated anti-CRC properties. However, the impact of BE on the radiosensitivity of CRC remains unclear. This study aimed to evaluate the radiosensitization effects of BE and elucidate its mechanism in CRC radiotherapy. We established an in vitro radioresistant cell model (CT26-R) using parental CRC cells (CT26) subjected to ionizing radiation (IR). CT26-R cells were pretreated with or without BE, followed by transfection with pcDNA-NC and pcDNA-JAK2. The proliferation of CT26-R cells treated with BE and IR was assessed using a colony formation assay. A CRC animal model was developed in BALB/c mice via CT26-R cell transplantation. The radiosensitizing effect of BE on CRC was evaluated in vivo. TUNEL assay was conducted to detect apoptosis in tumor tissue. The expression levels of p-STAT3, JAK2, PD-L1, and SOCS3 in vitro and in vivo were measured by western blotting. Our results demonstrated that BE significantly increased radiosensitivity in vitro and in vivo and enhanced apoptosis in tumor tissues. Additionally, BE significantly downregulated the expression of p-STAT3, JAK2, and PD-L1, and significantly upregulated SOCS3 expression. These in vivo effects were reversed by pcDNA-JAK2. In summary, our data suggest that BE enhances CRC radiosensitivity by inhibiting the JAK2/STAT3 pathway.


Assuntos
Apoptose , Neoplasias Colorretais , Flavanonas , Janus Quinase 2 , Camundongos Endogâmicos BALB C , Tolerância a Radiação , Fator de Transcrição STAT3 , Transdução de Sinais , Janus Quinase 2/metabolismo , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/uso terapêutico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Radiossensibilizantes/química
3.
Front Pharmacol ; 15: 1405521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144617

RESUMO

Introduction: Almonertinib is an important third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) exhibiting high selectivity to EGFR-sensitizing and T790M-resistant mutations. Almonertinib resistance is a major obstacle in clinical use. Baicalein possesses antitumor properties, but its mechanism of antitumor action against almonertinib-resistant non-small cell lung cancer (NSCLC) remains unelucidated. Methods: CCK-8 assay was used to examine the survival rate of H1975/AR and HCC827/AR cells following treatment for 24 h with different concentrations of baicalein, almonertinib or their combination. The changes in colony formation ability, apoptosis, and intracellular reactive oxygen species (ROS) levels of the treated cells were analyzed using colony formation assay and flow cytometry. Western blotting was performed to detect the changes in protein expressions in the cells. The effects of pre-treatment with NAC on proliferation, apoptosis, and PI3K/Akt signaling pathway were observed in baicalein- and/or almonertinib-treated cells. A nude mouse model bearing subcutaneous HCC827/AR cell xenograft were treated with baicalein (20 mg/kg) or almonertinib (15 mg/kg), and the tumor volume and body mass changes was measured. Results: Both baicalein and almonertinib represses the viability of HCC827/AR and H1975/AR cells in a concentration-dependent manner. Compared with baicalein or almonertinib alone, the combined application of the two drugs dramatically attenuates cell proliferation; triggers apoptosis; causes cleavage of Caspase-3, PARP, and Caspase-9; downregulates the protein expressions of p-PI3K and p-Akt; and significantly inhibits tumor growth in nude mice. Furthermore, baicalein combined with almonertinib results in massive accumulation of reactive oxygen species (ROS) and preincubation with N-acetyl-L-cysteine (ROS remover) prevents proliferation as well as inhibits apoptosis induction, with partial recovery of the decline of p-PI3K and p-Akt. Discussion: The combination of baicalein and almonertinib can improve the antitumor activity in almonertinib-resistant NSCLC through the ROS-mediated PI3K/Akt pathway.

4.
Front Microbiol ; 15: 1458267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165570

RESUMO

Staphylococcus aureus, a Gram-positive bacterium, is a predominant pathogen associated with various infections. The rapid emergence of antibiotic resistance has intensified the challenge of managing fracture-related infections in severe osteoporotic patients. Rifampicin, a potent antimicrobial agent employed against fracture and implant-related infections, necessitates combination therapies due to its susceptibility to antibiotic resistance. In this study, we explored the potential of baicalein, a bioactive flavonoid from Oroxylum indicum and Scutellaria baicalensis, in combination with rifampicin against S. aureus biofilms invitro. The minimum inhibitory concentration of baicalein and rifampicin were determined as 500 µg/mL and 12.5 ng/mL respectively. The synergistic activity of baicalein and rifampicin was determined by the fractional inhibitory concentration index (FICI) using checkerboard assay. The results showed the FICI of baicalein and rifampicin was lesser than 0.5, demonstrating synergistic effect. Furthermore, the efficacy of baicalein and rifampicin, both individually and in combination, was evaluated for biofilm inhibition and eradication. Scanning electron microscopy and confocal laser microscopy also confirmed that the synergistic combinations effectively removed most of the biofilms and partially killed pre-formed biofilms. In conclusion, the findings demonstrate that baicalein is as effective as rifampicin in inhibiting and eradicating S. aureus biofilms. Their combination exhibits synergistic effect, enhancing their bactericidal effect in completely eradicating S. aureus biofilms. The findings of this research underscore the research potential of combining baicalein and rifampicin as a novel therapeutic strategy against S. aureus biofilms, offering a promising direction for future research in the treatment of fracture-related S. aureus infections.

5.
Nat Prod Res ; : 1-9, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39205489

RESUMO

The opioid receptors play a pivotal role in the treatment of several neuropsychiatric and neurological disorders. Oroxylum indicum (L.) Kurtz is a very important medicinal plant with several therapeutic applications. It is a main constituent of the Ayurvedic formulation 'Dashmool' used for multifaceted disorders by the Indians. However, the constituents of this plant in neurological conditions have not been well studied. Here, we performed activity-guided isolation of compounds for opioid receptor modulator activity. In the study, we found that the isolated compound baicalein (3) has shown the most potent and competitive antagonistic activity at 20 mg/kg dose in vivo experiments. The acute dose of 3 (20 mg/kg) and pan opioid receptor antagonist naloxone (20 mg/kg) block the morphine-induced antinociception and the paw withdrawal latency decreases up to 8.3 s and 9.6 s, respectively. The in silico studies also support our in vitro data that compound 3 binds with MOR and KOR.

6.
Mol Pharm ; 21(9): 4476-4489, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39106303

RESUMO

In this study, we prepared bionic selenium-baicalein nanoparticles (ACM-SSe-BE) for the targeted treatment of nonsmall cell lung cancer. Due to the coating of the A549 membrane, the system has homologous targeting capabilities, allowing for the preparation of target tumor cells. The borate ester bond between selenium nanoparticles (SSe) and baicalein (BE) is pH-sensitive and can break under acidic conditions in the tumor microenvironment to achieve the targeted release of BE at the tumor site. Moreover, SSe further enhances the antitumor effect of BE by increasing the production of ROS in tumor cells. Transmission electron microscopy (TEM) images and dynamic light scattering (DLS) showed that the ACM-SSe-BE had a particle size of approximately 155 ± 2 nm. FTIR verified the successful coupling of SSe and BE. In vitro release experiments indicated that the cumulative release of ACM-SSe-BE at pH 5.5 after 24 h was 69.39 ± 1.07%, which was less than the 20% release at pH 7.4, confirming the pH-sensitive release of BE in ACM-SSe-BE. Cell uptake experiments and in vivo imaging showed that ACM-SSe-BE had good targeting ability. The results of MTT, flow cytometry, Western blot, and cell immunofluorescence staining demonstrated that ACM-SSe-BE promoted A549 cell apoptosis and inhibited cell proliferation. The in vivo antitumor results were consistent with those of the cell experiments. These results clearly suggested that ACM-SSe-BE will be a promising bionic nanosystem for the treatment of nonsmall cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Flavanonas , Neoplasias Pulmonares , Nanopartículas , Selênio , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Nanopartículas/química , Selênio/química , Flavanonas/química , Flavanonas/farmacologia , Flavanonas/administração & dosagem , Flavanonas/uso terapêutico , Animais , Células A549 , Camundongos , Apoptose/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Concentração de Íons de Hidrogênio , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Liberação Controlada de Fármacos
7.
Nat Prod Res ; : 1-9, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108001

RESUMO

Teratogenicity and hyperuricaemia are the main side effects of favipiravir, an antiviral drug recently found its use to treat mild to moderate coronavirus (COVID-19) infections. This study investigated the beneficial effect of herbal extracts like Picrorrhiza kurroa (PK) and Scutellaria baicalensis (SB) and their active chemical constituents (baicalin and baicalein) on favipiravir-induced hepatotoxicity in rats. The formulation combinations included favipiravir, favipiravir + PK extract, favipiravir + pure baicalin, favipiravir + pure baicalein, and favipiravir + SB extract designated as F1, F2, F3, F4 and F5 respectively that were administered to rats orally for 21 days. Favipiravir caused increased levels of SGOT, SGPT, ALP, total bilirubin, and uric acid and decreased liver weight which was alleviated when alloherbal formulation of favipiravir and baicalein combination and favipiravir and SB extract was used. This paper highlights an attractive proposition to ameliorate favipiravir-induced hepatotoxicity using hepatoprotective agents.

8.
Microb Drug Resist ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133125

RESUMO

The rise in antibiotic resistance among bacterial pathogens, particularly Staphylococcus aureus, has become a critical global health issue, necessitating the search for novel antimicrobial agents. S. aureus uses various mechanisms to resist antibiotics, including the activation of efflux pumps, biofilm formation, and enzymatic modification of drugs. This study explores the potential of baicalein, a bioflavonoid from Scutellaria baicalensis, in modulating tetracycline resistance in S. aureus by inhibiting efflux pumps. The synergistic action of baicalein and tetracycline was evaluated through various assays. The minimum inhibitory concentration (MIC) of baicalein and tetracycline against S. aureus was 256 and 1.0 µg/mL, respectively. Baicalein at 64 µg/mL reduced the MIC of tetracycline by eightfold, indicating a synergistic effect (fractional inhibitory concentration index: 0.375). Time-kill kinetics demonstrated a 1.0 log CFU/mL reduction in bacterial count after 24 hours with the combination treatment. The ethidium bromide accumulation assay showed that baicalein mediated significant inhibition of efflux pumps, with a dose-dependent increase in fluorescence. In addition, baicalein inhibited DNA synthesis by 73% alone and 92% in combination with tetracycline. It also markedly reduced biofilm formation and the invasiveness of S. aureus into HeLa cells by 52% at 64 µg/mL. These findings suggest that baicalein enhances tetracycline efficacy and could be a promising adjunct therapy to combat multidrug-resistant S. aureus infections.

9.
BMC Oral Health ; 24(1): 987, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180042

RESUMO

PURPOSE: To verify the effect and mechanism of baicalein in the treatment of periodontitis through network pharmacology, molecular docking and in vitro experiments. METHODS: Firstly, multiple databases were used to predict targets of baicalein and periodontitis. And the screened key target genes of baicalein for treating periodontitis were subjected to GO and KEGG analysis; then these targets were analyzed by molecular docking techniques. In vitro experiments including CCK-8, RT-qPCR, ELISA and Immunofluorescence were conducted to validate the efficacy of baicalein in treating periodontitis. RESULTS: Seventeen key targets were screened from the databases, GO and KEGG analysis of these targets revealed that baicalein may exert therapeutic effects through regulating TNF, PI3K-Akt, HIF-1 and other signaling pathways. Molecular docking analysis showed that baicalein has good binding potential to several targets. In vitro cellular assays showed that baicalein inhibited the expression of TNF-α, MMP-9, IL-6 and MCP1 in P.g-LPS-induced macrophages at both the mRNA and protein level. And the immunofluorescence intensity of iNOS, a marker of M1 type macrophages, which mainly secretes inflammatory factors, was significantly reduced. CONCLUSION: Baicalein has the characteristics and advantages of "multicomponent, multitarget, and multipathway" in the treatment of periodontitis. In vitro cellular assays further confirmed the inhibitory effect of baicalein on the secretion of inflammatory factors of macrophages in periodontitis models, providing a theoretical basis for further study of the material basis and molecular mechanism of baicalein in the treatment of periodontal diseases.


Assuntos
Flavanonas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Periodontite , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Periodontite/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Animais , Ensaio de Imunoadsorção Enzimática , Metaloproteinase 9 da Matriz/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Interleucina-6/metabolismo , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
10.
Data Brief ; 55: 110618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39022694

RESUMO

The global coronavirus disease 2019 (COVID-19) pandemic originating from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has exerted profound damage to millions of lives. Baicalein is a flavonoid that has gotten a lot of attention as a possible SARS-CoV-2 main protease (Mpro) inhibitor because it can fight off many different viruses. We prepared and screened three sets of databases, each containing 2563 baicalein analogues, against Mpro using molecular docking simulation. The data showed that several baicalein analogues exhibited stable binding energies relative to standard baicalein, indicating that they have some selectivity against Mpro. The binding properties of the top three stable analogues from each database were further analyzed with respect to their binding properties, such as binding mode, binding energy, and binding interaction of putative stable ligand confirmations at the target binding site region.

11.
Front Pharmacol ; 15: 1397703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989144

RESUMO

Objective: Baicalein, one of the most abundant flavonoids found in Chinese herb Scutellaria baicalensis Georgi, exhibits pharmacological activities against various cancers. However, the precise pharmacological mechanism of baicalein in treating castration-resistant prostate cancer (CRPC) remains elusive. This study aimed to elucidate the potential mechanism of baicalein against CRPC through a combination of network pharmacology and experimental approaches, thereby providing new avenues for research in CRPC treatment. Methods: The pharmacological and molecular properties of baicalein were obtained using the TCMSP database. Baicalein-related targets were collected from multiple sources including SwissTargetPrediction, PharmMapper and CTD. Targets related to CRPC were acquired from DisGeNET, GeneCards, and CTD. The protein-protein interaction (PPI) was analyzed using STRING 11.5, and Cytoscape 3.7.2 software was utilized to explore the core targets of baicalein on CRPC. GO and KEGG pathway enrichment analysis were performed using DAVID database. Cell experiments were carried out to confirm the validity of the targets. Results: A total of 131 potential targets of baicalein for the treatment of CRPC were obtained. Among them, TP53, AKT1, ALB, CASP3, and HSP90AA1, etc., were recognized as core targets by Cytoscape 3.7.2. GO function enrichment analysis yielded 926 entries, including 703 biological process (BP) terms, 84 cellular component (CC) terms and 139 molecular function (MF) terms. The KEGG pathway enrichment analysis unveiled 159 signaling pathways, mainly involved in Pathways in cancer, prostate cancer, AGE-RAGE signaling pathway in diabetic complications, TP53 signaling pathway, and PI3K-Akt signaling pathway, etc. Cell experiments confirmed that baicalein may inhibit the proliferation of CRPC cells and induce cell cycle arrest in the G1 phase. This effect could be associated with the TP53/CDK2/cyclin E1 pathway. In addition, the results of CETSA suggest that baicalein may directly bind to TP53. Conclusion: Based on network pharmacology analysis and cell experiments, we have predicted and validated the potential targets and related pathways of baicalein for CRPC treatment. This comprehensive approach provides a scientific basis for elucidating the molecular mechanism underlying the action of baicalein in CRPC treatment. Furthermore, these findings offer valuable insights and serve as a reference for the research and development of novel anti-CRPC drugs.

12.
Int Immunopharmacol ; 139: 112685, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047449

RESUMO

OBJECTIVE: Acute-on-chronic liver failure (ACLF) is a syndrome characterized by a high short-term mortality rate, and effective interventions are still lacking. This study aims to investigate whether the small molecule baicalein can mitigate ACLF and elucidate the molecular mechanisms. METHODS: The ACLF mouse model was induced through chronic liver injury using carbon tetrachloride, followed by acute inflammation induction with lipopolysaccharide (LPS). Baicalein was administered through intraperitoneal injection to explore its therapeutic effects. In vitro experiments utilized the iBMDM macrophage cell line to investigate the underlying mechanisms. Peripheral blood was collected from clinical ACLF patients for validation. RESULTS: In the LPS-induced ACLF mouse model, baicalein demonstrated a significant reduction in acute inflammation and liver damage, as evidenced by histopathological evaluation, liver function analysis, and inflammatory marker measurements. Transcriptomic analysis, coupled with molecular biology experiments, uncovered that baicalein exerts its effects in ACLF by activating the TrKB-CREB1 signaling axis to upregulate the surface expression of the TREM2 receptor on macrophages. This promotes M2 macrophage polarization and activates efferocytosis, thereby inhibiting inflammation and alleviating liver damage. Furthermore, we observed a substantial negative correlation between postoperative peripheral blood plasma soluble TREM2 (sTREM2) levels and inflammation, as well as adverse outcomes in clinical ACLF patients. CONCLUSION: Baicalein plays a protective role in ACLF by enhancing the surface expression of the TREM2 receptor on macrophages, leading to the suppression of inflammation, mitigation of liver damage, and a reduction in mortality. Additionally, plasma sTREM2 emerges as a critical indicator for predicting adverse outcomes in ACLF patients.


Assuntos
Insuficiência Hepática Crônica Agudizada , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Flavanonas , Macrófagos , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Receptores Imunológicos , Transdução de Sinais , Insuficiência Hepática Crônica Agudizada/tratamento farmacológico , Animais , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Lipopolissacarídeos , Regulação para Cima/efeitos dos fármacos , Receptor trkB/metabolismo , Modelos Animais de Doenças , Pessoa de Meia-Idade , Feminino , Linhagem Celular , Adulto , Proteínas Tirosina Quinases/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
13.
Virol Sin ; 39(4): 685-693, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025463

RESUMO

Myocarditis is an inflammatory disease of the cardiac muscle and one of the primary causes of dilated cardiomyopathy. Group B coxsackievirus (CVB) is one of the leading causative pathogens of viral myocarditis, which primarily affects children and young adults. Due to the lack of vaccines, the development of antiviral medicines is crucial to controlling CVB infection and the progression of myocarditis. In this study, we investigated the antiviral effect of baicalein, a flavonoid extracted from Scutellaria baicaleinsis. Our results demonstrated that baicalein treatment significantly reduced cytopathic effect and increased cell viability in CVB3-infected cells. In addition, significant reductions in viral protein 3D, viral RNA, and viral particles were observed in CVB3-infected cells treated with baicalein. We found that baicalein exerted its inhibitory effect in the early stages of CVB3 infection. Baicalein also suppressed viral replication in the myocardium and effectively alleviated myocarditis induced by CVB3 infection. Our study revealed that baicalein exerts its antiviral effect by inhibiting the activity of caspase-1 and viral protease 2A. Taken together, our findings demonstrate that baicalein has antiviral activity against CVB3 infection and may serve as a potential therapeutic option for the myocarditis caused by enterovirus infection.


Assuntos
Antivirais , Caspase 1 , Enterovirus Humano B , Flavanonas , Miocardite , Replicação Viral , Flavanonas/farmacologia , Replicação Viral/efeitos dos fármacos , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/fisiologia , Antivirais/farmacologia , Animais , Miocardite/tratamento farmacológico , Miocardite/virologia , Humanos , Caspase 1/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/virologia , Camundongos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Camundongos Endogâmicos BALB C , Masculino , Scutellaria baicalensis/química , Efeito Citopatogênico Viral/efeitos dos fármacos
14.
Avicenna J Phytomed ; 14(1): 23-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948180

RESUMO

Objective: Baicalin and baicalein are natural flavonoids reported for the first time from Scutellaria baicalensis Georgi. Recently, attention has been paid to these valuable flavonoids due to their promising effects. This paper aims to have a comprehensive review of their pharmacological effects. Materials and Methods: An extensive search through scientific databases including Scopus, PubMed, and ISI Web of Science was established. Results: According to literature, these compounds have been mainly effective in the treatment of neurological and neurodegenerative diseases, hepatic and cardiovascular disorders, metabolic syndrome, and cancers through anti-inflammatory and antioxidant pathways. Induction of apoptosis and autophagy, and inhibition of migration and metastasis are the main mechanisms for their cytotoxic and antitumor activities. Decreasing inflammation, reducing oxidative stress, regulating the metabolism of lipids, and decreasing fibrosis, apoptosis, and steatosis are their main hepatoprotective mechanisms. Inhibiting the development of cardiac fibrosis and reducing inflammation, oxidative stress, and apoptosis are also the mechanisms suggested for cardioprotective activities. Decreasing the accumulation of inflammatory mediators and improving cognitive function and depressive-like behaviours are the main mechanisms for neurological and neurodegenerative activities. Conclusion: The findings suggest the therapeutic potential of baicalin and baicalein. However, complementary research in different in vitro and in vivo models to investigate their mechanisms of action as well as clinical trials to evaluate their efficacy and safety are suggested.

15.
Arch Microbiol ; 206(8): 349, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992278

RESUMO

Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.


Assuntos
Antifúngicos , Candida auris , Flavanonas , Fatores de Virulência , Flavanonas/farmacologia , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Animais , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Testes de Sensibilidade Microbiana , Scutellaria baicalensis/química , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Suínos , Larva/microbiologia , Mariposas/microbiologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Flavonoides
16.
Mol Cell Probes ; 76: 101966, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866345

RESUMO

Platelet-derived growth factor receptor ß (PDGFRß) plays a crucial role in murine haematopoiesis. Baicalein (BAI), a naturally occurring flavonoid, can alleviate disease damage through anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms. However, whether BAI attenuates oxidative damage in murine haematopoietic cells by PDGFRß remains unexplored. In this study, we utilized a tert-butyl hydroperoxide (TBHP)-induced BaF3 cell injury model and an ionising radiation (IR)-induced mice injury model to investigate the impact of the presence or absence of PDGFRß on the pharmacological effects of BAI. In addition, the BAI-PDGFRß interaction was characterized by molecular docking and dynamics simulations. The results show that a specific concentration of BAI led to increased cell viability, reduced reactive oxygen species (ROS) content, upregulated nuclear factor erythroid 2-related factor 2 (NRF2) expression, and its downstream target genes heme oxygenase 1 (HO-1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), and activated protein kinase B (AKT) pathway in cells expressing PDGFRß plasmid and experiencing damage. Similarly, BAI elevated lineage-Sca1+cKIT+ (LSK) cell proportion, promoted haematopoietic restoration, enhanced NRF2-mediated antioxidant response in PDGFRß+/+ mice. However, despite BAI usage, PDGFRß knockout mice (PDGFRß-/-) showed lower LSK proportion and less antioxidant capacity than the total body irradiation (TBI) group. Furthermore, we demonstrated an interaction between BAI and PDGFRß at the molecular level. Collectively, our results indicate that BAI attenuates oxidative stress injury and helps promote haematopoietic cell recovery through regulation of PDGFRß.


Assuntos
Flavanonas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Animais , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Flavanonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , terc-Butil Hidroperóxido/farmacologia , Simulação de Acoplamento Molecular , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Antioxidantes/farmacologia , Camundongos Endogâmicos C57BL
17.
Nutrients ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931243

RESUMO

The brain-derived neurotrophic factor (BDNF) plays a crucial role during neuronal development as well as during differentiation and synaptogenesis. They are important proteins present in the brain that support neuronal health and protect the neurons from detrimental signals. The results from the present study suggest BDNF expression can be increase up to ~8-fold by treating the neuroblastoma cells SHSY-5Y with an herbal extract of Oroxylum indicum (50 µg/mL) and ~5.5-fold under lipopolysaccharides (LPS)-induced inflammation conditions. The Oroxylum indicum extract (Sabroxy) was standardized to 10% oroxylin A, 6% chrysin, and 15% baicalein. In addition, Sabroxy has shown to possess antioxidant activity that could decrease the damage caused by the exacerbation of radicals during neurodegeneration. A mode of action of over expression of BDNF with and without inflammation is proposed for the Oroxylum indicum extract, where the three major hydroxyflavones exert their effects through additive or synergistic effects via five possible targets including GABA, Adenoside A2A and estrogen receptor bindings, anti-inflammatory effects, and reduced mitochondrial ROS production.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavanonas , Inflamação , Lipopolissacarídeos , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Extratos Vegetais/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Linhagem Celular Tumoral , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Flavanonas/farmacologia , Bignoniaceae/química , Regulação para Cima/efeitos dos fármacos , Flavonoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia
18.
Discov Med ; 36(185): 1298-1305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926116

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is associated with high recurrence and poor prognosis. Baicalin has multiple pharmacological effects, including anti-inflammatory and anti-proliferative activities. Here, we examine the effect of baicalein on OSCC metastasis and its potential mechanism of action. METHODS: SCC-4 and CAL-27 cells were treated with different concentrations of baicalein. The proliferation of OSCC cells was evaluated by Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. As for migration and metastasis, baicalein-treated OSCC cells were used for wound healing assay and Transwell assay. The levels of epithelial-mesenchymal transition-related proteins (E-cadherin, N-cadherin, vimentin) and extracellular regulated protein kinases (ERK)/ETS Transcription Factor ELK1 (ELK-1)/Snail signaling pathway-related proteins in baicalein-treated OSCC cells were evaluated by western blotting. RESULTS: The rates of cell proliferation and migration, along with the metastatic potential, of baicalein-treated cells were significantly lower than those of the control (p < 0.05), and the effects were concentration-dependent. Furthermore, compared to the control, baicalein significantly decreased the levels of N-cadherin and vimentin in SCC-4 and CAL-27 cells, and increased the E-cadherin level (p < 0.05). Mechanistically, baicalein downregulated the levels of p-ERK1/2, phospho-ETS Transcription Factor ELK1 (p-ELK-1), and Snail (p < 0.05). Finally, the ERK/ELK-1/Snail pathway inhibitor (U0126) promoted the effect of baicalein in inhibiting the migration and invasion of OSCC cells (p < 0.05). CONCLUSION: Baicalein abates the migration, invasion, and metastasis of OSCC cells through the ERK/ELK-1/Snail signaling pathway. This study provides a basis for the development of baicalein as a compound for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Flavanonas , Neoplasias Bucais , Transdução de Sinais , Fatores de Transcrição da Família Snail , Proteínas Elk-1 do Domínio ets , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Humanos , Proteínas Elk-1 do Domínio ets/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metástase Neoplásica , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
19.
Int J Biol Macromol ; 276(Pt 1): 133432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936579

RESUMO

Targeting delivery to the infection site and good affinity of vehicle to the bacterial are two main concerns in therapy of bacterial infection, and on-demand release of drug is another important issue. In this work, a liposome drug delivery system (HA/P/BAI-lip) incorporated with baicalein and modified by PHMG and HA was prepared. Several characterizations were conducted to examine the physical properties of liposome. Then it was applied to treatments of MRSA induced dorsal subcutaneous abscess model and the thigh muscle infected model. The presence of guanidine group in HA/P/BAI-lip rendered the liposome satisfactory bacterial target ability and good pH sensitive properties. The lipase secreted by bacterial could promote the hydrolysis of soybean phosphatidylcholine (SPC) in liposome. The modification of HA in HA/P/BAI-lip could lead the drug system to the exact infected site where CD44 was abundant because of inflammation. The low pH microenvironment characteristic of bacterial infection could induce the swelling of liposome following by degradation. Taken together, baicalein could be released selectively at the infected site to exert antibacterial capacity. HA/P/BAI-lip showed impressive antibacterial ability and dramatically decrease the bacterial burden of infection site and alleviate the infiltration of inflammatory cells, facilitating the recovery of infection.


Assuntos
Antibacterianos , Flavanonas , Ácido Hialurônico , Lipossomos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Lipossomos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/administração & dosagem , Camundongos , Guanidinas/farmacologia , Guanidinas/química , Concentração de Íons de Hidrogênio
20.
Artigo em Inglês | MEDLINE | ID: mdl-38905036

RESUMO

OBJECTIVE: Endothelial cells play a critical role in maintaining vascular function and kinetic homeostasis, but excessive accumulation of palmitic acid (PA) may lead to endoplasmic reticulum stress and trigger endothelial cell dysfunction. Baicalin (BCL), a natural plant extract, has received widespread attention for its biological activities in anti-inflammation and anti-oxidative stress. However, the mechanism of BCL on PA-induced endothelial cell dysfunction is unclear. Therefore, the aim of this study was to investigate whether BCL could inhibit PA-induced endoplasmic reticulum stress and thus attenuate endothelial cell dysfunction. METHODS: Human umbilical vein endothelial cells (HUVECs) were divided into Control, PA, PA + BCL-10 µM, PA + BCL-20 µM, and PA + BCL-50 µM groups. The PA group was treated with PA (200 µM), while the PA + BCL groups were co-treated with different concentrations of BCL (10 µM, 20 µM, 50 µM) for 24 hours. Cell viability was detected by MTT. Cell migration ability was determined by Transwell assay, apoptosis level by flow cytometry, and tube formation ability by tube formation assay. Finally, the levels of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and angiogenesis-related proteins (VEGFA and FGF2) were detected by western blot, MMP-9, as well as the protein levels of endoplasmic reticulum stress biomarkers (GRP78, CHOP, PERK, and ATF4). RESULTS: The results at the cellular level showed that cell viability, migration ability and tube formation ability of PA-induced HUVECs were significantly reduced, while apoptosis level was significantly increased. However, administration of different concentrations of BCL significantly enhanced PA-induced cell viability, migration ability and tube formation ability of HUVECs while inhibiting apoptosis. The results of protein levels showed that the protein levels of Bax and cleaved caspase-3 were observably up-regulated in the cells of the PA group, while the protein level of Bcl-2 was significantly down-regulated; compared with the PA group, the protein levels of Bax and cleaved caspase-3 were much lower and the Bcl-2 protein level was much higher in the PA + BCL group. Additionally, the protein levels of VEGFA, FGF2 and MMP-9 were raised and those of GRP78, CHOP, PERK and ATF4 were lowered in the PA + BCL group of cells in a concentration-dependent manner. CONCLUSION: BCL significantly attenuates PA-induced endothelial cell dysfunction by inhibiting endoplasmic reticulum stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA