Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29410, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644823

RESUMO

Currently, the Internet of Things (IoT) generates a huge amount of traffic data in communication and information technology. The diversification and integration of IoT applications and terminals make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT systems. The detection of intrusion is considered a challenging task because of inappropriate features existing in the input data and the slow training process. In order to address these issues, an effective meta heuristic based feature selection and deep learning techniques are developed for enhancing the IDS. The Osprey Optimization Algorithm (OOA) based feature selection is proposed for selecting the highly informative features from the input which leads to an effective differentiation among the normal and attack traffic of network. Moreover, the traditional sigmoid and tangent activation functions are replaced with the Exponential Linear Unit (ELU) activation function to propose the modified Bi-directional Long Short Term Memory (Bi-LSTM). The modified Bi-LSTM is used for classifying the types of intrusion attacks. The ELU activation function makes gradients extremely large during back-propagation and leads to faster learning. This research is analysed in three different datasets such as N-BaIoT, Canadian Institute for Cybersecurity Intrusion Detection Dataset 2017 (CICIDS-2017), and ToN-IoT datasets. The empirical investigation states that the proposed framework obtains impressive detection accuracy of 99.98 %, 99.97 % and 99.88 % on the N-BaIoT, CICIDS-2017, and ToN-IoT datasets, respectively. Compared to peer frameworks, this framework obtains high detection accuracy with better interpretability and reduced processing time.

2.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38676277

RESUMO

In order to realize the accurate and reliable fault diagnosis of hydraulic systems, a diagnostic model based on improved tuna swarm optimization (ITSO), optimized convolutional neural networks (CNNs), and bi-directional long short-term memory (BiLSTM) networks is proposed. Firstly, sensor selection is implemented using the random forest algorithm to select useful signals from six kinds of physical or virtual sensors including pressure, temperature, flow rate, vibration, motor power, and motor efficiency coefficient. After that, fused features are extracted by CNN, and then, BiLSTM is applied to learn the forward and backward information contained in the data. The ITSO algorithm is adopted to adaptively optimize the learning rate, regularization coefficient, and node number to obtain the optimal CNN-BiLSTM network. Improved Chebyshev chaotic mapping and the nonlinear reduction strategy are adopted to improve population initialization and individual position updating, further promoting the optimization effect of TSO. The experimental results show that the proposed method can automatically extract fusion features and effectively utilize multi-sensor information. The diagnostic accuracies of the plunger pump, cooler, throttle valve, and accumulator are 99.07%, 99.4%, 98.81%, and 98.51%, respectively. The diagnostic results of noisy data with 0 dB, 5 dB, and 10 dB signal-to-noise ratios (SNRs) show that the ITSO-CNN-BiLSTM model has good robustness to noise interference.

3.
Front Neurosci ; 17: 1200630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469843

RESUMO

Introduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological Society of North America (RSNA) 2019 database, the region of interest (RoI) was segmented by employing Otsu's thresholding method. Then, feature extraction was performed utilizing Tamura features: directionality, contrast, coarseness, and Gradient Local Ternary Pattern (GLTP) descriptors to extract vectors from the segmented RoI regions. The extracted vectors were dimensionally reduced by proposing a modified genetic algorithm, where the infinite feature selection technique was incorporated with the conventional genetic algorithm to further reduce the redundancy within the regularized vectors. The selected optimal vectors were finally fed to the Bi-directional Long Short Term Memory (Bi-LSTM) network to classify intracranial hemorrhage sub-types, such as subdural, intraparenchymal, subarachnoid, epidural, and intraventricular. Results: The experimental investigation demonstrated that the Bi-LSTM based modified genetic algorithm obtained 99.40% sensitivity, 99.80% accuracy, and 99.48% specificity, which are higher compared to the existing machine learning models: Naïve Bayes, Random Forest, Support Vector Machine (SVM), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) network.

4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(3): 458-464, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37380384

RESUMO

Sleep staging is the basis for solving sleep problems. There's an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.


Assuntos
Fases do Sono , Sono , China , Eletroencefalografia , Bases de Dados Factuais
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(1): 17-28, 2023 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-36856206

RESUMO

OBJECTIVE: To propose a semi-supervised epileptic seizure prediction model (ST-WGAN-GP-Bi-LSTM) to enhance the prediction performance by improving time-frequency analysis of electroencephalogram (EEG) signals, enhancing the stability of the unsupervised feature learning model and improving the design of back-end classifier. METHODS: Stockwell transform (ST) of the epileptic EEG signals was performed to locate the time-frequency information by adaptive adjustment of the resolution and retaining the absolute phase to obtain the time-frequency inputs. When there was no overlap between the generated data distribution and the real EEG data distribution, to avoid failure of feature learning due to a constant JS divergence, Wasserstein GAN was used as a feature learning model, and the cost function based on EM distance and gradient penalty strategy was adopted to constrain the unsupervised training process to allow the generation of a high-order feature extractor. A temporal prediction model was finally constructed based on a bi-directional long short term memory network (Bi-LSTM), and the classification performance was improved by obtaining the temporal correlation between high-order time-frequency features. The CHB-MIT scalp EEG dataset was used to validate the proposed patient-specific seizure prediction method. RESULTS: The AUC, sensitivity, and specificity of the proposed method reached 90.40%, 83.62%, and 86.69%, respectively. Compared with the existing semi-supervised methods, the propose method improved the original performance by 17.77%, 15.41%, and 53.66%. The performance of this method was comparable to that of a supervised prediction model based on CNN. CONCLUSION: The utilization of ST, WGAN-GP, and Bi-LSTM effectively improves the prediction performance of the semi-supervised deep learning model, which can be used for optimization of unsupervised feature extraction in epileptic seizure prediction.


Assuntos
Memória de Curto Prazo , Convulsões , Humanos , Convulsões/diagnóstico , Eletroencefalografia
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(1): 110-117, 2023 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-36854555

RESUMO

The extraction of neuroimaging features of migraine patients and the design of identification models are of great significance for the auxiliary diagnosis of related diseases. Compared with the commonly used image features, this study directly uses time-series signals to characterize the functional state of the brain in migraine patients and healthy controls, which can effectively utilize the temporal information and reduce the computational effort of classification model training. Firstly, Group Independent Component Analysis and Dictionary Learning were used to segment different brain areas for small-sample groups and then the regional average time-series signals were extracted. Next, the extracted time series were divided equally into multiple subseries to expand the model input sample. Finally, the time series were modeled using a bi-directional long-short term memory network to learn the pre-and-post temporal information within each time series to characterize the periodic brain state changes to improve the diagnostic accuracy of migraine. The results showed that the classification accuracy of migraine patients and healthy controls was 96.94%, the area under the curve was 0.98, and the computation time was relatively shorter. The experiments indicate that the method in this paper has strong applicability, and the combination of time-series feature extraction and bi-directional long-short term memory network model can be better used for the classification and diagnosis of migraine. This work provides a new idea for the lightweight diagnostic model based on small-sample neuroimaging data, and contributes to the exploration of the neural discrimination mechanism of related diseases.


Assuntos
Transtornos de Enxaqueca , Humanos , Fatores de Tempo , Transtornos de Enxaqueca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Neuroimagem
7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970680

RESUMO

The extraction of neuroimaging features of migraine patients and the design of identification models are of great significance for the auxiliary diagnosis of related diseases. Compared with the commonly used image features, this study directly uses time-series signals to characterize the functional state of the brain in migraine patients and healthy controls, which can effectively utilize the temporal information and reduce the computational effort of classification model training. Firstly, Group Independent Component Analysis and Dictionary Learning were used to segment different brain areas for small-sample groups and then the regional average time-series signals were extracted. Next, the extracted time series were divided equally into multiple subseries to expand the model input sample. Finally, the time series were modeled using a bi-directional long-short term memory network to learn the pre-and-post temporal information within each time series to characterize the periodic brain state changes to improve the diagnostic accuracy of migraine. The results showed that the classification accuracy of migraine patients and healthy controls was 96.94%, the area under the curve was 0.98, and the computation time was relatively shorter. The experiments indicate that the method in this paper has strong applicability, and the combination of time-series feature extraction and bi-directional long-short term memory network model can be better used for the classification and diagnosis of migraine. This work provides a new idea for the lightweight diagnostic model based on small-sample neuroimaging data, and contributes to the exploration of the neural discrimination mechanism of related diseases.


Assuntos
Humanos , Fatores de Tempo , Transtornos de Enxaqueca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Neuroimagem
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-971490

RESUMO

OBJECTIVE@#To propose a semi-supervised epileptic seizure prediction model (ST-WGAN-GP-Bi-LSTM) to enhance the prediction performance by improving time-frequency analysis of electroencephalogram (EEG) signals, enhancing the stability of the unsupervised feature learning model and improving the design of back-end classifier.@*METHODS@#Stockwell transform (ST) of the epileptic EEG signals was performed to locate the time-frequency information by adaptive adjustment of the resolution and retaining the absolute phase to obtain the time-frequency inputs. When there was no overlap between the generated data distribution and the real EEG data distribution, to avoid failure of feature learning due to a constant JS divergence, Wasserstein GAN was used as a feature learning model, and the cost function based on EM distance and gradient penalty strategy was adopted to constrain the unsupervised training process to allow the generation of a high-order feature extractor. A temporal prediction model was finally constructed based on a bi-directional long short term memory network (Bi-LSTM), and the classification performance was improved by obtaining the temporal correlation between high-order time-frequency features. The CHB-MIT scalp EEG dataset was used to validate the proposed patient-specific seizure prediction method.@*RESULTS@#The AUC, sensitivity, and specificity of the proposed method reached 90.40%, 83.62%, and 86.69%, respectively. Compared with the existing semi-supervised methods, the propose method improved the original performance by 17.77%, 15.41%, and 53.66%. The performance of this method was comparable to that of a supervised prediction model based on CNN.@*CONCLUSION@#The utilization of ST, WGAN-GP, and Bi-LSTM effectively improves the prediction performance of the semi-supervised deep learning model, which can be used for optimization of unsupervised feature extraction in epileptic seizure prediction.


Assuntos
Humanos , Memória de Curto Prazo , Convulsões/diagnóstico , Eletroencefalografia
9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981563

RESUMO

Sleep staging is the basis for solving sleep problems. There's an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.


Assuntos
China , Fases do Sono , Sono , Eletroencefalografia , Bases de Dados Factuais
10.
Environ Sci Pollut Res Int ; 29(43): 65585-65598, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35488159

RESUMO

An efficient carbon trading market can effectively curb excessive carbon emissions and thus slow down the pace of global warming, which heightens the necessity of improving the accuracy of carbon price forecasting. In order to overcome the weakness of previous prediction model that always trained data in one-way neural networks and propagated the data sequentially, this paper proposes a novel hybrid learning paradigm WPD-ISSA-BiLSTM combining wavelet packet decomposition (WPD), improved sparrow search algorithm (ISSA), and Bi-directional long short-term memory network for deep feature exploration of carbon prices. Firstly, WPD decomposes and reconstructs the original carbon price series into several independent subseries. Then, the input features of the all subseries are filtered with random forest to select the best input features for the prediction model. Finally, a Bi-directional long short-term memory network optimized by the ISSA is employed to deeply delineate the intrinsic evolutionary trends of carbon prices, and the prediction results of all subseries are superimposed on each other to obtain the final carbon price prediction results. The actual carbon emission trading prices are collected as input to the model, and the experimental results show that the RMSE values of the proposed model are 0.2516 and 0.2962 under the mild and severe volatility scenarios, respectively. The proposed model has superiority and robustness compared to the comparison model and several existing models and better understands the intrinsic correlation between historical carbon price data. The results of this study can provide meaningful references for the carbon market development and emission reduction pathways.


Assuntos
Carbono , Memória de Curto Prazo , Algoritmos , Previsões , Redes Neurais de Computação
11.
Front Neurosci ; 16: 1107284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685221

RESUMO

Recently, personality trait recognition, which aims to identify people's first impression behavior data and analyze people's psychological characteristics, has been an interesting and active topic in psychology, affective neuroscience and artificial intelligence. To effectively take advantage of spatio-temporal cues in audio-visual modalities, this paper proposes a new method of multimodal personality trait recognition integrating audio-visual modalities based on a hybrid deep learning framework, which is comprised of convolutional neural networks (CNN), bi-directional long short-term memory network (Bi-LSTM), and the Transformer network. In particular, a pre-trained deep audio CNN model is used to learn high-level segment-level audio features. A pre-trained deep face CNN model is leveraged to separately learn high-level frame-level global scene features and local face features from each frame in dynamic video sequences. Then, these extracted deep audio-visual features are fed into a Bi-LSTM and a Transformer network to individually capture long-term temporal dependency, thereby producing the final global audio and visual features for downstream tasks. Finally, a linear regression method is employed to conduct the single audio-based and visual-based personality trait recognition tasks, followed by a decision-level fusion strategy used for producing the final Big-Five personality scores and interview scores. Experimental results on the public ChaLearn First Impression-V2 personality dataset show the effectiveness of our method, outperforming other used methods.

12.
Sensors (Basel) ; 21(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695969

RESUMO

Based on the openness and accessibility of user data, personality recognition is widely used in personalized recommendation, intelligent medicine, natural language processing, and so on. Existing approaches usually adopt a single deep learning mechanism to extract personality information from user data, which leads to semantic loss to some extent. In addition, researchers encode scattered user posts in a sequential or hierarchical manner, ignoring the connection between posts and the unequal value of different posts to classification tasks. We propose a hierarchical hybrid model based on a self-attention mechanism, namely HMAttn-ECBiL, to fully excavate deep semantic information horizontally and vertically. Multiple modules composed of convolutional neural network and bi-directional long short-term memory encode different types of personality representations in a hierarchical and partitioned manner, which pays attention to the contribution of different words in posts and different posts to personality information and captures the dependencies between scattered posts. Moreover, the addition of a word embedding module effectively makes up for the original semantics filtered by a deep neural network. We verified the hybrid model on the MyPersonality dataset. The experimental results showed that the classification performance of the hybrid model exceeds the different model architectures and baseline models, and the average accuracy reached 72.01%.


Assuntos
Processamento de Linguagem Natural , Redes Neurais de Computação , Personalidade , Semântica
13.
Sensors (Basel) ; 17(2)2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28146106

RESUMO

In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA