Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39285908

RESUMO

Glioblastoma (GB) is the most common type of malignant tumor of the central nervous system, responsible for significant morbidity and with a 5-year overall relative survival of only 6.8%. Without advances in treatment in the last twenty years, the standard of care continues to be maximum safe resection, Temozolomide (TMZ), and radiotherapy. Many new trials are ongoing, and despite showing increased progression-free survival, these trials did not improve overall survival. They did not consider the adverse effects of these therapies. Therefore, an increasing number of bioprospecting studies have used snake venom molecules to search for new strategies to attack GB selectively without producing side effects. The present review aims to describe GB characteristics and current and new approaches for treatment considering their side effects. Besides, we focused on the antitumoral activity of snake venom proteins from the Viperidae family against GB, exploring the potential for drug design based on in vitro and in vivo studies. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. In January 2024, a systematic search was performed in the PubMed, EMBASE, and Web of Science databases from January 2000 to December 2023. Search terms were selected based on the population/exposure/outcome (PEO) framework and combined using Boolean operators ("AND", "OR"). The search strategy used these terms: glioblastoma, glioma, high-grade glioma, WHO IV glioma, brain cancer, snake venom, Viperidae, and bioprospection. We identified 10 in vivo and in vitro studies with whole and isolated proteins from Viperidae venom that could have antitumor activity against glioblastoma. Studies in bioprospecting exploring the advantage of snake venom proteins against GB deserve to be investigated due to their high specificity, small size, inherent bioactivity, and few side effects to cross the blood-brain barrier (BBB) to reach the tumor microenvironment.

2.
Braz J Microbiol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259478

RESUMO

Finding novel promoter sequences is a cornerstone of synthetic biology. To contribute to the expanding catalog of biological parts, we employed a promoter-trap approach to identify novel sequences within an Antarctic microbial community that act as broad host-range promoters functional in diverse Pseudomonadota. Using Pseudomonas putida KT2440 as host, we generated a library comprising approximately 2,000 clones resulting in the identification of thirteen functional promoter sequences, thereby expanding the genetic toolkit available for this chassis. Some of the discovered promoter sequences prove to be broad host-range as they drove gene expression not only in P. putida KT2440 but also in Escherichia coli DH5α, Cupriavidus taiwanensis R1T, Paraburkholderia phymatum STM 815T, Ensifer meliloti 1021, and an indigenous Antarctic bacterium, Pseudomonas sp. UYIF39. Our findings enrich the existing catalog of biological parts, offering a repertoire of broad host-range promoter sequences that exhibit functionality across diverse members of the phylum Pseudomonadota, proving Antarctic microbial community as a valuable resource for prospecting new biological parts for synthetic biology.

3.
Sci Rep ; 14(1): 21118, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256493

RESUMO

In the face of escalating antibiotic resistance, the quest for novel antimicrobial compounds is critical. Actinobacteria is known for producing a substantial fraction of bioactive molecules from microorganisms, nonetheless there is the challenge of metabolic redundancy in bioprospecting. New sources of natural products are needed to overcome these current challenges. Our present work proposes an unexplored potential of Neotropical social wasp-associated microbes as reservoirs of novel bioactive compounds. Using social wasp-associated Tsukamurella sp. strains 8F and 8J, we aimed to determine their biosynthetic potential for producing novel antibiotics and evaluated phylogenetic and genomic traits related to environmental and ecological factors that might be associated with promising bioactivity and evolutionary specialization. These strains were isolated from the cuticle of social wasps and subjected to comprehensive genome sequencing. Our genome mining efforts, employing antiSMASH and ARTS, highlight the presence of BGCs with minimal similarity to known compounds, suggesting the novelty of the molecules they may produce. Previous, bioactivity assays of these strains against bacterial species which harbor known human pathogens, revealed inhibitory potential. Further, our study focuses into the phylogenetic and functional landscape of the Tsukamurella genus, employing a throughout phylogenetic analysis that situates strains 8F and 8J within a distinct evolutionary pathway, matching with the environmental and ecological context of the strains reported for this genus. Our findings emphasize the importance of bioprospecting in uncharted biological territories, such as insect-associated microbes as reservoirs of novel bioactive compounds. As such, we posit that Tsukamurella sp. strains 8F and 8J represent promising candidates for the development of new antimicrobials.


Assuntos
Antibacterianos , Filogenia , Vespas , Vespas/microbiologia , Vespas/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Genoma Bacteriano , Actinomycetales/metabolismo , Actinomycetales/genética , Descoberta de Drogas/métodos
4.
Microorganisms ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39065132

RESUMO

Bacterial wilt, caused by Ralstonia solanacearum, is one of the main challenges for sustainable tomato production in the Amazon region. This study evaluated the potential of bacteria isolated from sediments of the Solimões and Negro rivers for the biocontrol of this disease. From 36 bacteria selected through in vitro antibiosis, three promising isolates were identified: Priestia aryabhattai RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195, which inhibited the growth of the phytopathogen by 100%, 87.62%, and 100%, respectively. These isolates also demonstrated the ability to produce extracellular enzymes and plant growth-promoting compounds, such as indole-3-acetic acid (IAA), siderophore, and ammonia. In plant assays, during both dry and rainy seasons, P. aryabhattai RN 11 reduced disease incidence by 40% and 90%, respectively, while promoting the growth of infected plants. Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195 exhibited high survival rates (85-90%) and pathogen suppression in the soil (>90%), demonstrating their potential as biocontrol agents. This study highlights the potential of Amazonian bacteria as biocontrol agents against bacterial wilt, contributing to the development of sustainable management strategies for this important disease.

5.
Microbiol Res ; 286: 127793, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901277

RESUMO

Quartzite caves located on table-top mountains (tepuis) in the Guyana Shield, are ancient, remote, and pristine subterranean environments where microbes have evolved peculiar metabolic strategies to thrive in silica-rich, slightly acidic and oligotrophic conditions. In this study, we explored the culturable fraction of the microbiota inhabiting the (ortho)quartzite cave systems in Venezuelan tepui (remote table-top mountains) and we investigated their metabolic and enzymatic activities in relation with silica solubilization and extracellular hydrolytic activities as well as the capacity to produce antimicrobial compounds. Eighty microbial strains were isolated with a range of different enzymatic capabilities. More than half of the isolated strains performed at least three enzymatic activities and four bacterial strains displayed antimicrobial activities. The antimicrobial producers Paraburkholderia bryophila CMB_CA002 and Sphingomonas sp. MEM_CA187, were further analyzed by conducting chemotaxonomy, phylogenomics, and phenomics. While the isolate MEM_CA187 represents a novel species of the genus Sphingomonas, for which the name Sphingomonas imawarii sp. nov. is proposed, P. bryophila CMB_CA002 is affiliated with a few strains of the same species that are antimicrobial producers. Chemical analyses demonstrated that CMB_CA002 produces ditropolonyl sulfide that has a broad range of activity and a possibly novel siderophore. Although the antimicrobial compounds produced by MEM_CA187 could not be identified through HPLC-MS analysis due to the absence of reference compounds, it represents the first soil-associated Sphingomonas strain with the capacity to produce antimicrobials. This work provides first insights into the metabolic potential present in quartzite cave systems pointing out that these environments are a novel and still understudied source of microbial strains with biotechnological potential.


Assuntos
Bactérias , Cavernas , Filogenia , RNA Ribossômico 16S , Cavernas/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Dióxido de Silício/química , Microbiota , Venezuela , Sphingomonas/metabolismo , Sphingomonas/isolamento & purificação , Sphingomonas/classificação , Sphingomonas/genética , Biotecnologia/métodos , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Microbiologia do Solo , DNA Bacteriano/genética
6.
Environ Sci Pollut Res Int ; 31(25): 37810-37823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38789704

RESUMO

The new technology of microbially induced calcium carbonate precipitation (MICP) has been applied in construction materials as a strategy to enhance their properties. In pursuit of solutions that are more localized and tailored to the study's target, this work focused on isolating and selecting bacteria capable of producing CaCO3 for posterior application in concrete aggregates. First, eleven bacterial isolates were obtained from aggregates and identified as genera Bacillus, Lysinibacillus, Exiguobacterium, and Micrococcus. Then, the strains were compared based on the quantity and nature of calcium carbonate they produced using thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy. Bacillus sp. dominated the cultured isolates and, along with Lysinibacillus sp., exhibited the highest CaCO3 conversion (up to 80%). On the other hand, Exiguobacterium and Micrococcus genera showed the poor ability to MICP (21.3 and 20.3%, respectively). Calcite and vaterite were the dominant carbonate polymorphs, with varying proportions. Concrete aggregates have proven to be a source of microorganisms capable of producing stable calcium carbonates with a high conversion rate. This indicates the feasibility of using microorganisms derived from local sources for application in construction materials as a sustainable way to enhance their characteristics.


Assuntos
Carbonato de Cálcio , Carbonato de Cálcio/química , Bactérias/metabolismo , Bacillus/metabolismo , Materiais de Construção/microbiologia , Reciclagem , Microscopia Eletrônica de Varredura , Difração de Raios X
7.
Plants (Basel) ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794492

RESUMO

Ecuador stands as a nation inheriting a profound ancestral legacy in the utilization of medicinal plants, reflective of the rich biodiversity embraced by various ethnic groups. Despite this heritage, many of these therapeutic resources remain insufficiently explored concerning their toxicity and potential pharmacological effects. This study focused on a comprehensive evaluation of cytotoxicity and the potential subcellular targets within various extracts and nine isolated metabolites from carefully selected medicinal plants. Assessing their impact on the breast cancer cell line (MCF7), we subsequently examined the most active fractions for effects on the cell cycle, microtubule network, centrosome duplication, γH2AX foci, and E-cadherin. The investigated crude extracts and isolated compounds from Ecuadorian medicinal plants demonstrated cytotoxic effects, influencing diverse cellular pathways. These findings lend credence to the traditional uses of Ecuadorian medicinal plants, which have served diverse therapeutic purposes. Moreover, they beckon the exploration of the specific chemicals, whether in isolation or combination, responsible for these observed activities.

8.
Probiotics Antimicrob Proteins ; 16(5): 1608-1622, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38460106

RESUMO

Spiders produce webs, which are still a largely unexplored source of antibacterial compounds, although the reports of its application in the medical field. Therefore, this study aims to present an integrative review of the antibacterial activity of spider webs. The research was conducted using Google Scholar, Scielo, Web of Science, PubMed, ScienceDirect, Medline EBSCO, LILACS, and Embase. The inclusion criteria were original articles written in English that studied the antibiotic properties of the web or isolated compounds tested. The studies were compared according to the spider species studied, the type of web, treatment of the sample, type of antimicrobial test, and the results obtained. Nine hundred and seventy-three publications were found, and after applying the inclusion and exclusion criteria, sixteen articles were selected. Bacterial inhibition was found in seven studies against various species of bacteria such as Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella Typhi, Bacillus megaterium, Listeria monocytogenes, Acinetobacter baumannii, Streptococcus pneumoniae, Pasteurella multocida, and Bacillus subtilis. Additionally, there was no apparent relationship between the proximity of the spider species evaluated in the studies and the presence or absence of activity. Methodological problems detected may affected the reproducibility and reliability of the results in some studies, such as the lack of description of the web or microorganism strain, as well as the absence of adequate controls and treatments to sterilize the sample. Spider webs can be a valuable source of antibiotics; however, more studies are needed to confirm the real activity of the web or components involved.


Assuntos
Antibacterianos , Seda , Aranhas , Aranhas/química , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Seda/química , Bactérias/efeitos dos fármacos , Bactérias/classificação , Testes de Sensibilidade Microbiana
9.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;30: e20240015, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1575198

RESUMO

Abstract Glioblastoma (GB) is the most common type of malignant tumor of the central nervous system, responsible for significant morbidity and with a 5-year overall relative survival of only 6.8%. Without advances in treatment in the last twenty years, the standard of care continues to be maximum safe resection, Temozolomide (TMZ), and radiotherapy. Many new trials are ongoing, and despite showing increased progression-free survival, these trials did not improve overall survival. They did not consider the adverse effects of these therapies. Therefore, an increasing number of bioprospecting studies have used snake venom molecules to search for new strategies to attack GB selectively without producing side effects. The present review aims to describe GB characteristics and current and new approaches for treatment considering their side effects. Besides, we focused on the antitumoral activity of snake venom proteins from the Viperidae family against GB, exploring the potential for drug design based on in vitro and in vivo studies. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. In January 2024, a systematic search was performed in the PubMed, EMBASE, and Web of Science databases from January 2000 to December 2023. Search terms were selected based on the population/exposure/outcome (PEO) framework and combined using Boolean operators ("AND", "OR"). The search strategy used these terms: glioblastoma, glioma, high-grade glioma, WHO IV glioma, brain cancer, snake venom, Viperidae, and bioprospection. We identified 10 in vivo and in vitro studies with whole and isolated proteins from Viperidae venom that could have antitumor activity against glioblastoma. Studies in bioprospecting exploring the advantage of snake venom proteins against GB deserve to be investigated due to their high specificity, small size, inherent bioactivity, and few side effects to cross the blood-brain barrier (BBB) to reach the tumor microenvironment.

10.
Cells ; 12(23)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067143

RESUMO

Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5ß1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Adesão Celular , Células HeLa , Qualidade de Vida , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Integrina alfa5beta1
11.
Plants (Basel) ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068591

RESUMO

The Colombian Chocó is known for its rich biodiversity and to harbor plant species that are under-explored, including the genus Sloanea. This study aimed to analyze the chemical composition of derivatized ethanolic extracts from S. chocoana and S. pittieriana using BSTFA and TMCS through GC-MS, and to assess cell viability of immortalized human non-tumorigenic keratinocytes (HaCaT) and periodontal ligament fibroblast cells using crude extracts through MTS assay. Antioxidant and photoprotective properties were determined using DPPH assay and spectrophotometry. Antifungal activity of extracts against Candida species was developed following the CLSI standard M27, 4th ed. The sun protective factor (SPF) and UVA/UVB ratio values were calculated using the Mansur equation and the Boots star rating system. The critical wavelength (λc) was determined by calculating the integrated optical density curve's area. The transmission of erythema and pigmentation was calculated through equations that use constants to calculate the flux of erythema and pigmentation. The GC-MS analysis identified 37 compounds for S. chocoana and 38 for S. pittieriana, including alkaloids, triterpenoids, and polyphenolics, among others. Both extracts exhibited proliferative effects on periodontal ligament fibroblasts, did not affect the viability of HaCaT cells, and showed excellent antioxidant activities (46.1% and 43.7%). Relevant antifungal activity was observed with S. pittieriana extract against Candida albicans (GM-MIC: 4 µg/mL), followed by C. auris and C. glabrata (GM-MIC: 32 µg/mL), while S. chocoana extract was active against C. albicans and C. glabrata (GM-MIC: 16 and 32 µg/mL, respectively). High SPF values (31.0 and 30.0), λc (393.98 and 337.81 nm), UVA/UVB ratio (1.5 and 1.2), and low percentage of transmission of erythema and pigmentation were determined for S. chocoana and S. pittieriana, respectively. Results showed that species of Sloanea constitute a promising alternative as ingredients for developing skincare products, and exhaustive studies are required for their sustainable uses.

13.
Cells ; 12(24)2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38132131

RESUMO

The antitumor potential of proteins from snake venoms has been studied in recent decades, and evidence has emerged that phospholipases A2 can selectively attack cells of various types of tumors. Previous results have shown that phospholipase A2 "Pllans-II," isolated from Porthidium lansbergii lansbergii snake venom, displayed antitumoral activity on cervical cancer and did not alter the viability of non-tumorigenic cells. However, until now, there was no evidence of its safety at the local and systemic levels, nor had experiments been developed to demonstrate that its production using recombinant technology allows us to obtain a molecule with effects similar to those generated by native phospholipase. Thus, we evaluated the impact caused by Pllans-II on murine biomodels, determining whether it induced local hemorrhage or increased pro-inflammatory and liver damage markers and histological alterations in the liver and kidneys. Additionally, the protein was produced using recombinant technology using a pET28a expression vector and the BL21 (DE3) Escherichia coli strain. Equally, its enzymatic activity and anticancer effect were evaluated on cervical cancer lines such as HeLa and Ca Ski. The results demonstrated that Pllans-II did not generate hemorrhagic activity, nor did it increase the pro-inflammatory cytokines IL-6, IL-1B, or TNF-α at doses of 3.28, 1.64, and 0.82 mg/kg. There was also no evidence of organ damage, and only ALT and AST increased in mild levels at the two highest concentrations. Additionally, the recombinant version of Pllans-II showed conservation in its catalytic activity and the ability to generate death in HeLa and Ca Ski cells (42% and 23%, respectively). These results demonstrate the innocuity of Pllans-II at the lowest dose and constitute an advance in considering a molecule produced using recombinant technology a drug candidate for selective attacks against cervical cancer.


Assuntos
Venenos de Crotalídeos , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Neoplasias do Colo do Útero/tratamento farmacológico , Fosfolipases A2 , Isoformas de Proteínas , Células HeLa
14.
Fungal Biol ; 127(9): 1298-1311, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37821152

RESUMO

Fungal laccases are promising for biotechnological applications, including bioremediation and dye biotransformation, due to their high redox potential and broad substrate specificity. However, current bioprospecting methods for identifying laccase-producing fungi can be challenging and time-consuming. For early detection, it was developed a three-step, multi-criteria weighting system that evaluates fungal strains based on: First, the biotransformation capacity of three dyes (i.e., Congo red, brilliant blue G-250, and malachite green), at three different pH values, and with a relative weighting supported for the redox potential of each colorant. The relative decolorization coefficient (RDC), used as th2e first classification criterion, expressed their potential performance. Second, under the same conditions, laccase activity was estimated by observing the different degrees of oxidation of a given substrate. The selection criterion was the relative oxidation coefficient (ROC). Finally, laccase activity was quantified in submerged fermentations using three inducers (i.e., loofah sponge, Tween 80, and veratyl alcohol). This multicriteria screening strategy evaluated sixteen isolated endophytic fungal strains from Otoba gracilipes. The system identified Beltraniopsis sp. ET-17 (at pH values of 5.00 and 5.50) as a promising strain for dye biotransformation, and Phlebia floridensis as the best laccase producer, achieving a high activity of 116 µmol min-1 L-1 with loofah sponge as an inducer. In-vitro testing confirmed the efficacy of P. floridensis, with 53.61 % decolorization of a dye mixture (brilliant blue-Congo red. ratio 1:1) after 15 days of incubation. Thus, with the proposed screening strategy it was possible to highlight two species of interest at an early bioprospecting stage on a Colombian native tree poorly explored.


Assuntos
Vermelho Congo , Lacase , Lacase/metabolismo , Biodegradação Ambiental , Endófitos/metabolismo , Corantes/metabolismo , Concentração de Íons de Hidrogênio
15.
Life (Basel) ; 13(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895418

RESUMO

This study analyzed the antifungal potential of 16 bacterial strains isolated from mangrove sediment. Bacterial selection was conducted in a solid medium. This was followed by the production and extraction of metabolites using ethyl acetate to evaluate chitinase production, antifungal activity, and toxicity toward Allium cepa and Tenebrio molitor. Bacterial strains B8, B11, and B13 produced the largest inhibition halos (>30 mm) toward Fusarium solani, Fusarium oxysporum, and Rhizoctonia solani fungi. Strains B1, B3, B6, B8, B11, B13, B14, and B16 produced chitinases. In assays using liquid media, B8 and B13 produced the largest inhibition halos. Exposing the fungal inocula to metabolic extracts of strains B6, B8, B11, B13, B14, B15, and B16 caused micromorphological alterations in the inocula, culminating in the inhibition of R. solani sporulation and spore germination. Toxicity tests using Allium cepa and Tenebrio molitor revealed that the metabolites showed low toxicity. Six of the bacterial strains were molecularly identified to species levels, and a further two to genus level. These included Serratia marcescens (B8), which exhibited activity in all tests. Mangroves provide a useful resource for the isolation of microorganisms for biocontrol. Among the isolates, Serratia marcescens and Bacillus spp. showed the greatest potential to produce metabolites for use as biocontrol agents in agriculture.

16.
Life (Basel) ; 13(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763338

RESUMO

Fipronil is an insecticide widely used in the agricultural and veterinary sectors for its efficacy in pest control. The presence of fipronil in the environment is mainly due to agricultural and domestic practices and is frequently found in different types of environmental matrices in concentrations ranging from µg/L to mg/L and can be hazardous to non-target organisms due to its high toxicity. This study was carried out to obtain and characterize microorganisms from soil which are capable of biodegrading fipronil that could be of great biotechnological interest. For this purpose, bioprospecting was carried out using fipronil (0.6 g/L) as the main source of carbon and nitrogen for growth. Once obtained, the strain was identified by sequencing the 16S ribosomal RNA (rRNA) gene and the capacity to degrade fipronil was monitored by GC-MS. Our study showed a presence in soil samples of the strain identified as Enterobacter chengduensis, which was able to metabolize fipronil and its metabolites during the mineralization process. Enterobacter chengduensis was able to biodegrade fipronil (96%) and its metabolites fipronil-sulfone (92%) and fipronil-sulfide (79%) in 14 days. Overall, the results of this study provided a bacterium with great potential that could contribute to the degradation of fipronil in the environment.

17.
J Fungi (Basel) ; 9(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37623634

RESUMO

The endophytic fungal community of the Amazonian medicinal plant Arrabidaea chica (Bignoniaceae) was evaluated based on the hypothesis that microbial communities associated with plant species in the Amazon region may produce metabolites with interesting bioactive properties. Therefore, the antimicrobial and antioxidant activities of the fungal extracts were investigated. A total of 107 endophytic fungi were grown in liquid medium and the metabolites were extracted with ethyl acetate. In the screening of fungal extracts for antimicrobial activity, the fungus identified as Botryosphaeria mamane CF2-13 was the most promising, with activity against E. coli, S. epidermidis, P. mirabilis, B. subtilis, S. marcescens, K. pneumoniae, S. enterica, A. brasiliensis, C. albicans, C. tropicalis and, especially, against S. aureus and C. parapsilosis (MIC = 0.312 mg/mL). Screening for antioxidant potential using the DPPH elimination assay showed that the Colletotrichum sp. CG1-7 endophyte extract exhibited potential activity with an EC50 of 11 µg/mL, which is equivalent to quercetin (8 µg/mL). The FRAP method confirmed the antioxidant potential of the fungal extracts. The presence of phenolic compounds and flavonoids in the active extracts was confirmed using TLC. These results indicate that two of the fungi isolated from A. chica exhibit significant antimicrobial and antioxidant potential.

18.
Cancers (Basel) ; 15(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37444584

RESUMO

Non-small cell lung cancer (NSCLC) is a significant public health concern with high mortality rates. Recent advancements in genomic data, bioinformatics tools, and the utilization of biomarkers have improved the possibilities for early diagnosis, effective treatment, and follow-up in NSCLC. Biomarkers play a crucial role in precision medicine by providing measurable indicators of disease characteristics, enabling tailored treatment strategies. The integration of big data and artificial intelligence (AI) further enhances the potential for personalized medicine through advanced biomarker analysis. However, challenges remain in the impact of new biomarkers on mortality and treatment efficacy due to limited evidence. Data analysis, interpretation, and the adoption of precision medicine approaches in clinical practice pose additional challenges and emphasize the integration of biomarkers with advanced technologies such as genomic data analysis and artificial intelligence (AI), which enhance the potential of precision medicine in NSCLC. Despite these obstacles, the integration of biomarkers into precision medicine has shown promising results in NSCLC, improving patient outcomes and enabling targeted therapies. Continued research and advancements in biomarker discovery, utilization, and evidence generation are necessary to overcome these challenges and further enhance the efficacy of precision medicine. Addressing these obstacles will contribute to the continued improvement of patient outcomes in non-small cell lung cancer.

19.
Biology (Basel) ; 12(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37508351

RESUMO

Endemic medicinal plants that grow at altitudes in northern Chile have been traditionally used for therapeutic applications by Aymara doctors. Several studies have analyzed the biological properties of these plants for therapeutic purposes. The aim was to characterize at molecular and biochemical levels the bacteria that live in the rhizosphere and roots from endemic medicinal plants that grow between 3681-5104 m.a.s.l. in the province of Parinacota. Thirty-nine bacteria were isolated from nine medicinal plants under our laboratory conditions. These bacteria were characterized by Gram stain, hydrolase production, plant-growth promotion, anti-fungal and antibacterial activities, and 16S rDNA sequencing. A phylogenetic study revealed the presence of three major phyla, Actinomycetota (46.2%), Bacillota (43.6%), and Pseudomonadota (10.3%). The rhizobacteria strains associated with the Aymara medicinal plant exhibited several interesting biological activities, such as hydrolytic enzymes, plant-growth-promoting traits, and antibacterial and antifungal properties, indicating their potential for developing new bio-based products for agricultural or clinical applications. These results are promising and highlight the need to point toward the search for explanations of the bio-molecular basis of the therapeutic effects of medicinal plants.

20.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375236

RESUMO

The irrational use of synthetic pesticides in agriculture has had negative impacts on ecosystems and contributed to environmental pollution. Botanical pesticides offer a clean biotechnological alternative to meet the agricultural challenges posed by pests and arthropods. This article proposes the use of fruit structures (fruit, peel, seed, and sarcotesta) of several Magnolia species as biopesticides. The potential of extracts, essential oils, and secondary metabolites of these structures for pest control is described. From 11 Magnolia species, 277 natural compounds were obtained, 68.7% of which were terpenoids, phenolic compounds, and alkaloids. Finally, the importance of a correct management of Magnolia species to ensure their sustainable use and conservation is stressed.


Assuntos
Magnolia , Praguicidas , Magnolia/química , Ecossistema , Praguicidas/química , Controle de Pragas , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA