Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39408819

RESUMO

Chronic migraines have been described chiefly only from a clinical perspective. However, searching for reliable molecular markers has allowed for the discovery of the expression of different genes mainly associated with inflammation, neuro-vascularization, and pain-related pathways. The interest in microRNAs (miRs) that can regulate the expression of these genes has gained significant relevance since multiple miRs could play a key role in regulating these events. In this study, miRs were searched in samples from patients with chronic migraine, and the inclusion criteria were carefully reviewed. Different bioinformatic tools, such as miRbase, targetscan, miRPath, tissue atlas, and miR2Disease, were used to analyze the samples. Our findings revealed that some of the miRs were expressed more (miR-197, miR-101, miR-92a, miR-375, and miR-146b) and less (miR-133a/b, miR-134, miR-195, and miR-340) than others. We concluded that, during chronic migraine, common pathways, such as inflammation, vascularization, neurodevelopment, nociceptive pain, and pharmacological resistance, were associated with this disease.


Assuntos
Biologia Computacional , MicroRNAs , Transtornos de Enxaqueca , Humanos , MicroRNAs/genética , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Biologia Computacional/métodos , Doença Crônica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Feminino
2.
Comput Biol Med ; 181: 108988, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168013

RESUMO

Rosacea is a chronic dermatological condition that currently lacks a clear treatment approach due to an uncomprehensive knowledge of its pathogenesis. The main obstacle lies in understanding its etiology and the mode of action of the different drugs used. This study aims to clarify these aspects by employing drug repositioning. Using an in silico approach, we performed a transcriptomic analysis comparing samples from individuals with diverse types of rosacea to those from healthy controls to identify genes deregulated in this disease. Subsequently, we realized molecular docking and molecular dynamics studies to assess the binding affinity of drugs currently used to treat rosacea and drugs that target proteins interacting with, and thus affecting, proteins deregulated in rosacea. Our findings revealed that the downregulation of SKAP2 and upregulation of S100A7A in rosacea, could be involved in the pathogenesis of the disease. Furthermore, considering the drugs currently used for rosacea management, we demonstrated stable interactions between isotretinoin and BFH772 with SKAP2, and permethrin and PAC-14028 with S100A7A. Similarly, considering drugs targeting SKAP2 and S100A7A interactome proteins, we found that pitavastatin and dasatinib exert stable interactions with SKAP2, and lovastatin and tirbanibulin with S100A7A. In addition, we determine that the types of bonds involved in the interactions were different in SKAP2 from S100A7A. The drug-SKAP2 interactions are hydrogen bonds, whereas the drug-S100A7A interactions are of the hydrophobic type. In conclusion, our study provides evidence for the possible contribution of SKAP2 and S100A7A to rosacea pathology. Furthermore, it provides significant information on the molecular interactions between drugs and these proteins, highlighting the importance of considering structural features and binding interactions in the design of targeted therapies for skin disorders such as rosacea.


Assuntos
Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Rosácea , Rosácea/tratamento farmacológico , Rosácea/metabolismo , Humanos , Proteína A7 Ligante de Cálcio S100/metabolismo , Proteína A7 Ligante de Cálcio S100/genética , Proteína A7 Ligante de Cálcio S100/química , Farmacóforo
3.
Curr Res Microb Sci ; 6: 100230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026603

RESUMO

The use of plant growth-promoting bacteria as bioinoculants is a powerful tool to increase crop yield and quality and to improve nitrogen use efficiency (NUE) from fertilizers in plants. This study aimed to bioprospecting a native bacterial consortium (Bacillus cabrialesii subsp. cabrialesii TE3T, Priestia megaterium TRQ8, and Bacillus paralicheniformis TRQ65), through bioinformatic analysis, and to quantify the impact of its inoculation on NUE (measured through 15N-isotopic techniques), grain yield, and grain quality of durum wheat variety CIRNO C2008 grown under three doses of urea (0, 120, and 240 kg N ha-1) during two consecutive agricultural cycles in the Yaqui Valley, Mexico. The inoculation of the bacterial consortium (BC) to the wheat crop, at a total N concentration of 123-225 kg N ha-1 increased crop productivity and maintained grain quality, resulting in a yield increase of 1.1 ton ha-1 (6.0 vs. 7.1 ton ha-1, 0 kg N ha-1 added, 123 kg N ha-1 in the soil) and of 2.0 ton ha-1 (5.9 vs. 7.9 ton ha-1, 120 kg N ha-1 added, 104 kg N ha-1 in the soil) compared to the uninoculated controls at the same doses of N. The genomic bioinformatic analysis of the studied strains showed a great number of biofertilization-related genes regarding N and Fe acquisition, P assimilation, CO2 fixation, Fe, P, and K solubilization, with important roles in agroecosystems, as well as genes related to the production of siderophores and stress response. A positive effect of the BC on NUE at the studied initial N content (123 and 104 kg N ha-1) was not observed. Nevertheless, increases of 14 % and 12.5 % on NUE (whole plant) were observed when 120 kg N ha-1 was applied compared to when wheat was fully fertilized (240 kg N ha-1). This work represents a link between bioinformatic approaches of a native bacterial inoculant and the quantification of its impact on durum wheat.

4.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39065743

RESUMO

Depression and anxiety disorders, prevalent neuropsychiatric conditions that frequently coexist, limit psychosocial functioning and, consequently, the individual's quality of life. Since the pharmacological treatment of these disorders has several limitations, the search for effective and secure antidepressant and anxiolytic compounds is welcome. Vitamin D has been shown to exhibit neuroprotective, antidepressant, and anxiolytic properties. Therefore, this study aimed to explore new molecular targets of calcitriol, the active form of vitamin D, through integrated bioinformatic analysis. Calcitriol targets were predicted in SwissTargetPrediction server (2019 version). The disease targets were collected by the GeneCards database searching the keywords "depression" and "anxiety". Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the intersections of targets. Network analyses were carried out using GeneMania server (2023 version) and Cytoscape (V. 3.9.1.) software. Molecular docking predicted the main targets of the network and Ligplot predicted the main intermolecular interactions. Our study showed that calcitriol may interact with multiple targets. The main targets found are the vitamin D receptor (VDR), histamine H3 receptor (H3R), endocannabinoid receptors 1 and 2 (CB1 and CB2), nuclear receptor NR1H3, patched-1 (PTCH1) protein, opioid receptor NOP, and phosphodiesterase enzymes PDE3A and PDE5A. Considering the role of these targets in the pathophysiology of depression and anxiety, our findings suggest novel putative mechanisms of action of vitamin D as well as new promising molecular targets whose role in these disorders deserves further investigation.

5.
Antibiotics (Basel) ; 13(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786123

RESUMO

Various genetic elements, including integrons, are known to contribute to the development of antimicrobial resistance. Class 1 integrons have been identified in E. coli isolates and are associated with multidrug resistance in countries of the Andean Community. However, detailed information on the gene cassettes located on the variable regions of integrons is lacking. Here, we investigated the presence and diversity of class 1 integrons, using an in silico approach, in 2533 whole-genome sequences obtained from EnteroBase. IntFinder v1.0 revealed that almost one-third of isolates contained these platforms. Integron-bearing isolates were associated with environmental, food, human, and animal origins reported from all countries under scrutiny. Moreover, they were identified in clones known for their pathogenicity or multidrug resistance. Integrons carried cassettes associated with aminoglycoside (aadA), trimethoprim (dfrA), cephalosporin (blaOXA; blaDHA), and fluoroquinolone (aac(6')-Ib-cr; qnrB) resistance. These platforms showed higher diversity and larger numbers than previously reported. Moreover, integrons carrying more than three cassettes in their variable regions were determined. Monitoring the prevalence and diversity of genetic elements is necessary for recognizing emergent patterns of resistance in pathogenic bacteria, especially in countries where various factors are recognized to favor the selection of resistant microorganisms.

6.
Rev Alerg Mex ; 71(1): 78, 2024 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38683095

RESUMO

OBJECTIVE: Analyze phylogenetic relationships and molecular mimicry of Cit s 2 and other plant profilins. METHODS: Online bioinformatics tools including Basic Local Alignment Search Tool (BLASTP), PRALINE and MEGA were used for multiple alignments and phylogenetic analysis. A 3D-homology model of Cit s 2 was predicted. Models were calculated with MODELLER. The best model was selected with the model scoring option of MAESTRO. Conserved regions between Cit s 2 and other profilins were located on the 3D model and antigenic regions were predicted by ElliPro server (3-5). RESULTS: Cit s 2 amino acid sequence (Uniprot code:P84177) was compared with other 30 profilins from different allergenic sources. The identity between Cit s 2 and other profilins ranged between 82 and 99%. The highest identity was observed with Cucumis melo (99%) followed by Prunus persica (98%) and Malus domestica (92%). High conserved antigenic regions were observed on the 3D predicted model. Seven lineal and six discontinuous epitopes were found in Cit s 2. CONCLUSION: High conserved antigenic regions were observed on the 3D predicted model of Cit s 2, which might involve potential cross-reactivity between Cit s 2 and other profilins. Future studies are needed to further analyze these results.


OBJETIVO: Analizar las relaciones filogenéticas y el mimetismo molecular de Cit s 2 y otras profilinas vegetales. MÉTODOS: Se utilizaron herramientas bioinformáticas en línea, incluida la de búsqueda de alineación local básica (BLASTP), PRALINE y MEGA, para alineamientos múltiples y análisis filogenético. Se predijo un modelo de homología 3D de Cit s 2. Los modelos se calcularon con MODELLER. El mejor modelo fue seleccionado con la opción de puntuación de modelo de Maestro. Las regiones conservadas entre Cit s 2 y otras profilinas se ubicaron en el modelo 3D y las regiones antigénicas fueron predichas por el servidor ElliPro (3-5). RESULTADOS: La secuencia de aminoácidos de Cit s 2 (código Uniprot: P84177), se comparó con otras 30 profilinas de diferentes fuentes alergénicas. La mayor identidad se observó con Cucumis melo (99%) seguida de Prunus persica (98%) y Malus domestica (92%). Se observaron regiones antigénicas altamente conservadas en el modelo predicho en 3D. Se encontraron siete epítopes lineales, y seis epítopes discontinuos en Cit s 2. CONCLUSIÓN: Se observaron regiones antigénicas altamente conservadas en el modelo 3D predicho de Cit s 2, lo que podría implicar una posible reactividad cruzada entre Cit s 2 y otras profilinas. Se necesitan estudios futuros para analizar más a fondo estos resultados.


Assuntos
Antígenos de Plantas , Profilinas , Alérgenos/imunologia , Sequência de Aminoácidos , Simulação por Computador , Sequência Conservada , Modelos Moleculares , Filogenia , Proteínas de Plantas/imunologia , Profilinas/imunologia , Profilinas/genética , Profilinas/química , Cucumis/química , Cucumis/metabolismo , Prunus persica/química , Prunus persica/metabolismo , Malus/química , Malus/metabolismo , Antígenos de Plantas/química
7.
Genes (Basel) ; 14(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37761923

RESUMO

Alcaligenes is a cosmopolitan bacterial genus that exhibits diverse properties which are beneficial to plants. However, the genomic versatility of Alcaligenes has also been associated with the ability to cause opportunistic infections in humans, raising concerns about the safety of these microorganisms in biotechnological applications. Here, we report an in-depth comparative analysis of Alcaligenes species using all publicly available genomes to investigate genes associated with species, biotechnological potential, virulence, and resistance to multiple antibiotics. Phylogenomic analysis revealed that Alcaligenes consists of at least seven species, including three novel species. Pan-GWAS analysis uncovered 389 species-associated genes, including cold shock proteins (e.g., cspA) and aquaporins (e.g., aqpZ) found exclusively in the water-isolated species, Alcaligenes aquatilis. Functional annotation of plant-growth-promoting traits revealed enrichment of genes for auxin biosynthesis, siderophores, and organic acids. Genes involved in xenobiotic degradation and toxic metal tolerance were also identified. Virulome and resistome profiles provide insights into selective pressures exerted in clinical settings. Taken together, the results presented here provide the grounds for more detailed clinical and ecological studies of the genus Alcaligenes.

8.
Lab Med ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578538

RESUMO

OBJECTIVE: To identify the TMPRSS6 gene variants in Mexican patients with iron treatment refractoriness, to describe hematological and iron profile parameters, and to use bioinformatic prediction and protein modeling tools to assess a possible biological impact for the detected missense variants. METHODS: Nineteen patients referred with iron treatment refractoriness were studied. Peripheral blood was collected to determine hematic cytometry, iron profile, hemoglobin electrophoresis, and quantification. Molecular screening was carried out for exons 15 through 18 of the TMPRSS6 gene by Sanger sequencing and for frequent thalassemia variants by amplification-refractory mutation system-polymerase chain reaction (PCR) and gap-PCR. The biological impact of the detected missense variants was assessed using bioinformatic prediction and protein modeling tools. RESULTS: We found 5 genetic variants in the matriptase-2 catalytic domain: 1 at intron-15/exon-16 junction (rs60484081) and 4 exonic, 3 missense (rs377054987, p.Gly626Asp; rs1384127820, p.Ser672Thr; rs855791, p.Val727Ala) and 1 synonymous (rs2235321, p.Tyr730=), with frequencies ranging from 0.18 to 0.53. No significant differences were observed in the hematological parameters or iron profile, considering type and number of variants. Bioinformatic predictions suggested a possible biological impact only for rs377054987. CONCLUSIONS: The TMPRSS6 variants observed in Mexican patients with oral iron treatment refractoriness have high frequencies; nevertheless, their relationship with hematological and iron profile parameters needs further research. The possible biological impact for rs377054987 is due to size and amino acid hydrophobicity changes and hydrogen bond modifications.

10.
J Fungi (Basel) ; 9(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367569

RESUMO

Fungal infections represent a serious global health problem, causing damage to health and the economy on the scale of millions. Although vaccines are the most effective therapeutic approach used to combat infectious agents, at the moment, no fungal vaccine has been approved for use in humans. However, the scientific community has been working hard to overcome this challenge. In this sense, we aim to describe here an update on the development of fungal vaccines and the progress of methodological and experimental immunotherapies against fungal infections. In addition, advances in immunoinformatic tools are described as an important aid by which to overcome the difficulty of achieving success in fungal vaccine development. In silico approaches are great options for the most important and difficult questions regarding the attainment of an efficient fungal vaccine. Here, we suggest how bioinformatic tools could contribute, considering the main challenges, to an effective fungal vaccine.

11.
Braz J Microbiol ; 54(2): 983-995, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36977970

RESUMO

Pathogens resistant to antimicrobials form a significant threat to public health worldwide. Tackling multidrug-resistant pathogens via screening metagenomic libraries has become a common approach for the discovery of new antibiotics from uncultured microorganisms. This study focuses on capturing nonribosomal peptide synthase (NRPS) gene clusters implicated in the synthesis of many natural compounds of industrial relevance. A NRPS PCR assay was used to screen 2976 Escherichia coli clones in a soil metagenomic library to target NRPS genes. DNA extracts from 4 clones were sequenced and subjected to bioinformatic analysis to identify NRPS domains, their phylogeny, and substrate specificity.Successfully, 17 NRPS-positive hits with a biosynthetic potential were identified. DNA sequencing and BLAST analysis confirmed that NRPS protein sequences shared similarities with members of the genus Delftia in the Proteobacteria taxonomic position. Multiple alignment and phylogenetic analysis demonstrated that clones no. 15cd35 and 15cd37 shared low bootstrap values (54%) and were distantly far from close phylogenetic neighbors. Additionally, NRPS domain substrate specificity has no hits with the known ones; hence, they are more likely to use different substrates to produce new diverse antimicrobials. Further analysis confirmed that the NRPS hits resemble several transposon elements from other bacterial taxa, confirming its diversity. We confirmed that the analyses of the soil metagenomic library revealed a diverse set of NRPS related to the genus Delftia. An in-depth understanding of those positive NRPS hits is a crucial step for genetic manipulation of NRPS, shedding light on alternative novel antimicrobial compounds that can be used in drug discovery and hence supports the pharmaceutical sector.


Assuntos
Metagenoma , Microbiota , Filogenia , Antibacterianos/farmacologia , Solo
12.
Foods ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765990

RESUMO

Amaranth 11S globulins (Ah11Sn) are an excellent source of essential amino acids; however, there have been no investigations on the characterization of their techno-functional properties at different pH conditions and NaCl concentrations, which are necessary for food formulations. In this work, we report a new two-step purification method for native Ah11Sn with purity levels of ~95%. LC-MS/MS analysis revealed the presence of three different Ah11Sn paralogs named Ah11SB, A11SC, and Ah11SHMW, and their structures were predicted with Alphafold2. We carried out an experimental evaluation of Ah11Sn surface hydrophobicity, solubility, emulsifying properties, and assembly capacity to provide an alternative application of these proteins in food formulations. Ah11Sn showed good surface hydrophobicity, solubility, and emulsifying properties at pH values of 2 and 3. However, the emulsions became unstable at 60 min. The assembly capacity of Ah11Sn evaluated by DLS analysis showed mainly the trimeric assembly (~150-170 kDa). This information is beneficial to exploit and utilize Ah11Sn rationally in food systems.

13.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675141

RESUMO

EBV and Helicobacter pylori (H. pylori) cause highly prevalent persistent infections as early as in childhood. Both pathogens are associated with gastric carcinogenesis. H. pylori interferes with iron metabolism, enhancing the synthesis of acute-phase proteins hepcidin, C-reactive protein (CRP), and α-1 glycoprotein (AGP), but we do not know whether EBV does the same. In this study, we correlated the EBV antibody levels and the serum levels of hepcidin, CRP, and AGP in 145 children from boarding schools in Mexico City. We found that children IgG positive to EBV antigens (VCA, EBNA1, and EA) presented hepcidin, AGP, and CRP levels higher than uninfected children. Hepcidin and AGP remained high in children solely infected with EBV, while CRP was only significantly high in coinfected children. We observed positive correlations between hepcidin and EBV IgG antibodies (p < 0.5). Using the TCGA gastric cancer database, we also observed an association between EBV and hepcidin upregulation. The TCGA database also allowed us to analyze the two important pathways controlling hepcidin expression, BMP−SMAD and IL-1ß/IL-6. We observed only the IL-1ß/IL-6-dependent inflammatory pathway being significantly associated with EBV infection. We showed here for the first time an association between EBV and enhanced levels of hepcidin. Further studies should consider EBV when evaluating iron metabolism and anemia, and whether in the long run this is an important mechanism of undernourishment and EBV gastric carcinogenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Helicobacter pylori , Neoplasias Gástricas , Criança , Humanos , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/metabolismo , Helicobacter pylori/metabolismo , Hepcidinas/metabolismo , Herpesvirus Humano 4 , Imunoglobulina G/metabolismo , Interleucina-6/metabolismo , Ferro/metabolismo , Neoplasias Gástricas/etiologia
14.
Braz J Microbiol ; 54(1): 53-68, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36435956

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly spread worldwide, leading coronavirus disease 2019 (COVID-19) to hit pandemic level less than 4 months after the first official cases. Hence, the search for drugs and vaccines that could prevent or treat infections by SARS-CoV-2 began, intending to reduce a possible collapse of health systems. After 2 years, efforts to find therapies to treat COVID-19 continue. However, there is still much to be understood about the virus' pathology. Tools such as transcriptomics have been used to understand the impact of SARS-CoV-2 on different cells isolated from various tissues, leaving datasets in the databases that integrate genes and differentially expressed pathways during SARS-CoV-2 infection. After retrieving transcriptome datasets from different human cells infected with SARS-CoV-2 available in the database, we performed an integrative analysis associated with deep learning algorithms to determine differentially expressed targets mainly after infection. The targets found represented a fructose transporter (GLUT5) and a component of proteasome 26s. These targets were then molecularly modeled, followed by molecular docking that identified potential inhibitors for both structures. Once the inhibition of structures that have the expression increased by the virus can represent a strategy for reducing the viral replication by selecting infected cells, associating these bioinformatics tools, therefore, can be helpful in the screening of molecules being tested for new uses, saving financial resources, time, and making a personalized screening for each infectious disease.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica
15.
Reprod Sci ; 30(2): 642-655, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35882717

RESUMO

Metadata analysis of public microarray datasets using bioinformatics tools has been successfully used in several biomedical fields in the search for biomarkers. In reproductive science, there is an urgent need for the establishment of oocyte quality biomarkers that could be used in the clinical environment to increase the chances of successful outcomes in treatment cycles. Adaptive cellular processes observed in cumulus oophorus cells reflect the conditions of the follicular microenvironment and may thus bring relevant information of oocyte's conditions. Here we analyzed human cumulus cells gene expression datasets in search of predictors of oocyte quality, a strategy which uncovered several cellular processes positively and negatively associated with embryo development and pregnancy potential. Secondly, the expression levels of genes that were present in the majority of processes observed were validated in house with clinical samples. Our data confirmed the association of the selected biomarkers with blastocyst formation and pregnancy potential rates, independently of patients' clinical characteristics such as diagnosis, age, BMI, and stimulation protocol applied. This study shows that bioinformatic analysis of cellular processes can be successfully used to elucidate possible oocyte quality biomarkers. Our data reinforces the need to consider clinical characteristics of patients when selecting relevant biomarkers to be used in the clinical environment and suggests a combination of positive (PTGS2) and negative (CYPB1) quality biomarkers as a robust strategy for a complementary oocyte selection tool, potentially increasing assisted reproduction success rates. Also, GPX4 expression as pregnancy potential biomarker is indicated here as a possibility for further investigations.


Assuntos
Células do Cúmulo , Oócitos , Gravidez , Feminino , Humanos , Células do Cúmulo/metabolismo , Oócitos/metabolismo , Biomarcadores/metabolismo , Desenvolvimento Embrionário/genética , Ciclo-Oxigenase 2/metabolismo
16.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362337

RESUMO

In cervical cancer (CC), miR-23b-3p, miR-124-3p, and miR-218-5p have been found to act as tumor suppressors by regulating cellular processes related to progression and metastasis. The objective of the present review is to provide an update on the experimental evidence about the role of miR-23b-3p, miR-124-3p, and miR-218-5p in the regulation of CC progression. Additionally, we present the results of a bioinformatic analysis that suggest that these miRNAs have a somewhat redundant role in the same cellular processes that may result in a synergistic effect to promote CC progression. The results indicate that specific and common target genes for miR-23b-3p, miR-124-3p, and miR-218-5p regulate proliferation, migration, apoptosis, and angiogenesis, all processes that are related to CC maintenance and progression. Furthermore, several target genes may regulate cancer-related signaling pathways. We found that a total of 271 proteins encoded by the target mRNAs of miR-23b-3p, miR-124-3p, or miR-218-5p interact to regulate the cellular processes previously mentioned, and some of these proteins are regulated by HPV-16 E7. Taken together, information analysis indicates that miR-23b-3p, miR-124-3p, and miR-218-5p may potentiate their effects to modulate the cellular processes related to the progression and maintenance of CC with and without HPV-16 involvement.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Apoptose/genética , Atenção , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
17.
Microb Pathog ; 172: 105760, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126789

RESUMO

The immune response against pathogens induces protection from future infection, however, molecular mimicry between the pathogen and the human host can promote autoreactive responses. Using in silico approaches, we identified molecular mimicry between Trypanosoma sp. and human autoantigens involved in the development of systemic lupus erythematosus (SLE). We retrieved all reported autoantigen amino acid sequences for SLE from the AAgAtlas database to perform PSI-BLAST against the Trypanosoma sp proteome to determine amino acid sequence identity with each other. The antigens given in the Protein Data Bank without a 3D structure were modeled by homology with the "Swiss Modeller Server". Epitopes shared between Trypanosoma sp. and human antigens were identified using the Ellipro server and the Immune Epitope Database (IEDB), and cross-reactive epitopes were assigned to the 3D models. 36 autoantigens involved in SLE showed molecular mimicry with Trypanosoma sp. Antigens Epitope prediction revealed that some autoantigens shared several antigenic.


Assuntos
Lúpus Eritematoso Sistêmico , Trypanosoma , Humanos , Mimetismo Molecular , Proteoma , Autoantígenos , Epitopos
18.
Mol Cell Endocrinol ; 558: 111748, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995307

RESUMO

Thyroid peroxidase (TPO) is a membrane-bound glycoprotein located at the apical side of the thyroid follicular cells that catalyzes both iodination and coupling of iodotyrosine residues within the thyroglobulin molecule, leading to the synthesis of thyroid hormone. Variants in TPO cause congenital hypothyroidism (CH) by iodide organification defect and are commonly inherited in an autosomal recessive fashion. In the present work, we report a detailed population analysis and bioinformatic prediction of the TPO variants indexed in the Genome Aggregation Database (gnomAD) v2.1.1. The proportion of missense cysteine variants and nonsense, frameshift, and splice acceptor/donor variants were analyzed in each ethnic group (European (Non-Finnish), European (Finnish), African/African Americans, Latino/Admixed American, East Asian, South Asian, Ashkenazi Jewish, Other). The results showed a clear predominance of frameshift variants in the East Asian (82%) and European (Finnish) (75%) population, whereas the splice site variants predominate in African/African Americans (99.46%), Other (96%), Latino/Admixed American (94%), South Asian (86%), European (Non-Finnish) (56%) and Ashkenazi Jewish (56%) populations. The analysis of the distribution of the variants indexed in gnomAD v2.1.1 database revealed that most missense variants identified in the An peroxidase domain map in exon 8, followed by exons 11, 7 and 9, and finally in descending order by exons 10, 6, 12 and 5. In total, 183 novel TPO variants were described (13 missense cysteine's variants, 158 missense variants involving the An peroxidase domain and 12 splicing acceptor or donor sites variants) which were not reported in the literature and that would have deleterious effects on prediction programs. In the gnomAD v2.1.1 population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:77. In conclusion, we provide an updated and curated reference source of new TPO variants for application in clinical diagnosis and genetic counseling. Also, this work contributes to elucidating the molecular basis of CH associated with TPO defects.


Assuntos
Hipotireoidismo Congênito , Tireoglobulina , Humanos , Tireoglobulina/genética , Iodeto Peroxidase/genética , Monoiodotirosina/genética , Iodetos , Biologia Computacional , Cisteína , Hipotireoidismo Congênito/genética , Hormônios Tireóideos , Mutação/genética , Peroxidases/genética , Algoritmos
19.
Life (Basel) ; 12(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629412

RESUMO

There is currently no vaccine against American trypanosomiasis, caused by the parasite Trypanosoma cruzi. This is due to the genomic variation observed in the six DTUs of T. cruzi. This work aims to propose a consensus sequence of the enolase protein from different strains of T. cruzi and mainly evaluate its immunogenic properties at the bioinformatic level. From specialized databases, 15 sequences of the enolase gene were aligned to obtain a consensus sequence, where this sequence was modeled and then evaluated and validated through different bioinformatic programs to learn their immunogenic potential. Finally, chimeric peptides were designed with the most representative epitopes. The results showed high immunogenic potential with six epitopes for MHC-I, and seven epitopes for MHC-II, all of which were highly representative of the enolase present in strains from the American continent as well as five epitopes for B cells. Regarding the computational modeling, molecular docking with Toll-like receptors showed a high affinity and low constant of dissociation, which could lead to an innate-type immune response that helps to eliminate the parasite. In conclusion, the consensus sequence proposed for enolase is capable of providing an ideal immune response; however, the experimental evaluation of this enolase consensus and their chimeric peptides should be a high priority to develop a vaccine against Chagas disease.

20.
Cancers (Basel) ; 14(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406420

RESUMO

Breast cancer (BC) is one of the most frequent cancer types in women worldwide. About 7% is diagnosed in young women (YBC) less than 40 years old. In Mexico, however, YBC reaches 15% suggesting a higher genetic susceptibility. There have been some reports of germline variants in YBC across the world. However, there is only one report from a Mexican population, which is not restricted by age and limited to a panel of 143 genes resulting in 15% of patients carrying putatively pathogenic variants. Nevertheless, expanding the analysis to whole exome involves using more complex tools to determine which genes and variants could be pathogenic. We used germline whole exome sequencing combined with the PeCanPie tool to analyze exome variants in 115 YBC patients. Our results showed that we were able to identify 49 high likely pathogenic variants involving 40 genes on 34% of patients. We noted many genes already reported in BC and YBC worldwide, such as BRCA1, BRCA2, ATM, CHEK2, PALB2, and POLQ, but also others not commonly reported in YBC in Latin America, such as CLTCL1, DDX3X, ERCC6, FANCE, and NFKBIE. We show further supporting and controversial evidence for some of these genes. We conclude that exome sequencing combined with robust annotation tools and further analysis, can identify more genes and more patients affected by germline mutations in cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA