Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.307
Filtrar
1.
Chemosphere ; 364: 143291, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243904

RESUMO

Nature iron is considered one of the promising catalysts in advanced oxidation processes (AOPs) that are utilized for soil remediation from polycyclic aromatic hydrocarbons (PAHs). However, the existence of anions, cations, and organic matter in soils considered impurities that restricted the utilization of iron that was harnessed naturally in the soil matrix and reduced the catalytic performance. In this regard, tropical soil naturally containing iron and relatively poor with impurities was artificially contaminated with 100 mg/50 g benzo[α]pyrene (B[α]P) and remediated using a slurry phase reactor supported with persulfate (PS). The results indicated that tropical soil containing iron and relatively poor with impurities capable of activating the oxidants and formation of radicals which successfully degraded B[α]P. The optimum removal result was 86% and obtained under the following conditions airflow = 260 mL/min, temperature 55 °C, pH 7, and [PS]0 = 1.0 g/L, at the same experimental conditions soil organic matter (SOM) mineralization was 48%. After the remediation process, there was a significant reduction in iron and aluminum contents, which considered the drawbacks of this system. Experiments to scavenge reactive species highlighted O2•- and SO4•- as the main radicals that oxidized B[α]P. Additionally, monitoring of by-products post-remediation aimed to assess toxicity and elucidate degradation pathways. Mutagenicity tests yielded positive results for two B[α]P by-products. The toxicity tests considered were the lethal concentration of 50% (LC50 96 h) for fat-head minnows revealed that all B[α]P by-products were less toxic than the parent pollutant itself. This research marks a significant advancement in soil remediation by advancing the use of the AOP method, removing the requirement for additional catalysts in the AOP system for the removal of B[α]P from soil.


Assuntos
Benzo(a)pireno , Recuperação e Remediação Ambiental , Ferro , Poluentes do Solo , Solo , Poluentes do Solo/química , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Benzo(a)pireno/química , Benzo(a)pireno/análise , Ferro/química , Solo/química , Oxirredução , Catálise
2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273094

RESUMO

Ultraviolet (UV) exposure and atmospheric pollution are both independently implicated in skin diseases such as cancer and premature aging. UVA wavelengths, which penetrate in the deep layers of the skin dermis, exert their toxicity mainly through chromophore photosensitization reactions. Benzo[a]pyrene (BaP), the most abundant polycyclic aromatic hydrocarbon originating from the incomplete combustion of organic matter, could act as a chromophore and absorb UVA. We and other groups have previously shown that BaP and UVA synergize their toxicity in skin cells, which leads to important oxidation. Even if mitochondria alterations have been related to premature skin aging and other skin disorders, no studies have focused on the synergy between UV exposure and pollution on mitochondria. Our study aims to investigate the combined effect of UVA and BaP specifically on mitochondria in order to assess the effect on mitochondrial membranes and the consequences on mitochondrial activity. We show that BaP has a strong affinity for mitochondria and that this affinity leads to an important induction of lipid peroxidation and membrane disruption when exposed to UVA. Co-exposure to UVA and BaP synergizes their toxicity to negatively impact mitochondrial membrane potential, mitochondrial metabolism and the mitochondrial network. Altogether, our results highlight the implication of mitochondria in the synergistic toxicity of pollution and UV exposure and the potential of this toxicity on skin integrity.


Assuntos
Benzo(a)pireno , Peroxidação de Lipídeos , Mitocôndrias , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Benzo(a)pireno/toxicidade , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/metabolismo
3.
Sci Total Environ ; : 176346, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332737

RESUMO

The Lahaina urban/wildland fire event is considered the deadliest wildfire in the past century of U.S. history. This fire resulted in over 2200 building structures destroyed or damaged, approximately 4000 automobiles were incinerated and between 450 and 878 ha of grassland burned in areas adjoining the town of Lahaina, Maui County, State of Hawaii, U.S.A. One of the most abundant contaminants of both wildland and urban fires is the incomplete combustion product, benzo[a]pyrene. Pentachlorophenol from burned and unburned utility poles/residential burn sites enter into navigable waters, thus posing a serious risk to the water quality of coastal waters. The Risk Quotient Plumes for benzo[a]pyrene and pentachlorophenol, mobilized from Lahaina into coastal waters were calculated based on a hydrodynamic analysis and an integrated ecological risk assessment. This plume was simulated using rainfall events in November 2022 as a proxy for the first major rainfall event expected in Lahaina in 2024. The models indicated that the estimated levels of benzo[a]pyrene and pentachlorophenol posed a risk to near shore habitants within 2 km of Lahaina. The levels of pentachlorophenol were more widespread than benzo[a]pyrene and were predicted to pose a hazard to marine life as far away as Molokini Shoal Marine Life Conservation District and 'Ahihi-Kina'u Natural Area Reserve. Fisheries species captured near these areas should be tested for consumption safety.

4.
Sci Total Environ ; 954: 176215, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276998

RESUMO

The deleterious health impacts of polycyclic aromatic hydrocarbons (PAHs) on the population have been extensively substantiated and acknowledged. Mounting evidence underscores that PAH exposure is closely linked to an elevated risk of mental disorders, particularly in populations experiencing occupational and high-level exposure. In this study, we aimed to investigate the mechanisms underlying anxiety-like behaviors induced by different dosages of PAHs, with a concentrated focus on brain region-specific metabolic alterations in mice using various metabolomics approaches. Male C57BL/6 mice were exposed to benzo[a]pyrene (B[a]P), a typical PAH, through gavage at occupational exposure and EPA toxicologically relevant dosages (2.0 and 20.0 mg/kg/day) for 21 days, respectively. Behavioral assessments revealed that occupational exposure to B[a]P induced anxiety-like behaviors in C57BL/6 mice. Meanwhile, elevated serum norepinephrine and corticotropin-releasing hormone further confirmed the anxiety-inducing effects of B[a]P exposure. Metabolomics analysis uncovered dysregulation across various metabolic pathways following B[a]P exposure, encompassing brain neurotransmitter, organic acid, amino acid, lipid, fatty acid, and cholesterol. Anxiety levels and lipid metabolic abnormalities were notably exacerbated at the higher dosage, despite being only a 10-fold increase. Of particular significance, a decrease in lysophosphatidic acid (LPA) and lysophosphatidylserine (LPS) emerged as pivotal indicators of B[a]P neurotoxicity. Spatial-resolved metabolomics further demonstrated distinctive lipid and metabolite profiles across different brain subregions after exposure to B[a]P. Remarkably, alterations were specifically observed in the anxiety-related brain regions, such as the hippocampus, cortex, white matter, and thalamus, varying with exposure dosages. These findings underscore the significance of brain metabolic abnormalities in the development of mental disorders triggered by B[a]P exposure and highlight the need for establishing precise exposure limits of B[a]P to safeguard public mental health.

5.
Ecotoxicol Environ Saf ; 285: 117065, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305779

RESUMO

Exposure to polycyclic aromatic hydrocarbons (PAHs), ubiquitously environmental contaminant, leads to the development of major toxic effects on human health, such as carcinogenic and immunosuppressive alterations reported for the most studied PAH, i.e., benzo(a)pyrene (B(a)P). In order to assess the risk associated with this exposure, it is necessary to have predictive biomarkers. Thus, extracellular vesicles (EVs) and their microRNA (miRNA) contents, have recently been proposed as potentially interesting biomarkers in Toxicology. Our study here explores the use of vesicles secreted and found in blood fluids, and their miRNAs, as biomarkers of exposure to B(a)P alone and within a realistic occupational mixture. We isolated EVs from primary human cultured blood mononuclear cells (PBMCs) and rat plasma after PAH exposure and reported an increased EV production by B(a)P, used either alone or in the mixture, in vitro and in vivo. We then investigated the association of this EV release with the blood concentration of the 7,8,9,10-hydroxy (tetrol)-B(a)P reactive metabolite, in rats. By performing RNA-sequencing (RNA-seq) of miRNAs in PBMC-derived EVs, we analyzed miRNA profiles and demonstrated the regulation of the expression of miR-342-3p upon B(a)P exposure. We then validated B(a)P-induced changes of miR-342-3p expression in vivo in rat plasma-derived EVs. Overall, our study highlights the feasibility of using EVs and their miRNA contents, as biomarkers of PAH exposure and discusses their potential in environmental Toxicology.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39305850

RESUMO

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon from incomplete combustion, builds up in coastal regions through river runoff, atmospheric deposition, and coastal activities. BaP's lipophilicity and stability lead to persistent environmental impacts due to its resistance to degradation. The economically valuable golden cuttlefish, Sepia esculenta, often spawns and hatches in shallow waters, making it prone to BaP exposure. This study employs transcriptomic analysis to initially investigate juvenile golden cuttlefish's response to BaP. The results indicate that BaP exposure significantly affects various physiological and molecular functions of the juveniles, particularly affecting pathways related to immune and inflammatory responses, metabolic regulation, and nervous system functions. Functional enrichment and PPI network analyses identified key genes such as HSGALT-like, ASAH1-like, and GTL-like in the BaP response. These genes exhibited a suppressive trend during short-term exposure, indicating that BaP exposure may influence lipid metabolism, energy conversion, and digestive functions at the genetic level, which could further disrupt the overall physiological state and developmental processes of juvenile golden cuttlefish. The study offers novel insights into BaP's effects on juvenile golden cuttlefish and marine life, aiding marine ecosystem and biodiversity conservation.

7.
Food Chem ; 463(Pt 3): 141381, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39332372

RESUMO

Benzo[a]pyrene (BaP), known for its carcinogenic and mutagenic properties, is a marker of polycyclic aromatic hydrocarbons (PAHs). This study aimed to investigate the effect of partially replacing sodium chloride with different calcium salts (calcium chloride, calcium gluconate, calcium citrate, and calcium lactate) on BaP formation in barbecued pork sausages. The results revealed that all four calcium salts inhibited BaP formation in barbecued pork sausages (P < 0.05). Specifically, calcium gluconate showed the most significant effect on BaP inhibition, with an inhibition rate of 61.82 %. Furthermore, calcium salts were found to inhibit lipid oxidation in barbecued pork sausages while promoting the Maillard reaction. Further validation experiments used resveratrol and sodium sulfite as lipid oxidation and Maillard reaction inhibitors, respectively. These results indicated that lipid oxidation is the primary pathway for BaP production in barbecued pork sausage and that the addition of calcium salts can effectively block this process.

8.
Environ Health ; 23(1): 72, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244555

RESUMO

BACKGROUND: While genetic, hormonal, and lifestyle factors partially elucidate the incidence of breast cancer, emerging research has underscored the potential contribution of air pollution. Polychlorinated biphenyls (PCBs) and benzo[a]pyrene (BaP) are of particular concern due to endocrine-disrupting properties and their carcinogenetic effect. OBJECTIVE: To identify distinct long term trajectories of exposure to PCB153 and BaP, and estimate their associations with breast cancer risk. METHODS: We used data from the XENAIR case-control study, nested within the ongoing prospective French E3N cohort which enrolled 98,995 women aged 40-65 years in 1990-1991. Cases were incident cases of primary invasive breast cancer diagnosed from cohort entry to 2011. Controls were randomly selected by incidence density sampling, and individually matched to cases on delay since cohort entry, and date, age, department of residence, and menopausal status at cohort entry. Annual mean outdoor PCB153 and BaP concentrations at residential addresses from 1990 to 2011 were estimated using the CHIMERE chemistry-transport model. Latent class mixed models were used to identify profiles of exposure trajectories from cohort entry to the index date, and conditional logistic regression to estimate their association with the odds of breast cancer. RESULTS: 5058 cases and 5059 controls contributed to the analysis. Five profiles of trajectories of PCB153 exposure were identified. The class with the highest PCB153 concentrations had a 69% increased odds of breast cancer compared to the class with the lowest concentrations (95% CI 1.08, 2.64), after adjustment for education and matching factors. The association between identified BaP trajectories and breast cancer was weaker and suffered from large CI. CONCLUSIONS: Our results support an association between long term exposure to PCB153 and the risk of breast cancer, and encourage further studies to account for lifetime exposure to persistent organic pollutants.


Assuntos
Poluentes Atmosféricos , Benzo(a)pireno , Neoplasias da Mama , Exposição Ambiental , Bifenilos Policlorados , Humanos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/induzido quimicamente , Pessoa de Meia-Idade , Feminino , Bifenilos Policlorados/análise , Benzo(a)pireno/análise , Estudos de Casos e Controles , Adulto , Idoso , Exposição Ambiental/efeitos adversos , França/epidemiologia , Poluentes Atmosféricos/análise , Fatores de Risco , Estudos Prospectivos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
9.
Sci Total Environ ; 952: 175877, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39226951

RESUMO

Infertility has gradually become a global health concern, and evidence suggests that exposure to environmental endocrine-disrupting chemicals (EDCs) represent one of the key causes of infertility. Benzo(a)pyrene (BaP) is a typical EDC that is widespread in the environment. Previous studies have detected BaP in human urine, semen, cervical mucus, oocytes and follicular fluid, resulting in reduced fertility and irreversible reproductive damage. However, the mechanisms underlying the effects of gestational BaP exposure on offspring fertility in male mice have not been fully explored. In this study, pregnant mice were administered BaP at doses of 0, 5, 10 and 20 mg/kg/day via gavage from Days 7.5 to 12.5 of gestation. The results revealed that BaP exposure during pregnancy disrupted the structural integrity of testicular tissue, causing a disorganized arrangement of spermatogenic cells, compromised sperm quality, elevated levels of histone modifications and increased apoptosis in the testicular tissue of F1 male mice. Furthermore, oxidative stress was also increased in the testicular tissue of F1 male mice. BaP activated the AhR/ERα signaling pathway, affected H3K4me3 expression and induced apoptosis in testicular tissue. AhR and Cyp1a1 were overexpressed, and the expression of key molecules in the antioxidant pathway, including Keap1 and Nrf2, was reduced. The combined effects of these molecules led to apoptosis in testicular tissues, damaging and compromising sperm quality. This impairment in testicular cells further contributed to compromised testicular tissues, ultimately impacting the reproductive health of F1 male mice.


Assuntos
Apoptose , Benzo(a)pireno , Estresse Oxidativo , Animais , Benzo(a)pireno/toxicidade , Masculino , Feminino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Gravidez , Testículo/efeitos dos fármacos , Testículo/metabolismo , Disruptores Endócrinos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Células Germinativas/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Exposição Materna/efeitos adversos , Histonas/metabolismo , Código das Histonas/efeitos dos fármacos
10.
Front Oncol ; 14: 1394039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301545

RESUMO

Tumor metastasis is the main cause of death in triple-negative breast cancer (TNBC) patients. TNBC is the most aggressive subtype of breast cancer lacking the expression of estrogen, progesterone, and human epidermal growth factor 2 receptors, thereby rendering it insensitive to targeted therapies. It has been well-established that excess adiposity contributes to the progression of TNBC; however, due to the aggressive nature of this breast cancer subtype, it is imperative to determine how multiple factors can contribute to progression. Therefore, we aimed to investigate if exposure to an environmental carcinogen could impact a pre-existing obesity-promoted cancer. We utilized a spontaneous lung metastatic mouse model where 4T1 breast tumor cells are injected into the mammary gland of BALB/c mice. Feeding a high fat diet (HFD) in this model has been shown to promote tumor growth and metastasis. Herein, we tested the effects of both a HFD and benzo(a)pyrene (B[a]P) exposure. Our results indicate that diet and B[a]P had no tumor promotional interaction. However, unexpectedly, our findings reveal an inhibitory effect of B[a]P on body weight, adipose tissue deposition, and tumor volume at time of sacrifice specifically under HFD conditions.

11.
Toxicology ; 508: 153926, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39147092

RESUMO

Mitochondria are essential for various physiological functions in astrocytes in the brain, such as maintaining ion and pH homeostasis, regulating neurotransmission, and modulating neuroinflammation. Mitophagy, a form of autophagy specific to mitochondria, is essential for ensuring mitochondrial quality and function. Benzo[a]pyrene (BaP) accumulates in the brain, and exposure to it is recognized as an environmental risk factor for neurodegenerative diseases. However, while the toxic mechanisms of BaP have been investigated in neurons, their effects on astrocytes-the most prevalent glial cells in the brain-are not clearly understood. Therefore, this study aims to investigate the toxic effects of exposure to BaP on mitochondria in primary astrocytes. Fluorescent probes and genetically encoded indicators were utilized to visualize mitochondrial morphology and physiology, and regulatory factors involved in mitochondrial morphology and mitophagy were assessed. Additionally, the mitochondrial respiration rate was measured in BaP-exposed astrocytes. BaP exposure resulted in mitochondrial enlargement owing to the suppression of mitochondrial fission factors. Furthermore, BaP-exposed astrocytes demonstrated reduced mitophagy and exhibited aberrant mitochondrial function and physiology, such as altered mitochondrial respiration rates, increased mitochondrial superoxide, disrupted mitochondrial membrane potential, and dysregulated mitochondrial Ca2+. These findings offer insights into the underlying toxic mechanisms of BaP exposure in neurodegenerative diseases by inducing aberrant mitophagy and mitochondrial dysfunction in astrocytes.


Assuntos
Astrócitos , Potencial da Membrana Mitocondrial , Mitocôndrias , Dinâmica Mitocondrial , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Mitofagia/efeitos dos fármacos , Animais , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células Cultivadas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Cálcio/metabolismo , Camundongos
12.
Toxicol Appl Pharmacol ; 491: 117050, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111554

RESUMO

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant posing various toxicity effects on organisms. Previous studies demonstrated that BaP could induce hepatotoxicity, while the underlying mechanism remains incompletely elucidated. In this study, a comprehensive strategy including network toxicology, transcriptomics and gut microbiomics was applied to investigate the hepatotoxicity and the associated mechanism of BaP exposure in mice. The results showed that BaP induced liver damage, liver oxidative stress and hepatic lipid metabolism disorder. Mechanistically, BaP may disrupt hepatic lipid metabolism through increasing the uptake of free fatty acid (FFA), promoting the synthesis of FA and triglyceride (TG) in the liver and suppressing lipid synthesis in white adipose tissue. Moreover, integrated network toxicology and hepatic transcriptomics revealed that BaP induced hepatotoxicity by acting on several core targets, such as signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and toll-like receptor 2 (TLR2). Further analysis suggested that BaP inhibited JAK2-STAT3 signaling pathway, as supported by molecular docking and western blot. The 16S rRNA sequencing showed that BaP changed the composition of gut microbiota which may link to the hepatotoxicity based on the correlation analysis. Taken together, this study demonstrated that BaP caused liver injury, hepatic lipid metabolism disorder and gut microbiota dysbiosis, providing novel insights into the hepatotoxic mechanism induced by BaP exposure.


Assuntos
Benzo(a)pireno , Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Fígado , Animais , Benzo(a)pireno/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Transcriptoma/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Disbiose/induzido quimicamente , Poluentes Ambientais/toxicidade
13.
Environ Int ; 190: 108922, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39128373

RESUMO

BACKGROUND: Benzo(a)pyrene (B[a]P) is the most widely concerned polycyclic aromatic hydrocarbons (PAHs), which metabolizes benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) in vivo to produce carcinogenic effect on the body. Currently, there is limited research on the role of the variation of metabolic enzymes in this process. METHODS: We carried out a study including 752 participants, measured the concentrations of 16 kinds PAHs in both particle and gaseous phases, urinary PAHs metabolites, leukocyte BPDE-DNA adduct and serum BPDE- Albumin (BPDE-Alb) adduct, and calculated daily intake dose (DID) to assess the cumulative exposure of PAHs. We conducted single nucleotide polymorphism sites (SNPs) of metabolic enzymes, explored the exposure-response relationship between the levels of exposure and BPDE adducts using multiple linear regression models. RESULT: Our results indicated that an interquartile range (IQR) increase in B[a]P, PAHs, BaPeq, 1-hydroxypyrene (1-OHP), 1-hydroxynaphthalene (1-OHNap) and 2-hydroxynaphthalene (2-OHNap) were associated with 26.53 %, 24.24 %, 28.15 %, 39.15 %, 12.85 % and 14.09 % increase in leukocyte BPDE-DNA adduct (all P < 0.05). However, there was no significant correlation between exposure with serum BPDE-Alb adduct (P > 0.05). Besides, we also found the polymorphism of CYP1A1(Gly45Asp), CYP2C9 (Ile359Leu), and UGT1A1(downstream) may affect BPDE adducts level. CONCLUSION: Our results indicated that leukocyte BPDE-DNA adduct could better reflect the exposure to PAHs. Furthermore, the polymorphism of CYP1A1, CYP2C9 and UGT1A1affected the content of BPDE adducts.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Adutos de DNA , Interação Gene-Ambiente , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , China , Citocromo P-450 CYP1A1/genética , Adutos de DNA/sangue , População do Leste Asiático/genética , Exposição Ambiental , Glucuronosiltransferase/genética , Leucócitos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/sangue , Polimorfismo de Nucleotídeo Único , Citocromo P-450 CYP2C9/genética
14.
Environ Toxicol Chem ; 43(10): 2145-2156, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39092785

RESUMO

Quantitative adverse outcome pathways (qAOPs) describe the response-response relationships that link the magnitude and/or duration of chemical interaction with a specific molecular target to the probability and/or severity of the resulting apical-level toxicity of regulatory relevance. The present study developed the first qAOP for latent toxicities showing that early life exposure adversely affects health at adulthood. Specifically, a qAOP for embryonic activation of the aryl hydrocarbon receptor 2 (AHR2) of fishes by polycyclic aromatic hydrocarbons (PAHs) leading to decreased fecundity of females at adulthood was developed by building on existing qAOPs for (1) activation of the AHR leading to early life mortality in birds and fishes, and (2) inhibition of cytochrome P450 aromatase activity leading to decreased fecundity in fishes. Using zebrafish (Danio rerio) as a model species and benzo[a]pyrene as a model PAH, three linked quantitative relationships were developed: (1) plasma estrogen in adult females as a function of embryonic exposure, (2) plasma vitellogenin in adult females as a function of plasma estrogen, and (3) fecundity of adult females as a function of plasma vitellogenin. A fourth quantitative relationship was developed for early life mortality as a function of sensitivity to activation of the AHR2 in a standardized in vitro AHR transactivation assay to integrate toxic equivalence calculations that would allow prediction of effects of exposure to untested PAHs. The accuracy of the predictions from the resulting qAOP were evaluated using experimental data from zebrafish exposed as embryos to another PAH, benzo[k]fluoranthene. The qAOP developed in the present study demonstrates the potential of the AOP framework in enabling consideration of latent toxicities in quantitative ecological risk assessments and regulatory decision-making. Environ Toxicol Chem 2024;43:2145-2156. © 2024 SETAC.


Assuntos
Fertilidade , Hidrocarbonetos Policíclicos Aromáticos , Receptores de Hidrocarboneto Arílico , Peixe-Zebra , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Fertilidade/efeitos dos fármacos , Feminino , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Rotas de Resultados Adversos , Poluentes Químicos da Água/toxicidade
15.
Chemosphere ; 364: 143121, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154768

RESUMO

INTRODUCTION: Benzo[a]pyrene (B[a]P) is a carcinogenic polycyclic aromatic hydrocarbon that poses significant risks to human health. B[a]P influences cellular processes via intricate interactions; however, a comprehensive understanding of B[a]P's effects on the transcriptome remains elusive. This study aimed to conduct a comprehensive analysis focused on identifying relevant genes and signaling pathways affected by B[a]P exposure and their impact on human gene expression. METHODS: We searched the Gene Expression Omnibus database and identified four studies involving B[a]P exposure in human cells (T lymphocytes, hepatocellular carcinoma cells, and C3A cells). We utilized two approaches for differential expression analysis: the LIMMA package and linear regression. A meta-analysis was utilized to combine log fold changes (FC) and p-values from the identified studies using a random effects model. We identified significant genes at a Bonferroni-adjusted significance level of 0.05 and determined overlapping genes across datasets. Pathway enrichment analysis elucidated key cellular processes modulated by B[a]P exposure. RESULTS: The meta-analysis revealed significant upregulation of CYP1B1 (log FC = 1.15, 95% CI: 0.51-1.79, P < 0.05, I2 = 82%) and ASB2 (log FC = 0.44, 95% CI: 0.20-0.67, P < 0.05, I2 = 40%) in response to B[a]P exposure. Pathway analyses identified 26 significantly regulated pathways, with the top including Aryl Hydrocarbon Receptor Signaling (P = 0.00214) and Xenobiotic Metabolism Signaling (P = 0.00550). Key genes CYP1A1, CYP1B1, and CDKN1A were implicated in multiple pathways, highlighting their roles in xenobiotic metabolism, oxidative stress response, and cell cycle regulation. CONCLUSION: The results provided insights into the mechanisms of B[a]P toxicity, highlighting CYP1B1's key role in B[a]P bioactivation. The findings underscored the complexity of B[a]P's mechanisms of action and their potential implications for human health. The identified genes and pathways provided a foundation for further exploration and enhanced our understanding of the multifaceted biological activities associated with B[a]P exposure.


Assuntos
Benzo(a)pireno , Citocromo P-450 CYP1B1 , Transdução de Sinais , Benzo(a)pireno/toxicidade , Humanos , Citocromo P-450 CYP1B1/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
16.
Iran J Pharm Res ; 23(1): e142903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108652

RESUMO

Background: Benzo(a)pyrene (BaP), an environmental toxicant and endocrine disruptor, has been shown to exacerbate atherosclerosis when combined with a high-fat diet. Fibroblast Growth Factor-21 (FGF21), a novel hormone with anti-atherosclerotic properties, is associated with the presence of atherosclerosis and reduces plaque formation in experimental animals. Objectives: The present study aimed to investigate the chronic effect of BaP injection on hepatic FGF21 expression, as an anti-atherosclerotic hormone, in mice fed with or without an atherogenic diet (AtD). Methods: Eighteen C57BL/6J male mice (6 weeks) were randomly divided into six groups based on the dosage and diet. Blood samples were collected, and serum cholesterol, triglyceride, HDL-C, LDL-C, and glucose levels were measured. FGF21 expression was assessed by quantitative real-time PCR. Atherosclerotic lesions in mice were studied with Oil Red O (ORO) staining. Results: Benzo(a)pyrene causes a significant increase in liver FGF21 expression in a dose-dependent manner, and BaP co-exposure with AtD leads to a further increase in FGF21 expression. Additionally, the addition of BaP to AtD significantly increased the serum glucose, cholesterol, and LDL-C levels and accelerated the formation of atherosclerotic lesions. Besides, our findings showed that there is a significant positive correlation between FGF21 expression and glucose, cholesterol, LDL-C, and ORO-positive areas. Conclusions: Our findings revealed that BaP increases the expression of endogenous FGF21 in treated animals as a compensatory response to protect the heart from atherosclerosis induced by BaP and AtD.

17.
J Hazard Mater ; 477: 135404, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098204

RESUMO

Recently, the abundance of environmental microplastics (MPs) has become a global paramount concern. Besides the danger of MPs for biota due to their tiny size, these minute particles may act as vectors of other pollutants. This study focused on evaluating the toxicity of environmentally relevant concentrations of MPs (10 and 50 mg/kg sediment) and benzo[a]pyrene (B[a]P, 1 µg/kg sediment), alone and in mixture, for 3 and 7 days in marine polychaete Hediste diversicolor, selected as a benthic bioindicator model. The exposure period was sufficient to confirm the bioaccumulation of both contaminants in seaworms, as well as the potential capacity of plastic particles to adsorb and vehiculate the B[a]P. Interestingly, increase of acidic mucus production was observed in seaworm tissues, indicative of a defense response. The activation of oxidative system pathways was demonstrated as a strategy to prevent lipid peroxidation. Furthermore, the comprehensive Nuclear Magnetic Resonance (NMR)-based metabolomics revealed significant disorders in amino acids metabolism, osmoregulatory process, energetic components, and oxidative stress related elements. Overall, these findings proved the possible synergic harmful effect of MPs and B[a]P even in small concentrations, which increases the concern about their long-term presence in marine ecosystems, and consequently their transfer and repercussions on marine fauna.


Assuntos
Benzo(a)pireno , Metabolômica , Microplásticos , Poliquetos , Poluentes Químicos da Água , Poliquetos/efeitos dos fármacos , Poliquetos/metabolismo , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Sedimentos Geológicos/química
18.
J Biochem Mol Toxicol ; 38(9): e23775, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39148231

RESUMO

Benzo[a]pyrene (BaP) is a contaminant that is generated in the environment through processes such as smoke, incomplete combustion of fossil fuels, vehicle exhaust emissions, entry into the body is through inhalation, and consumption of contaminated food. It is an omnipresent environmental pollutant with unavoidable exposure. BaP metabolites are observed in the male reproductive system, especially in the testes and epididymis of animals, and are responsible for reduced testicular and epididymal function. The protective effect of atorvastatin (ATV) on testicular damage was investigated previously. The aim of the present study was to investigate the protective effect of ATV on testicular toxicity induced by benzo[a]pyrene (BaP) during pregnancy in Wistar rats. This experimental laboratory study involved 40 adult rats, divided into seven groups and maintained under standard environmental conditions. The groups received different diets [control, corn oil, ATV (10 mg/kg), BaP (10 and 20 mg/kg), and ATV + BaP (10 and 20 mg/kg)] at gestation Days 7-16, orally. Male offspring were examined 10 weeks after birth. Testis and serum samples were collected, and testosterone level, malondialdehyde (MDA), and glutathione (GSH) were measured. Histological and immunohistochemical assays were performed under a light microscope. Statistical analysis was conducted using SPSS, with analysis of variance and Tukey tests to assess significant differences between groups. ATV significantly reduced MDA, a marker of lipid peroxidation and oxidative stress in rat testes following BaP administration. Treatment with ATV at doses of 10 mg/kg increased GSH levels, correcting disruptions in the antioxidant system caused by BaP. Testosterone concentration in rats treated with ATV and BaP substantially prevented the decrease induced by BaP. Histomorphometry revealed that ATV significantly prevented the detrimental effects of BaP on the thickness of spermatogenic epithelium and the diameter of seminiferous tubules. Under ATV treatment, testicular tissue histopathology improved, and spermatogenesis returned to a almost back to normal state. Caspase-3 expression decreased, and apoptosis activity in testicular tissue improved under ATV treatment, indicating a positive effect of ATV in reducing apoptotic damage caused by BaP. In conclusion, exposure to BaP can induce oxidative stress-related damage to testicular tissue, as evidenced by an increase in MDA levels, which ATV treatment can mitigate. Additionally, ATV enhances intracellular antioxidant GSH and protects the testes against BaP-induced damage while increasing testosterone levels, which are reduced due to exposure to BaP.


Assuntos
Atorvastatina , Benzo(a)pireno , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Testículo , Animais , Masculino , Atorvastatina/farmacologia , Benzo(a)pireno/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Feminino , Ratos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Maturidade Sexual/efeitos dos fármacos , Testosterona/sangue , Estresse Oxidativo/efeitos dos fármacos , Glutationa/metabolismo
19.
Environ Res ; 261: 119716, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096990

RESUMO

Bentonite is a non-metallic mineral with montmorillonite as the main component. It is an environmentally friendly mineral material with large reserves, wide distribution, and low price. Bentonite can be easily modified organically using the surfactant saponin to obtain saponin-modified bentonite (Sap-BT). This study investigates the immobilization of crude enzymes obtained from Trametes versicolor by physical adsorption with Sap-BT. Thus, saponin-modified bentonite immobilized crude enzymes (CE-Sap-BT) were developed to remove benzo[a]pyrene. Immobilization improves the stability of free enzymes. CE-Sap-BT can maintain more than 80% of activity at 45 °C and after storage for 15 d. Additionally, CE-Sap-BT exhibited a high removal rate of benzo[a]pyrene in soil, with 65.69% after 7 d in highly contaminated allotment soil and 52.90% after 6 d in actual soil contaminated with a low concentration of benzo[a]pyrene at a very low laccase dosage (0.1 U/3 g soil). The high catalytic and removal performance of CE-Sap-BT in contaminated sites showed more excellent practical application value.


Assuntos
Bentonita , Benzo(a)pireno , Enzimas Imobilizadas , Saponinas , Poluentes do Solo , Bentonita/química , Benzo(a)pireno/química , Poluentes do Solo/química , Adsorção , Saponinas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
20.
Biomedicines ; 12(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200369

RESUMO

The vast majority of gastric cancer (GC) cases are adenocarcinomas including intestinal and diffuse GC. The incidence of diffuse GC, often associated with poor overall survival, has constantly increased in Western countries. Epidemiological studies have reported increased mortality from GC after occupational exposure to pro-carcinogens that are metabolically activated by cytochrome P450 enzymes through aryl hydrocarbon receptor (AhR). However, little is known about the role of AhR and environmental AhR ligands in diffuse GC as compared to intestinal GC in Western patients. In a cohort of 29, we demonstrated a significant increase in AhR protein and mRNA expression levels in GCs independently of their subtypes and clinical parameters. AhR and RHOA mRNA expression were correlated in diffuse GC. Further, our study aimed to characterize in GC how AhR and the AhR-related genes cytochrome P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) affect the mRNA expression of a panel of genes involved in cancer development and progression. In diffuse GC, CYP1A1 expression correlated with genes involved in IGF signaling, epithelial-mesenchymal transition (Vimentin), and migration (MMP2). Using the poorly differentiated KATO III epithelial cell line, two well-known AhR pollutant ligands, namely 2-3-7-8 tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene (BaP), strongly increased the expression of CYP1A1 and Interleukin1ß (IL1B), and to a lesser extend UGT1, NQO1, and AhR Repressor (AhRR). Moreover, the increased expression of CYP1B1 was seen in diffuse GC, and IHC staining indicated that CYP1B1 is mainly expressed in stromal cells. TCDD treatment increased CYP1B1 expression in KATO III cells, although at lower levels as compared to CYP1A1. In intestinal GC, CYP1B1 expression is inversely correlated with several cancer-related genes such as IDO1, a gene involved in the early steps of tryptophan metabolism that contributes to the endogenous AhR ligand kynurenine expression. Altogether, our data provide evidence for a major role of AhR in GC, as an environmental xenobiotic receptor, through different mechanisms and pathways in diffuse and intestinal GC. Our results support the continued efforts to clarify the identity of exogenous AhR ligands in diffuse GC in order to define new therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA