Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.872
Filtrar
1.
J Environ Sci (China) ; 147: 487-497, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003064

RESUMO

Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.


Assuntos
Cobre , Peróxidos , Poluentes Químicos da Água , Cobre/química , Poluentes Químicos da Água/química , Peróxidos/química , Catálise , Ferro/química , Rodaminas/química , Oxirredução
2.
J Environ Sci (China) ; 149: 221-233, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181637

RESUMO

Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater. However, the structure of bimetallic has been much less investigated for catalyst optimization. Herein, two main types of Pd-Cu bimetallic nanocrystal structures, heterostructure and intermetallic, were prepared and characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals, while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals. The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow. The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported on α-Al2O3, γ-Al2O3, SBA-15, and XC-72R exhibited 3.82-, 6.76-, 4.28-, 2.44-fold enhancements relative to the intermetallic nanocrystals, and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals, respectively. This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts, and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity, which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.


Assuntos
Cobre , Nitratos , Oxirredução , Paládio , Catálise , Cobre/química , Paládio/química , Nitratos/química , Nanopartículas Metálicas/química , Nanopartículas/química , Poluentes Químicos da Água/química , Modelos Químicos
3.
Angew Chem Int Ed Engl ; : e202410474, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087314

RESUMO

Product selectivity of solar-driven CO2 reduction and H2O oxidation reactions has been successfully controlled by tuning the spatial distance between Pt/Au bimetallic active sites on different crystal facets of CeO2 catalysts. The replacement depth of Ce atoms by monatomic Pt determines the distance between bimetallic sites, while Au clusters are deposited on the surface. This space configuration creates a favourable microenvironment for the migration of active hydrogen species (*H). The *H is generated via the activation of H2O on monatomic Pt sites and migrate towards Au clusters with a strong capacity for CO2 adsorption. Under concentrated solar irradiation, selectivity of the (100) facet towards CO is 100%, and the selectivity of the (110) and (111) facets towards CH4 is 33.5% and 97.6%, respectively. Notably, the CH4 yield on the (111) facet is as high as 369.4 µmol/g/h, and the solar-to-chemical energy efficiency of 0.23% is 33.8 times higher than that under non-concentrated solar irradiation. The impacts of high-density flux photon and thermal effects on carriers and *H migration at the microscale are comprehensively discussed. This study provides a new avenue for tuning the spatial distance between active sites to achieve optimal product selectivity.

4.
R Soc Open Sci ; 11(7): 240380, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39086832

RESUMO

Bimetallic metal-organic frameworks (BMOFs) are a class of functional porous materials constructed by coordination between nodes containing two different metal ions and organic ligands. Studies have shown that the catalytic activity of BMOFs is greatly improved owing to the adjustment of charge distribution and the increase of active sites as well as the synergistic effect between the bimetals, and the advantages of their large specific surface area, high porosity, unique structure and dispersed active centres make them available as important organic materials applied in the field of wastewater treatment. In this review, the preparation and construction methods for BMOFs in recent years are summarized, and we focus on their removal of different types of pollutants in the aqueous environment, including ions, dyes, pharmaceuticals or personal care products, phenolic compounds and microorganisms, as well as their corresponding removal mechanisms. In addition, we provide an outlook on their future opportunities and challenges in wastewater treatment.

5.
J Colloid Interface Sci ; 677(Pt A): 548-556, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111090

RESUMO

Designing efficient and stable oxygen evolution reaction (OER) catalyst is the basis for the development of sustainable electrolytic water energy techniques. In this work, we presented a heterogeneous-structured electrocatalyst composed of bimetallic oxides-modified RuO2 nanosheets supported on nikel foam (Co2CrO4/RuO2) using a hybrid hydrothermal, ion-exchange and calcination method. The unique synergy and interfacial coupling between Co2CrO4/RuO2 heterostructures are favorable for optimizing the electronic configuration at this interface and strengthening the charge transport capacity, thus strengthening the catalytic activity of the Co2CrO4/RuO2 catalyst. The experimental data demonstrate that Cr leaching facilitates the rapid reconstruction of the catalyst into oxyhydroxides (CoOOH), which are acknowledged to be the real active species of OER. Theoretical calculations show that the Co2CrO4/RuO2 heterostructure increases the density state at the Fermi energy level and lowers the d-band center, thereby strengthening the catalytic activity. The synthesized Co2CrO4/RuO2 catalyst exhibited OER performance with an overpotential of 209 mV at 10 mA cm-2 and displayed a low Tafel slope of 78.2 mV dec-1, which outperforms most reported advanced alkaline OER catalysts. This work contributes to a new tactic for the design and development of ruthenium oxide/bimetallic oxides electrocatalysts.

6.
BMC Chem ; 18(1): 148, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118121

RESUMO

Metal-organic frameworks (MOFs) with their exceptional properties have the potential to revolutionize the field of electrochemistry and pave the way for new and exciting applications. MOFs is an excellent choice as an active electrocatalyst component in the fabrication of electrochemical sensors. Here, bimetallic NiCo-MOFs, monometallic Ni-MOFs, and Co-MOFs were fabricated to modify the carbon paste electrode. Moreover, the ratio between Co and Ni within the bimetallic MOFs was optimized. Our aim in this work is to synthesize different compositions from bimetallic MOFs and systematically compare their catalytic activity with mono-metallic MOFs on paracetamol. The structure and properties of the 2D NiCo-MOFs were characterized by scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared, and electrochemical method. Bimetallic Ni0.75Co0.25-MOFs modified carbon paste sensor displayed the optimum sensing performance for the electrochemical detection of paracetamol. A linear response over the range 6.00 × 10- 7 to 1.00 × 10- 4 M with a detection limit of 2.10 × 10- 8 M was obtained. The proposed method was applied to detect paracetamol in spiked human plasma and to determine paracetamol in the presence of its major toxic impurity, p-aminophenol. These findings suggest the considerable potential use of the newly developed sensor as a point-of-care tool for detecting paracetamol and p-aminophenol in the future.

7.
Front Chem ; 12: 1424019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119520

RESUMO

Introduction: The human immunodeficiency virus (HIV) remains a significant global health concern, with a reported high infection rate of 38.4 million cases globally; an estimated 2 million new infections and approximately 700,000 HIV/AIDS-related deaths were reported in 2021. Despite the advent of anti-retroviral therapy (ART), HIV/AIDS persists as a chronic disease. To combat this, several studies focus on developing inhibitors targeting various stages of the HIV infection cycle, including HIV-1 protease. This study aims to synthesize and characterize novel glyco diphenylphosphino metal complexes with potential HIV inhibitory properties. Method: A series of new gold(I) thiolate derivatives and three bimetallic complexes, incorporating amino phosphines and thiocarbohydrate as auxiliary ligands, were synthesized using procedures described by Jiang, et al. (2009) and Coetzee et al. (2007). Structural elucidation and purity assessment of the synthesized compounds (1-11) were conducted using micro-analysis, NMR, and infrared spectrometry. Results and Discussion: Using molecular modeling techniques, three of the metal complexes were identified as potential HIV protease inhibitors, exhibiting strong binding affinity interactions with binding pocket residues. These inhibitors demonstrated an ability to inhibit the flexibility of the flap regions of the HIV protease, similar to the known HIV protease inhibitor, darunavir. This study sheds light on the promising avenues for the development of novel therapeutic agents against HIV/AIDS.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39106026

RESUMO

Green synthesis of bimetallic nanoparticles of noble metals is highly desirable in nanomedicine because of their potential use as anticoagulant, thrombolytic and anticancer agents. In this study, it was discovered that the filamentous fungus Aspergillus niger proved effective in producing bimetallic Ag-Au nanoparticles. A. niger culture supernatant was able to produce Ag-AuNPs by reducing the solution of chloroauric acid/silver nitrate (1.0:1.0 mM) within 2 min at 100 °C and pH 8. Experimental Ag-AuNP detection was performed by visually observing the color change to reddish brown. The produced nanoparticles displayed maximal absorbance at 530 nm in UV-vis spectroscopy. According to transmission electron microscopy, most of the nanoparticles were spherical, with a mean diameter of 8-10 nm. The biosynthesis of Ag-AuNPs by A. niger was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive X-ray analytical techniques. Its zeta potential was discovered to be -34.01 mV. The biosynthesized Ag-AuNPs exhibited effective thrombolytic and antiplatelet aggregation actions by totally preventing and dissolving the blood clot which was verified by microscopic examination, amelioration of blood coagulation assays, and carrageenan-induced tail thrombosis model. The findings verified the effectiveness of biosynthesized Ag-AuNPs as a powerful antitumor agent against HepG2 and A549 cell lines with IC50 values of 15.57 and 27.07 µg/mL, respectively. Crystal violet assay validated the cytopathic effects of Ag-AuNPs on A549 and HepG2 cell lines. Therefore, the produced Ag-AuNPs from A. niger are a promising candidate in the management of thrombosis.

9.
Sensors (Basel) ; 24(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124105

RESUMO

This paper presents a new biosensor design based on the Kretschmann configuration, for the detection of analytes at different refractive indices. Our studied design consists of a TiO2/SiO2 bi-layer sandwiched between a BK7 prism and a bimetallic layer of Ag/Au plasmonic materials, covered by a layer of black phosphorus placed below the analyte-containing detection medium. The different layers of our structure and analyte detection were optimized using the angular interrogation method. High performance was achieved, with a sensitivity of 240 deg/RIU and a quality factor of 34.7 RIU-1. This biosensor can detect analytes with a wide refractive index range between 1.330 and 1.347, such as glucose detection in urine samples using a refractive index variation of 10-3. This capability offers a wide range of applications for biomedical and biochemical detection and selectivity.


Assuntos
Técnicas Biossensoriais , Glucose , Fósforo , Titânio , Fósforo/química , Técnicas Biossensoriais/métodos , Glucose/análise , Glucose/química , Humanos , Titânio/química , Prata/química , Ouro/química , Dióxido de Silício/química , Refratometria
10.
Nanomaterials (Basel) ; 14(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39120347

RESUMO

The orderings of atoms in bimetallic 1.6-2.1 nm-large CuCo nanoparticles, important as catalytic and magnetic materials, were studied using a combination of DFT calculations with a topological approach. The structure and magnetism of Cu50Co151, Cu101Co100, Cu151Co50, and Cu303Co102 nanoparticles; their resistance to disintegrating into separate Cu and Co species; as well as the exposed surface sites, were quantified and analyzed, showing a clear preference for Cu atoms to occupy surface positions while the Co atoms tended to form a compact cluster in the interior of the nanoparticles. The surface segregation of Co atoms that are encapsulated by less-active Cu atoms, induced by the adsorption of CO molecules, was already enabled at a low coverage of adsorbed CO, providing the energy required to displace the entire compact Co species inside the Cu matrices due to a notable adsorption preference of CO for the Co sites over the Cu ones. The calculated adsorption energies and vibrational frequencies of adsorbed CO should be helpful indicators for experimentally monitoring the nature of the surface sites of CuCo nanoparticles, especially in the case of active Co surface sites emerging in the presence of CO.

11.
J Colloid Interface Sci ; 677(Pt A): 1005-1015, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39128284

RESUMO

Heterostructures endow electrochemical hybrids with promising energy storage properties owing to synergistic effects and interfacial interaction. However, developing a facile but effective approach to maximize interface effects is crucial but challenging. Herein, a bimetallic sulfide/carbon heterostructure is realized in a confined carbon network via a high-throughput template-assisted strategy to induce highly active and stable electrode architecture. The designed heterostructures not only yield abundant interconnected Co9S8/MoS2/N-doped carbon (Co9S8/MoS2/NC) heterojunctions with continuous channels for ion/electron transfer but maintain excellent conversion reversibility. Serving as anode for sodium storage, the Co9S8/MoS2/NC framework displayed excellent sodium storage properties (reversible capacity of 480 mAh/g after 100 cycles at 0.2 A/g and 286.2 mAh/g after 500 cycles at 2 A/g). Given this, this study can guide future design protocols for interface engineering by forming dynamic channels of conversion reaction kinetics for potential applications in high-performance electrodes.

12.
Int J Biol Macromol ; : 134872, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173787

RESUMO

Methylene blue (MB) is a refractory organic pollutant that poses a potential threat to the aquatic environment. Fenton reaction is considered a primrose strategy to treat MB. However, the traditional Fenton process is plagued by narrow pH application range, poor stability, and secondary pollution. To solve these problems, many Fenton-like catalysts including metal-organic frameworks (MOFs) have been prepared. Herein, a novel bimetallic MOF (Fe/Ce-BDC@CS) was prepared through simple adsorption for the effective removal of MB, where chitosan (CS) was used as the carrier. The degradation performance of Fe/Ce-BDC@CS (100 % within 20 min) was better than that of most reported monometallic MOFs. Moreover, Fe/Ce-BDC@CS exhibited good repeatability and its anti-interference performance of some inorganic ions was also remarkable. Column loading experiments showed that the removal efficiency of MB was still about 50 % over 155 h with a flowing speed of 0.30 L/h. Comparative analysis indicated that such excellent performances could be attributed to the synergistic effect between Fe and Ce. Furthermore, the results of quenching tests indicate that OH, O2-, and 1O2 contributed to MB degradation. In brief, Fe/Ce-BDC@CS has promising prospects in MB treatment, which can provide scientific references for the design and application of bimetallic MOFs.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39162184

RESUMO

Transition-metal sulfide is considered to be an admirable transformational electrode material due to low cost, large specific capacity, and good reversibility in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Herein, the reduced graphene oxide-wrapped open bimetallic sulfide (NiS2-Co3S4@rGO) nanocage, derived from nickel-cobalt Prussian blue, was obtained by two-step calcination. There are luxuriant pore structures in the nanocage composite with a specific surface area of 85.28 m2 g-1, which provides plentiful paths for rapid transmission of Li+/Na+ and alleviates the volume stress caused by insertion and extraction of alkali metal ions. The excellent interface combination of bimetallic sulfide wrapped in reduced graphene oxide improves the conductivity and overall performance of the battery. Thanks to the special interface engineering, the open NiS2-Co3S4@rGO nanocage composite displays rapid lithium storage properties with an average diffusion coefficient of 8.5 × 10-13 cm2 s-1. Moreover, after 300 cycles, the reversible capacity of the composite is 1113.2 mAh g-1 at 1 A g-1. In SIBs, the capacity of the open NiS2-Co3S4@rGO composite is 487.9 mAh g-1 when the current density is 5 A g-1. These preeminent performances demonstrate the enormous development prospects of bimetallic sulfide nanocage as anode material in LIBs and SIBs.

14.
Nano Lett ; 24(33): 10297-10304, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133240

RESUMO

In this paper, Ti3C2Tx MXene/Cu-Bi bimetallic sulfide (Ti3C2Tx/BiCuS2.5) composites were prepared by a simple in situ deposition method for electrocatalytic nitrogen reduction reaction (eNRR). Compared to Ti3C2Tx/Bi2S3 and Ti3C2Tx/CuS, the eNRR performance of Ti3C2Tx/BiCuS2.5 is significantly improved. The results show that Ti3C2Tx/BiCuS2.5 exhibits a NH3 yield of 62.57 µg h-1 mg-1cat. in 0.1 M Na2SO4 at -0.6 V vs reversible hydrogen electrode, and the Faradaic efficiency (FE) reaches 67.69%, which is better than that of Ti3C2Tx/CuS (NH3 yield: 52.26 µg h-1 mg-1cat., FE: 34.15%) and Ti3C2Tx/Bi2S3 (NH3 yield: 54.04 µg h-1 mg-1cat., FE: 37.38%). According to density functional theory calculations, the eNRR at the Ti3C2Tx/BiCuS2.5 surface is the alternating pathway. The 1H NMR experiment of 15N proves that the N of NH3 generated in the experiment originates from N2 passed during the experiment.

15.
Adv Healthc Mater ; : e2401902, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136059

RESUMO

Radio-immunotherapy driven by radiation-induced immunogenic cell death (ICD) is emerging as a potential opportunity to address conventional radiotherapy (RT) that is only applicable to localized tumor treatment. However, the effective activation of ICD during RT is severely limited by radiation dose, weak tumor immunogenicity, and radio-resistance caused by tumor microenvironment (TME). Herein, a novel bimetallic hybrid nanoscale coordination nanostimulator is first proposed by phosphate backbone doped with copper ions (Cu2+) and hafnium ions (Hf4+), and then modified with polyvinylpyrrolidone (PVP). The PVPylated Cu/Hf-doped phosphate nanostimulator (denoted as CHP) exhibits effective reprogramming of TME, including depletion of tumor endogenous glutathione (GSH), relief of tumor hypoxia and repolarization of M2 phenotypic macrophages, thus achieving tumor radiosensitization at low X-ray irradiation dose, gradually accumulation of tumor endogenous reactive oxygen species (ROS) and augmenting cuproptosis. In addition, cuproptosis can amplify RT-induced anti-tumor immunity through ICD activation, ultimately resulting in a robust anti-tumor immune response and long-term immunity, evidenced by distant tumor growth inhibition of 4T1-tumor-bearing models. More interestingly, it is discovered that CHP-mediated cuproptosis can be intensifiable during X-ray irradiation. Taken together, this work presents a novel radio-cuproptosis-immunotherapy cascade strategy, offering a new perspective for innovation in the treatment field of breast cancer.

16.
Adv Mater ; : e2405200, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136065

RESUMO

Bimetallic nanostructures are promising candidates for the development of enzyme-mimics, yet the deciphering of the structural impact on their catalytic properties poses significant challenges. By leveraging the structural versatility of nanocrystal aerogels, this study reports a precise control of Au-Pt bimetallic structures in three representative structural configurations, including segregated, alloy, and core-shell structures. Benefiting from a synergistic effect, these bimetallic aerogels demonstrate improved peroxidase- and glucose oxidase-like catalytic performances compared to their monometallic counterparts, unleashing tremendous potential in catalyzing the glucose cascade reaction. Notably, the segregated Au-Pt aerogel shows optimal catalytic activity, which is 2.80 and 3.35 times higher than that of the alloy and core-shell variants, respectively. This enhanced activity is attributed to the high-density Au-Pt interface boundaries within the segregated structure, which foster greater substrate affinity and superior catalytic efficiency. This work not only sheds light on the structure-property relationship of bimetallic catalysts but also broadens the application scope of aerogels in biosensing and biological detections.

17.
Small ; : e2404194, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136198

RESUMO

Conversion and alloying-type transitional metal sulfides have attracted significant interests as anodes for Potassium-ion batteries (PIBs) and Sodium-ion batteries (SIBs) due to their high theoretical capacities and low cost. However, the poor conductivity, structural pulverization, and high-volume expansions greatly limit the performance. Herein, Co1-xS/ZnS hollow nanocube-like heterostructure decorated on reduced graphene oxide (Co1-xS/ZnS@rGO) composite is fabricated through convenient hydrothermal and post-heat vulcanization techniques. This unique composite can provide a more stable conductive network and shorten the diffusion length of ions, which exhibits a remarkable initial charge capacity of 638.5 mA h g-1 at 0.1 A g-1 for SIBs and 606 mA h g-1 at 0.1 A g-1 for PIBs, respectively; It is worth noting that the composite presents remarkable long stable cycle performance in PIBs, which initially delivered 274 mA h g-1 and sustained the charge capacity up to 245 mA h g-1 at high current density of 1 A g-1 after 2000 cycles. A series of in situ/ex situ detections and first principle calculations further validate the high potassium ions adsorption ability of Co1-xS/ZnS anode materials with high diffusion kinetics. This work will accelerate the fundamental construction of bimetallic sulfide hollow nanocubes heterostructure electrodes for energy storage applications.

18.
Talanta ; 280: 126708, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39151318

RESUMO

The development of rapid, accurate, sensitive, and low-cost diagnostic methods for COVID-19 detection in real-time is the unique way to control infection sources and monitor illness progression. In this work, we propose an electrochemical biosensor for the rapid and accuracy diagnosis of COVID-19, through the determination of ORF1ab specific sequence. The biosensor is based on the immobilization of a thiolated sequence partially complementary (domain 1) to ORF1ab on gold screen-printed electrodes and the use of bifunctional Au@Pt/Au core@shell nanoparticles modified with a second thiolated sequence partially complementary to ORF1ab (domain 2) as electrochemical indicator of the hybridization of DNA sequences. The synthesized Au@Pt/Au nanoparticles consist of an Au core, a shell of Pt (Au@Pt NPs), that provides an excellent electrocatalytic activity toward the oxygen reduction reaction (ORR) even after formation of hybrid biomaterials by modification, through the Au protuberances growth on the NPs surface, with an oligonucleotide with recognition ability. The ORR electrochemical activity, enhanced by the label element (Au@Pt/Au NPs), has been employed, for the first time, as indicator of the hybridization event. Based on this strategy, target sequences of the SARS-CoV-2 virus have been detected with a detection limit of 32 pM. The selectivity of the biosensor was confirmed by analysing ORF1ab sequence in the presence of DNA sequences from other viruses. The biosensor has been successfully applied to the direct detection of the virus in non-amplified samples of nasopharyngeal swabs from infected and non-infected patients. Results compare well with those obtained through RT-qPCR but our method is more rapid since does not need any amplification process.

19.
Anal Bioanal Chem ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153105

RESUMO

The enhanced catalytic properties of bimetallic nanoparticles have been extensively investigated. In this study, bimetallic Ag-M (M = Au, Pt, or Pd) cotton fabrics were fabricated using a combination of electroless deposition and galvanic replacement reactions, and improvement in their peroxidase-mimicking catalytic activity compared to that of the parent Ag fabric was studied. The Ag-Pt bimetallic nanozyme fabric, which showed the highest catalytic activity and ability to simultaneously generate hydroxyl (•OH) and superoxide (O2•-) radicals, was assessed as a urine glucose sensor. This nanozyme fabric sensor could directly detect urinary glucose in the pathophysiologically relevant high millimolar range without requiring sample predilution. The sensor could achieve performance on par with that of the current clinical gold standard assay. These features of the Ag-Pt nanozyme sensor, particularly its ability to avoid interference effects from complex urinary matrices, position it as a viable candidate for point-of-care urinary glucose monitoring.

20.
J Colloid Interface Sci ; 677(Pt B): 997-1004, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39178678

RESUMO

Bimetallic alloys hold exceptional promise as candidate materials because they offer a diverse parameter space for optimizing electronic structures and catalytic sites. Herein, we fabricate ruthenium-cobalt alloy nanoparticles uniformly dispersed within hollow mesoporous carbon spheres (hcp-RuCo@C) via impregnation and pyrolysis strategies. The intriguing hollow mesopore structure of hcp-RuCo@C facilitates efficient contact between active sites and reactants, thereby accelerating hydrogen oxidation reaction (HOR) kinetics. As anticipated, the hcp-RuCo@C showcases remarkable exchange current density and mass activity of 3.73 mA cm-2 and 2.8 mA µgRu-1, respectively, surpassing those of commercial Pt/C and documented Ru-based electrocatalysts. Notably, hcp-RuCo@C demonstrates robust resistance to 1000 ppm CO, a trait lacking in Pt/C catalysts. Comprehensive experimental results reveal that the alloying-induced d-d electronic interactions between Ru and Co species significantly optimizes hydrogen binding energy (HBE) and hydroxide binding energy (OHBE). This optimization promotes the vital Volmer step, ameliorating the alkaline HOR properties of hcp-RuCo@C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA