Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 955: 176763, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393684

RESUMO

Evaluating compostability is increasingly essential for proving commercial bio-based cutlery or packaging since these materials must biodegrade under controlled conditions quickly. Utensils for eating represent Mexico's most popular consumer single-use materials, and Mexican regulations based on biodegradation or compostability are still vague and lack scientific evaluations. This study analyzed three bio-based polymeric materials (bags, dishes, and forks) from commercial brands following Mexican regulations and using various analytical techniques to verify their biodegradability and compostability. First, weight loss measurements, stress-strain tests, and topographic imaging were applied for preliminary observations at the macro scale up to 90 days of compostability. Besides, spectroscopy, microscopy, and thermal techniques indicate changes and behavior of the bio-based materials depending on the composition. The results suggest that bags exhibited the highest decomposition rate (80 %) compared to dishes and forks. Similarly, mechanical resistance indicates a reduction of 62 % for bags, 30 % for dishes, and almost none for forks. Texture image analysis revealed that the complexity and roughness of the materials increased over time, correlating with the physical changes observed. These results indicate minimal surface topography changes and higher stiffness for dishes and forks, indicating low biodegradability. SEM images supported these findings, showing surface degradation in bags and dishes but not in forks. FTIR and XRD analyses confirmed the presence of polyamide (bags) and polypropylene (dishes and forks). These results reduce biodegradation and differ from the claims made by manufacturers. The thermal analysis found similar results, indicating that the materials' thermal stability decreased after degradation, which is related to lower biodegradability and compostability. Overall, the study concluded only bags meet the criteria for compostability in national regulations. However, dishes and forks made of petroleum-derived polymers have higher resistance to natural and microbial degradation.

2.
Polymers (Basel) ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891558

RESUMO

When the cocoa pod husk (CPH) is used and processed, two types of flour were obtained and can be differentiated by particle size, fine flour (FFCH), and coarse flour (CFCH) and can be used as a possible reinforcement for the development of bio-based composite materials. Each flour was obtained from chopping, drying by forced convection, milling by blades, and sieving using the 100 mesh/bottom according to the Tyler series. Their physicochemical, thermal, and structural characterization made it possible to identify the lower presence of lignin and higher proportions of cellulose and pectin in FFCH. Based on the properties identified in FFCH, it was included in the processing of thermoplastic starch (TPS) from the plantain pulp (Musa paradisiaca) and its respective bio-based composite material using plantain peel short fiber (PPSF) as a reinforcing agent using the following sequence of processing techniques: extrusion, internal mixing, and compression molding. The influence of FFCH contributed to the increase in ultimate tensile strength (7.59 MPa) and higher matrix-reinforcement interaction when obtaining the freshly processed composite material (day 0) when compared to the bio-based composite material with higher FCP content (30%) in the absence of FFCH. As for the disadvantages of FFCH, reduced thermal stability (323.57 to 300.47 °C) and losses in ultimate tensile strength (0.73 MPa) and modulus of elasticity (142.53 to 26.17 MPa) during storage progress were identified. In the case of TPS, the strengthening action of FFCH was not evident. Finally, the use of CFCH was not considered for the elaboration of the bio-based composite material because it reached a higher lignin content than FFCH, which was expected to decrease its affinity with the TPS matrix, resulting in lower mechanical properties in the material.

3.
Materials (Basel) ; 17(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894006

RESUMO

This paper presents a method for designing low carbon bio-based building materials, also named bio-concretes, produced with wood wastes in shavings form (WS) and cementitious pastes. As the aggregates phase of bio-concretes is composed of plant-based particles, known as porous and high water-absorbing materials, the bio-concretes cannot be designed by using the traditional design rules used for conventional mortar or concrete. Then, the method used in the current paper is an adaptation of a previous one that has been developed in a recent paper where bio-concretes were produced with a cement matrix, three types of bio-aggregates, and a proposal of a design abacus. However, when that abacus is used for designing WBC with low cement content in the matrix, the target compressive strength is not reached. In the present paper, the method is extended to low cement content matrix (up to 70% of cement substitution) and also considering the greenhouse gas (GHG) emission of the WBC. To obtain data for proposing a new design abacus, an experimental program was carried out by producing nine workable WBCs, varying wood volumetric fractions (40-45-50%), and water-to-binder ratios. The bio-concretes produced presented adequate consistency, lightness (density between 715 and 1207 kg/m3), and compressive strength ranging from 0.64 to 12.27 MPa. In addition, the GHG emissions of the WBC were analysed through the Life Cycle Assessment methodology. From the relationships obtained between density, compressive strength, water-to-binder ratio, cement consumption, and GHG emissions of the WBC, calibration constants were proposed for developing the updated and more complete abacus regarding an integrated mix design methodology.

4.
Environ Sci Pollut Res Int ; 31(21): 31224-31239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632197

RESUMO

Driven by climate change and human activity, Sargassum blooming rates have intensified, producing copious amount of the invasive, pelagic seaweed across the Caribbean and Latin America. Battery recycling and lead-smelter wastes have heavily polluted the environment and resulted in acute lead poisoning in children through widespread heavy metal contamination particular in East Trinidad. Our study details a comprehensive investigation into the use of Sargassum (S. natans), as a potential resource-circular feedstock for the synthesis of calcium alginate beads utilized in heavy metal adsorption, both in batch and column experiments. Here, ionic cross-linking of extracted sodium alginate with calcium chloride was utilized to create functional ion-exchange beads. Given the low quality of alginates extracted from Sargassum which produce poor morphological beads, composite beads in conjunction with graphene oxide and acrylamide were used to improve fabrication. Stand-alone calcium alginate beads exhibited superior Pb2+ adsorption, with a capacity of 213 mg g-1 at 20 °C and pH 3.5, surpassing composite and commercial resins. Additives like acrylamide and graphene oxide in composite alginate resins led to a 21-40% decrease in Pb2+ adsorption due to reduced active sites. Column operations confirmed Alginate systems' practicality, with 20-24% longer operating times, 15 times lower adsorbent mass on scale-up and 206% smaller column diameters compared to commercial counterparts. Ultimately, this study advocates for Sargassum-based Alginate ion-exchange beads as a bio-based alternative in Trinidad and developing nations for dealing with heavy metal ion waste, offering superior heavy metal adsorption performance and supporting resource circularity.


Assuntos
Alginatos , Resinas de Troca Iônica , Chumbo , Sargassum , Sargassum/química , Alginatos/química , Adsorção , Chumbo/química , Resinas de Troca Iônica/química
5.
Polymers (Basel) ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276683

RESUMO

A biodegradable polymer packaging system for 'Benitaka' table grapes (Vitis vinifera L.) was developed to inhibit the development of gray mold during refrigerated storage. The system consisted of packages and sachets containing Na2S2O5 to release sulfur dioxide (SO2), both produced with biodegradable films of starch, glycerol, and poly (adipate co-butylene terephthalate) (PBAT) produced via blown extrusion. The films were characterized in terms of thickness, density, mass loss in water, water vapor permeability, sorption isotherms, and mechanical properties. The table grapes were packed with biodegradable plastic bags containing SO2-releasing sachets inside. The experimental design was completely randomized, with four repetitions and five treatments: (a) control, without sachet containing Na2S2O5 and SiO2; (b) 2 g of Na2S2O5 + 2 g of SiO2; (c) 4 g of Na2S2O5 + 1 g of SiO2; (d) 4 g of Na2S2O5 + 2 g of SiO2; and (e) 4 g of Na2S2O5 + 4 g of SiO2. The bunches were stored in a refrigerated chamber at 1 ± 1 °C and relative humidity above 90%. The treatments were evaluated 30 and 45 days after the beginning of refrigerated storage and 3 days at room temperature. The grapes were evaluated based on the incidence of gray mold, mass loss, stem browning, shattered berries, and berry bleaching. The data were subjected to the analysis of variance, and the means were compared using Tukey's test at 5%. The biodegradable films had good processability during the production via blown extrusion, with good physical properties to be used in the packaging of grapes and the production of SO2-releasing sachets. The biodegradable polymer packaging system (biodegradable plastic bags + SO2-releasing sachets) inhibited the development of gray mold on 'Benitaka' table grapes for 45 days at 1 °C, preserving their quality, with low mass loss, few shattered berries, and rachis freshness.

6.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257300

RESUMO

In 2021, global plastics production was 390.7 Mt; in 2022, it was 400.3 Mt, showing an increase of 2.4%, and this rising tendency will increase yearly. Of this data, less than 2% correspond to bio-based plastics. Currently, polymers, including elastomers, are non-recyclable and come from non-renewable sources. Additionally, most elastomers are thermosets, making them complex to recycle and reuse. It takes hundreds to thousands of years to decompose or biodegrade, contributing to plastic waste accumulation, nano and microplastic formation, and environmental pollution. Due to this, the synthesis of elastomers from natural and renewable resources has attracted the attention of researchers and industries. In this review paper, new methods and strategies are proposed for the preparation of bio-based elastomers. The main goals are the advances and improvements in the synthesis, properties, and applications of bio-based elastomers from natural and industrial rubbers, polyurethanes, polyesters, and polyethers, and an approach to their circular economy and sustainability. Olefin metathesis is proposed as a novel and sustainable method for the synthesis of bio-based elastomers, which allows for the depolymerization or degradation of rubbers with the use of essential oils, terpenes, fatty acids, and fatty alcohols from natural resources such as chain transfer agents (CTA) or donors of the terminal groups in the main chain, which allow for control of the molecular weights and functional groups, obtaining new compounds, oligomers, and bio-based elastomers with an added value for the application of new polymers and materials. This tendency contributes to the development of bio-based elastomers that can reduce carbon emissions, avoid cross-contamination from fossil fuels, and obtain a greener material with biodegradable and/or compostable behavior.


Assuntos
Elastômeros , Plásticos , Polímeros , Borracha , Poliuretanos
7.
Biodegradation ; 35(3): 315-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37987936

RESUMO

In this article, the degradability by Aspergillus niger and Aspergillus clavatus of three bio-based polyurethane (PU) foams is compared to previous degradability studies involving a Pseudomonas sp. bacterium and similar initial materials (Spontón et al. in Int. Biodet. Biodeg. 85:85-94, 2013, https://doi.org/10.1016/j.ibiod.2013.05.019 ). First, three new polyester-polyurethane foams were prepared from mixtures of castor oil (CO), maleated castor oil (MACO), toluene diisocyanate (TDI), and water. Then, their degradation tests were carried out in an aqueous medium, and employing the two mentioned fungi, after their isolation from the environment. From the degradation tests, the following was observed: (a) the insoluble (and slightly collapsed) foams exhibited free hydroxyl, carboxyl, and amine moieties; and (b) the water soluble (and low molar mass) compounds contained amines, carboxylic acids, and glycerol. The most degraded foam contained the highest amount of MACO, and therefore the highest concentration of hydrolytic bonds. A basic biodegradation mechanism was proposed that involves hydrolysis and oxidation reactions.


Assuntos
Aspergillus , Poliésteres , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Poliésteres/metabolismo , Aspergillus niger/metabolismo , Óleo de Rícino/química , Água
8.
Heliyon ; 9(11): e21374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37885729

RESUMO

Nowadays, the tendency to replace conventional fossil-based plastics is increasing considerably; there is a growing trend towards alternatives that involve the development of plastic materials derived from renewable sources, which are compostable and biodegradable. Indeed, only 1.5 % of whole plastic production is part of the small bioplastics market, even when these materials with a partial or full composition from biomass are rapidly expanding. A very interesting field of investigation is currently being developed in which the disposal and processing of the final products are evaluated in terms of reducing environmental harm. This review presents a compilation of polyethylene (PE) types, their uses, and current problems in the waste management of PE and recycling. Particularly, this review is based on the capabilities to synthesize bio-based PE from natural and renewable sources as a replacement for the raw material derived from petroleum. In addition to recent studies in degradation on different types of PE with weight loss ranges from 1 to 47 %, the techniques used and the main changes observed after degradation. Finally, perspectives are presented in the manuscript about renewable and non-renewable polymers, depending on the non-degradable, biodegradable, and compostable behavior, including composting recent studies in PE. In addition, it contributes to the 3R approaches to responsible waste management of PE and advancement towards an environmentally friendly PE.

9.
Membranes (Basel) ; 13(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37504991

RESUMO

Nowadays, membrane technology is an efficient process for separating compounds with minimal structural abrasion; however, the manufacture of membranes still has several drawbacks to being profitable and competitive commercially under an environmentally friendly approach. In this sense, this review focuses on bio-based polymeric membranes as an alternative to solve the environmental concern caused by the use of polymeric materials of fossil origin. The fabrication of bio-based polymeric membranes is explained through a general description of elements such as the selection of bio-based polymers, the preparation methods, the usefulness of additives, the search for green solvents, and the characterization of the membranes. The advantages and disadvantages of bio-based polymeric membranes are discussed, and the application of bio-based membranes to recover organic and inorganic contaminants is also discussed.

10.
Pharmaceutics ; 15(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514094

RESUMO

The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.

11.
J Hazard Mater ; 454: 131433, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146336

RESUMO

In order to mitigate the contamination of water with heavy metals, caused by mining dam failures in Brumadinho and Mariana in Brazil, eco-friendly bio-based castor oil polyurethane foams, containing a cellulose-halloysite green nanocomposite were prepared. Polyurethane foams containing none (PUF-0), 5%wt (PUF-5), and 10%wt (PUF-10) of the nanocomposite were obtained. The application of the material in aqueous media was verified through an investigation of the efficiency of adsorption, the adsorption capacity, and the adsorption kinetics in pH= 2 and pH= 6.5 for manganese, nickel, and cobalt ions. An increase of 5.47 times in manganese adsorption capacity was found after only 30 min in contact with a solution having this ion at pH= 6.5 for PUF-5 and 11.38 times for PUF-10 when both were compared with PUF-0. Adsorption efficiency was respectively 68.17% at pH= 2 for PUF-5% and 100% for PUF-10 after 120 h, while for the control foam, PUF-0, the adsorption efficiency was only 6.90%.

12.
Polymers (Basel) ; 15(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050398

RESUMO

The aim of this work is to evaluate the changes in compression properties of a bio-based polyurethane foam after exposure to 90 °C for different periods of time, and to propose a method to extrapolate these results and use a numerical approach to predict the compression behaviour after degradation for untested conditions at different degradation times and temperatures. Bio-based polymers are an important sustainable alternative to oil-based materials. This is explained by the foaming process and the density along the material as it was possible to see in a digital image correlation analysis. After 60 days, stiffness was approximately decreased by half in both directions. The decrease in yield stress due to thermo-oxidative degradation had a minor effect in the foaming directions, changing from 352 kPa to 220 kPa after 60 days, and the transverse property was harshly impacted changing from 530 kPa to 265 kPa. The energy absorption efficiency was slightly affected by degradation. The simulation of the compression stress-strain curves were in accordance to the experimental data and made it possible to predict the changes in mechanical properties for intermediate periods of degradation time. The plateau stress for the unaged foam transverse to the foaming direction presented experimental and numerical values of 450 kPa and 470 kPa, respectively. In addition, the plateau stresses in specimens degraded for 40 days present very similar experimental and numerical results in the same direction, at 310 kPa and 300 kPa, respectively. Therefore, this paper presents important information regarding the life-span and degradation of a green PUF. It provides insights into how compression properties vary along degradation time as function of material operation temperature, according to the Arrhenius degradation equation.

13.
Int J Biol Macromol ; 236: 124035, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921831

RESUMO

To simultaneously form films while synthesizing solvent-free and catalyst-free bio-based polyurethanes, hexamethylene diisocyanate trimer was selected as an isocyanate group source to produce a low-viscosity reaction medium for dispersing high contents of microcrystalline cellulose (MCC, polyol) and cellulose nanocrystals (CNC). Castor oil was used as an additional polyol source. Up to 80 % of the MCC was dispersed, producing a film exhibiting the highest Tg (72 °C), tensile strength (18 MPa), and Young's modulus (522.4 MPa). 12.5 % (30 % MCC) and 7.5 % (50 % MCC) of CNC dispersed in the reaction medium formed films stiffer than their counterparts. All the films exhibited transparency and high crystallinity. The contact angle/zeta potential (ζ) indicated hydrophobic film surfaces. At pH 7.4, ζ suggested that the films interacted with physiological fluids favorably. The films were non-cytotoxic, and the composites exhibited cell growth compared with the control. The reported results, as far as it is known, are unprecedented.


Assuntos
Nanopartículas , Poliuretanos , Poliuretanos/química , Isocianatos/química , Viscosidade , Celulose/química , Nanopartículas/química
14.
Int J Biol Macromol ; 236: 123994, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914059

RESUMO

The porous structure and hydrophilicity of coating shells affect the nutrient controlled-release performance of castor oil-based (CO) coated fertilizers. In order to solve these problems, in this study, the castor oil-based polyurethane (PCU) coating material was modified with liquefied starch polyol (LS) and siloxane, and a new coating material with cross-linked network structure and hydrophobic surface was synthesized, and used it to prepare the coated controlled-release urea (SSPCU). The results demonstrated that the cross-linked network formed by LS and CO improved the density and reduced the pores on the surface of the coating shells. The siloxane was grafted on the surface of coating shells to improve its hydrophobicity and thus delayed water entry. The nitrogen release experiment indicated that the synergistic effects of LS and siloxane improved the nitrogen controlled-release performance of bio-based coated fertilizers. Nutrient released longevity of SSPCU with 7 % coating percentage reached >63 days. Moreover, the nutrient release mechanism of coated fertilizer was further revealed by the analysis of the release kinetics analysis. Therefore, the results of this study provide a new idea and technical support for development of efficient and environment-friendly bio-based coated controlled-release fertilizers.


Assuntos
Fertilizantes , Siloxanas , Preparações de Ação Retardada/química , Óleo de Rícino , Nitrogênio/química
15.
Polymers (Basel) ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679237

RESUMO

Using Kraft lignin, bio-based adhesives have been increasingly studied to replace those petrochemical-based solutions, due to low cost, easy availability and the potential for biodegradability of this biomaterial. In this study, lignin-based phenol-formaldehyde (LPF) resins were synthesized using commercial Eucalypt Kraft Lignin (EKL), purified at 95%, as a phenol substitute in different proportions of 10%, 20%, 30% and 50%. The properties of bio-based phenol formaldehyde (BPF) synthesized resin were compared with phenol-formaldehyde resin (PF) used for control sampling. The results indicated that viscosity, gel time and solid contents increased with the addition of pure EKL. The shear strength test of glue line was studied according to American Society for Testing and Materials (ASTM), and BPF-based results were superior to samples bonded with the PF as a control sample, being suitable for structural purposes. Changes in the curing behavior of different resins were analyzed by Differential Scanning Calorimetry (DSC), and sample comparison indicated that the curing of the LPF resin occurred at lower temperatures than the PF. The addition of EKL in PF reduced its thermal stability compared to traditional resin formulation, resulting in a lower decomposition temperature and a smaller amount of carbonaceous residues.

16.
Curr Med Chem ; 30(17): 1963-1970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35770400

RESUMO

Bacteria and their enzymatic machinery, also called bacterial cell factories, produce a diverse variety of biopolymers, such as polynucleotides, polypeptides and polysaccharides, with different and fundamental cellular functions. Polysaccharides are the most widely used biopolymers, especially in biotechnology. This type of biopolymer, thanks to its physical and chemical properties, can be used to create a wide range of advanced bio-based materials, hybrid materials and nanocomposites for a variety of exciting biomedical applications. In contrast to synthetic polymers, bacterial polysaccharides have several advantages, such as biocompatibility, biodegradability, low immunogenicity, and non-toxicity, among others. On the other hand, the main advantage of bacterial polysaccharides compared to polymers extracted from other natural sources is that their physicochemical properties, such as purity, porosity, and malleability, among others, can be adapted to a specific application with the use of biotechnological tools and/or chemical modifications. Another great reason for using bacterial polysaccharides is due to the possibility of developing advanced materials from them using bacterial factories that can metabolize raw materials (recycling of industrial and agricultural wastes) that are readily available and in large quantities. Moreover, through this strategy, it is possible to curb environmental pollution. In this article, we project the desire to move towards large-scale production of bacterial polysaccharides taking into account the benefits, weaknesses and prospects in the near future for the development of advanced biological materials for medical and pharmaceutical purposes.


Assuntos
Nanocompostos , Polissacarídeos Bacterianos , Humanos , Biopolímeros/química , Polímeros , Biotecnologia
17.
Bioengineering (Basel) ; 9(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36004901

RESUMO

Hydrogels are a great ally in the pharmaceutical and biomedical areas. They have a three-dimensional polymeric structure that allows the swelling of aqueous fluids, acting as an absorbent, or encapsulating bioactive agents for controlled drug release. Interestingly, plants are a source of biogels, specifically polysaccharides, composed of sugar monomers. The crosslinking of these polymeric chains forms an architecture similar to the extracellular matrix, enhancing the biocompatibility of such materials. Moreover, the rich hydroxyl monomers promote a hydrophilic behavior for these plant-derived polysaccharide gels, enabling their biodegradability and antimicrobial effects. From an economic point of view, such biogels help the circular economy, as a green material can be obtained with a low cost of production. As regards the bio aspect, it is astonishingly attractive since the raw materials (polysaccharides from plants-cellulose, hemicelluloses, lignin, inulin, pectin, starch, guar, and cashew gums, etc.) might be produced sustainably. Such properties make viable the applications of these biogels in contact with the human body, especially incorporating drugs for controlled release. In this context, this review describes some sources of plant-derived polysaccharide gels, their biological function, main methods for extraction, remarkable applications, and properties in the health field.

18.
Food Res Int ; 157: 111470, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761701

RESUMO

This study evaluated the subcritical water hydrolysis (SWH) of brewer's spent grains (BSG) to obtain sugars and amino acids. The experimental conditions investigated the hydrolysis of BSG in a single flow-through reactor and in two sequential reactors operated in semi-continuous mode. The hydrolysis experiments were carried out for 120 min at 15 MPa, 5 mL water min-1, at different temperatures (80 - 180 °C) and using an S/F of 20 and 10 g solvent g-1 BSG, for the single and two sequential reactors, respectively. The highest monosaccharide yields were obtained at 180 °C in a single reactor (47.76 mg g-1 carbohydrates). With these operational conditions, the hydrolysate presented xylose (0.477 mg mL-1) and arabinose (1.039 mg mL-1) as main sugars, while low contents of furfural (310.7 µg mL-1), 5-hydroxymethylfurfural (<1 mg L-1), and organic acids (0.343 mg mL-1) were obtained. The yield of proteins at 180 °C in a process with a single reactor was 43.62 mg amino acids g-1 proteins, where tryptophan (215.55 µg mL-1), aspartic acid (123.35 µg mL-1), valine (64.35 µg mL-1), lysine (16.55 µg mL-1), and glycine (16.1 µg mL-1) were the main amino acids recovered in the hydrolysate. In conclusion, SWH pretreatment is a promising technology to recover bio-based compounds from BSG; however, further studies are still needed to increase the yield of bioproducts from lignocellulosic biomass to explore two sequential reactors.


Assuntos
Açúcares , Água , Aminoácidos/análise , Grão Comestível/química , Hidrólise , Açúcares/análise , Água/análise
19.
World J Microbiol Biotechnol ; 38(7): 127, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668329

RESUMO

Interest in the production of renewable chemicals from biomass has increased in the past years. Among these chemicals, carboxylic acids represent a significant part of the most desirable bio-based products. Xylonic acid is a five-carbon sugar-acid obtained from xylose oxidation that can be used in several industrial applications, including food, pharmaceutical, and construction industries. So far, the production of xylonic acid has not yet been available at an industrial scale; however, several microbial bio-based production processes are under development. This review summarizes the recent advances in pathway characterization, genetic engineering, and fermentative strategies to improve xylonic acid production by microorganisms from xylose or lignocellulosic hydrolysates. In addition, the strengths of the available microbial strains and processes and the major requirements for achieving biotechnological production of xylonic acid at a commercial scale are discussed. Efficient native and engineered microbial strains have been reported. Xylonic acid titers as high as 586 and 171 g L-1 were obtained from bacterial and yeast strains, respectively, in a laboratory medium. Furthermore, relevant academic and industrial players associated with xylonic acid production will be presented.


Assuntos
Biotecnologia , Xilose , Biomassa , Fermentação , Engenharia Metabólica , Xilose/análogos & derivados , Xilose/metabolismo
20.
Environ Sci Pollut Res Int ; 29(44): 66422-66437, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35501446

RESUMO

The applicability of cellulose nanofibrils (CNFs) has received attention due to their attractive properties. This study proposes the functionalization of açai CNFs with copaiba oil and vegetal tannins to produce films with potential for packaging. Bio-based films were evaluated by vapor permeability, colorimetry, and mechanical strength. CNFs were produced by mechanical fibrillation, from suspensions of bleached açai fibers and commercial eucalipytus pulp. Moreover, copaiba oil and vegetal tannin were added to the CNFs to produce films/nanopapers by casting from both suspensions with concentrations of 1% (based on CNF dry mass). The bulk densities of the eucalyptus CNF films were higher (1.126-1.171 g cm-3) compared to the açai CNF ones. Films from eucalyptus and açai pulps containing copaiba oil and tannins presented higher Tonset and Tmax, respectively (312 and 370 °C). Films with açaí CNFs functionalized with copaiba oil and tannin showed the lowest permeability value (370 g day-1 m-2). Films produced with eucalyptus pulp, and eucalyptus pulp functionalized with copaiba oil highlighted by superior mechanical strength, achieving 133.8 and 121.4 MPa, respectively. The evaluation of colorimetry showed a greater tendency to yellowing for açai films, especially those functionalized with vegetal tannins. Besides the low cost, functionalized vegetal-based nanomaterials could have attractive properties, with potential for application as some kind of packaging, for transporting basic products, such as breads, flours, or products with low moisture content, enabling efficient utilization of forest wastes.


Assuntos
Eucalyptus , Nanofibras , Óleos Voláteis , Celulose , Florestas , Suspensões , Taninos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA