Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.242
Filtrar
1.
Front Neurosci ; 18: 1434309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224579

RESUMO

Grapheme-color synesthesia is a normal and healthy variation of human perception. It is characterized by the association of letters or numbers with color perceptions. The etiology of synesthesia is not yet fully understood. Theories include hyperconnectivity in the brain, cross-activation of adjacent or functionally proximate sensory areas of the brain, or various models of lack of inhibitory function in the brain. The growth factor brain-derived neurotrophic (BDNF) plays an important role in the development of neurons, neuronal pathways, and synapses, as well as in the protection of existing neurons in both the central and peripheral nervous systems. ELISA methods were used to compare BDNF serum concentrations between healthy test subjects with and without grapheme-color synesthesia to establish a connection between concentration and the occurrence of synesthesia. The results showed that grapheme-color synesthetes had an increased BDNF serum level compared to the matched control group. Increased levels of BDNF can enhance the brain's ability to adapt to changing environmental conditions, injuries, or experiences, resulting in positive effects. It is discussed whether the integration of sensory information is associated with or results from increased neuroplasticity. The parallels between neurodegeneration and brain regeneration lead to the conclusion that synesthesia, in the sense of an advanced state of consciousness, is in some cases a more differentiated development of the brain rather than a relic of early childhood.

2.
Environ Res ; : 119922, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39237020

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) is perceived as an emerging environmental endocrine disruptor, which have been linked to children neurodevelopment. However, the potential mechanisms are not clear. Brain-derived neurotrophic factor (BDNF) is a vital protein in neurodevelopment, and the associations between PFAS exposure and BDNF require exploration. OBJECTIVE: We aimed to explore the relationships between PFAS exposure and the levels of BDNF in cord serum. METHODS: A total of 1,189 mother-infant dyads from the Sheyang Mini Birth Cohort Study (SMBCS) were enrolled. The levels of 12 PFAS and BDNF were measured in cord serum. We utilized generalized linear models (GLMs), quantile-based g-computation (QGC) models, and Bayesian Kernel Machine Regression (BKMR) models to explore the relationships between single and mixed PFAS exposure and BDNF concentration. Additionally, the potential sex differences were explored by sex-stratified analysis. RESULTS: Median concentrations of the included 10 PFAS ranged from 0.04 to 3.97 µg/L. In the single chemical models, four PFAS congeners, namely perfluorononanoic acid (PFNA), perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), were negatively associated with the BDNF level in cord serum among females only (ß: -0.116 to -0.062, p<0.05). In the BKMR models of total mother-infant dyads and female fetuses, the significant negative relationships between PFAS mixtures and BDNF were observed, and PFUnDA was identified as an important contributor (Posterior inclusion probability, PIP=0.8584 for the total subjects; PIP=0.8488 for the females). PFOS was another important driver based on the mixture approaches. CONCLUSIONS: We found that PFNA, PFOS, PFDA, and PFUnDA were associated with decreased BDNF concentration in the females, although the causal inference might be limited. PFAS mixtures were also negatively linked with BDNF level in the total mother-infant pairs and female fetuses. The adverse effect of PFAS exposure on fetal BDNF levels might be sex-specific.

3.
Neurobiol Stress ; 31: 100658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39100725

RESUMO

Introduction: At the maternal-fetal interface in pregnancy, stress during pregnancy can lead to an increased vulnerability to later psychopathology of the fetus. Potential mediators of this association have scarcely been studied and may include early alterations of fetal brain-derived neurotrophic factor (BDNF). Amniotic fluid is of particular interest for effects on fetal endocrine alterations, as the assessment in amniotic fluid allows for measurements over a time integral. This study hypothesized that maternal psychometrics, socioeconomic status and glucocorticoids are related to BDNF levels in amniotic fluid at birth. The association of fetal BDNF with newborn anthropometrics was tested. Methods: Women near term who underwent elective cesarean section and their newborns were investigated (n = 37). Maternal psychometrics, socioeconomic status and glucocorticoids (the sum of cortisol and cortisone) in amniotic fluid at birth were analyzed for an association with fetal BDNF in amniotic fluid at birth. Newborn anthropometrics were assessed by length, weight, head circumference and gestational age at birth. Results: In bivariate analysis, maternal psychometrics and socioeconomic status were not related to fetal BDNF in amniotic fluid at birth. The sum of cortisol and cortisone related to increased fetal BDNF in amniotic fluid at birth (r = 0.745, p < 0.001). BDNF in amniotic fluid was associated negatively with fetal birth weight per gestational age (r = -0.519, p < 0.001), length per gestational age (r = -0.374, p = 0.023), head circumference per gestational age (r = -0.508, p = 0.001), but not with gestational age at birth. In multiple regression analysis, the sum of cortisol and cortisone (p < 0.001) and birth weight per gestational age (p = 0.012) related to higher fetal BDNF levels in amniotic fluid at birth (R2 = 0.740, p < 0.001) when controlling for fetal sex and maternal age. Head circumference per gestational age predicted fetal BDNF with borderline significance (p = 0.058) when controlling for confounders. Conclusion: Glucocorticoids in amniotic fluid were positively associated with high fetal BDNF at birth, which may be an adaptive fetal response. Maternal psychological variables and socioeconomic status did not link to fetal BDNF. Birth weight and head circumference per gestational age were inversely associated with fetal BDNF at birth, which may represent a compensatory upregulation of BDNF in fetuses with low anthropometrics. Longitudinal studies are needed to assess the role of stress during pregnancy on later offspring development. The analysis of additional fetal growth factors and inflammation upon maternal stress in further biomaterials such as the placenta is warranted, to understand mechanistic alterations of how maternal stress links to fetal development and an increased vulnerability for psychopathology.

4.
Neuropsychiatr Dis Treat ; 20: 1513-1522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109146

RESUMO

Background: Adolescents with major depressive (MDD) episodes associated with childhood trauma have a poorer response to treatment and a higher risk of suicide. The underlying etiology is unclear. Brain-derived neurotrophic factor (BDNF) could improve depressive symptoms by down-regulating mammalian target of rapamycin (mTOR) signaling pathways, which was involved in adverse environmental stimuli during neurodevelopment. BDNF and mTOR have not been reported simultaneously in adolescents with major depressive episodes associated with childhood trauma. Methods: Childhood Trauma Questionnaire-Short Form (CTQ-SF), Children's Depression Inventory (CDI) and Children's Depression Rating Scale-Revised (CDRS-R) were used to evaluate the recruited adolescents with major depression episodes. Serum BDNF and p-mTOR levels were measured by ELISA in 31 adolescents with major depression episodes with childhood trauma and 18 matched healthy control. Results: The serum levels of BDNF were significantly lower (p<0.001); and the serum levels of p-mTOR were high (p=0.003) in the adolescents with the first episode of major depressive episode accompanied by childhood trauma. Of the 31 adolescents with major depressive episodes, 17 had suicide or self-injury. Compared with the healthy control group, the serum levels of BDNF in patients with suicide or self-injury were lower than those without suicide or self-injury(p<0.001); the serum levels of p-mTOR were higher than those without suicide or self-injury (p=0.01). While in patients without suicide or self-injury, only serum p-mTOR was significantly higher than that in healthy group (p=0.028). BDNF was negatively correlated with CDRS-R (r=-0.427, p=0.006), p-mTOR was positively correlated with CDI (r=0.364, p=0.048). According to Receiver Operating Characteristic Curve (ROC), the combination of serum BDNF and p-mTOR levels have better diagnostic value. Conclusion: Neurotrophic and signaling pathways, involving BDNF and p-mTOR, may play a role in adolescent MDD with a history of childhood trauma, especially patients with suicide and self-injury tendencies.

5.
Artigo em Russo | MEDLINE | ID: mdl-39113447

RESUMO

OBJECTIVE: To evaluate the frequency and severity of various clinical symptoms of Parkinson's disease (PD) depending on the BDNF rs6265 polymorphism. MATERIAL AND METHODS: The study included 533 patients with PD. The stage of PD was assessed using the Hoehn and Yahr scale (1967), motor symptoms were evaluated with MDS-UPDRS. Assessment of non-motor symptoms (NMS) in PD was conducted using the Beck Depression Inventory II (BDI-II); the Hospital Anxiety and Depression Scale (HADS); the Apathy Scale; the Montreal Cognitive Assessment (MoCA test); the Questionnaire for Impulsive-Compulsive Disorders in PD -Rating Scale (QUIP-RS). Genotyping of the BDNF variant (rs6265) was performed using real-time PCR with TaqMan probes. RESULTS: Most PD patients have a combination of NMS increasing as the disease progresses and is determined by molecular-genetic individual characteristics. There are significant differences in the severity of motor symptoms and NMS: individuals with the AA genotype showed significantly pronounced motor symptoms (p<0.0001); emotional-affective symptoms (p<0.0001); cognitive and impulsive behavioral disorders (p<0.0001). CONCLUSION: The rs6265 BDNF allele A is associated with a wide range of NMS, increasing the risk of their development in patients with PD, thus playing the important role in the etiopathogenesis of this pathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Polimorfismo de Nucleotídeo Único , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Doença de Parkinson/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Genótipo , Índice de Gravidade de Doença , Depressão/genética
6.
Brain Neurorehabil ; 17(2): e11, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39113920

RESUMO

Cerebrolysin concentrate is a medication whose main active ingredient is brain-derived neurotrophic factor. It has been reported to help in the restoration of cognitive function and overall physical function after brain injuries. We present the case of a 72-year-old man with severe oral apraxia due to a left middle cerebral artery ischemic stroke involving the left insular cortex. He was being tube fed due to severe oral apraxia with cognitive decline that made it difficult for him to even imitate simple oral movements. The patient initially had impaired consciousness and cognitive function. He also had limited physical activity due to acute stroke complications, such as hemorrhagic transformation of cerebral infarction, and required bed rest until 23 days after onset. The patient received intravenous cerebrolysin concentrate in addition to intensive rehabilitation therapy from 23 days after onset. After rehabilitation and administration of cerebrolysin concentrate, there was a marked recovery within a short period of time to the point where oral intake of a regular diet was possible, indicating a significant improvement in oral apraxia. It is a notable example of the potential therapeutic effect of cerebrolysin concentrate for post-stroke oral apraxia.

7.
Front Neurol ; 15: 1385042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148705

RESUMO

Background: Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective: To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion: To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.

8.
Curr Med Sci ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145838

RESUMO

OBJECTIVE: Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are widely expressed in the brain and are associated with the development of neurological and neurodegenerative diseases. However, their roles and molecular mechanisms in major depressive disorder (MDD) remain largely unknown. This study aimed to identify lncRNAs and miRNAs involved in the development of MDD and elucidate their molecular mechanisms. METHODS: Transcriptome and bioinformatic analyses were performed to identify miRNAs and lncRNAs related to MDD. C57 mice were subjected to chronic unpredictable mild stress (CUMS) to establish a depression model. Lentiviruses containing either lncRNA NPTN-IT1-201 or miR-142-5p were microinjected into the hippocampal region of these mice. Behavioral tests including the sucrose preference test (SPT), tail suspension test (TST), and forced swim test (FST) were conducted to evaluate depressive-like behaviors. RESULTS: The results revealed that overexpression of lncRNA NPTN-IT1-201 or inhibition of miR-142-5p significantly ameliorated depressive-like behaviors in CUMS-treated mice. Dual-luciferase reporter assays confirmed interactions between miR-142-5p with both brain-derived neurotrophic factor (BDNF) and NPTN-IT1-201. ELISA analysis revealed significant alterations in relevant biomarkers in the blood samples of MDD patients compared to healthy controls. Histological analyses, including HE and Nissl staining, showed marked structural changes in brain tissues following CUMS treatment, which were partially reversed by lncRNA NPTN-IT1-201 overexpression or miR-142-5p inhibition. Immunofluorescence imaging demonstrated significant differences in the levels of BAX, Bcl2, p65, Iba1 among different treatment groups. TUNEL assays confirmed reduced apoptosis in brain tissues following these interventions. Western blotting showed the significant differences in BDNF, BAX, and Bcl2 protein levels among different treatment groups. CONCLUSION: NPTN-IT1-201 regulates inflammation and apoptosis in MDD by targeting BDNF via miR-142-5p, making it a potential therapeutic target for MDD.

9.
Sci Rep ; 14(1): 17823, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090252

RESUMO

So far, only a small number of medications are effective in progressive multiple sclerosis (MS). The sphingosine-1-phosphate-receptor (S1PR)-1,5 modulator siponimod, licensed for progressive MS, is acting both on peripheral immune cells and in the central nervous system (CNS). So far it remains elusive, whether those effects are related to the neurotrophin brain derived neurotrophic factor (BDNF). We hypothesized that BDNF in immune cells might be a prerequisite to reduce disease activity in experimental autoimmune encephalomyelitis (EAE) and prevent neurotoxicity. MOG35-55 immunized wild type (WT) and BDNF knock-out (BDNFko) mice were treated with siponimod or vehicle and scored daily in a blinded manner. Immune cell phenotyping was performed via flow cytometry. Immune cell infiltration and demyelination of spinal cord were assessed using immunohistochemistry. In vitro, effects on neurotoxicity and mRNA regulation were investigated using dorsal root ganglion cells incubated with EAE splenocyte supernatant. Siponimod led to a dose-dependent reduction of EAE scores in chronic WT EAE. Using a suboptimal dosage of 0.45 µg/day, siponimod reduced clinical signs of EAE independent of BDNF-expression in immune cells in accordance with reduced infiltration and demyelination. Th and Tc cells in secondary lymphoid organs were dose-dependently reduced, paralleled with an increase of regulatory T cells. In vitro, neuronal viability trended towards a deterioration after incubation with EAE supernatant; siponimod showed a slight rescue effect following treatment of WT splenocytes. Neuronal gene expression for CCL2 and CX3CL1 was elevated after incubation with EAE supernatant, which was reversed after siponimod treatment for WT, but not for BNDFko. Apoptosis markers and alternative death pathways were not affected. Siponimod exerts both anti-inflammatory and neuroprotective effects, partially related to BDNF-expression. This might in part explain effectiveness during progression in MS and could be a target for therapy.


Assuntos
Azetidinas , Compostos de Benzil , Fator Neurotrófico Derivado do Encéfalo , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Feminino , Camundongos , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Compostos de Benzil/farmacologia , Compostos de Benzil/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
10.
Anat Cell Biol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164249

RESUMO

Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)-the latter being a byproduct of PRP preparation and used as a reference standard-resulting in the groups designated as 'operated group (OP)+PRP' and 'OP+PPP', respectively. PRP or PPP (500 µl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the 'OP+PRP' group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in 'OP+PRP'. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in 'OP+PPP' and further in 'OP+PRP'. These results highlight PRP's protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.

11.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126055

RESUMO

Rasmussen's encephalitis (RE) stands as a rare neurological disorder marked by progressive cerebral hemiatrophy and epilepsy resistant to medical treatment. Despite extensive study, the primary cause of RE remains elusive, while its histopathological features encompass cortical inflammation, neuronal degeneration, and gliosis. The underlying molecular mechanisms driving disease progression remain largely unexplored. In this case study, we present a patient with RE who underwent hemispherotomy and has remained seizure-free for over six months, experiencing gradual motor improvement. Furthermore, we conducted molecular analysis on the excised brain tissue, unveiling a decrease in the expression of cell-cycle-associated genes coupled with elevated levels of BDNF and TNF-α proteins. These findings suggest the potential involvement of cell cycle regulators in the progression of RE.


Assuntos
Encefalite , Humanos , Encefalite/genética , Encefalite/patologia , Encefalite/metabolismo , Masculino , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/metabolismo , Feminino , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Ciclo Celular/genética
12.
Exp Physiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105714

RESUMO

The neurotrophic growth factor brain-derived neurotrophic factor (BDNF) plays a crucial role in various neurodegenerative and psychiatric diseases, such as Alzheimer's disease, schizophrenia and depression. BDNF has been proposed as a potential biomarker for diagnosis, prognosis and monitoring therapy. Understanding the factors influencing BDNF levels and whether they follow a circadian rhythm is essential for interpreting fluctuations in BDNF measurements. We aimed to investigate the circadian rhythm of BDNF by collecting multiple peripheral venous blood samples from young, healthy male participants at 12 different time points over 24 h. In addition, vital parameters, cortisol and insulin like growth factor 1 (IGF1) were measured to explore potential regulatory mechanisms, interfering variables and their correlations with BDNF concentration. The findings revealed that plasma BDNF did not exhibit any significant fluctuations over 24 h, suggesting the absence of a circadian rhythm. However, serum BDNF levels decreased during sleep. Furthermore, serum BDNF showed a positive correlation with heart rate but a negative correlation with IGF1. No significant correlation was observed between cortisol and BDNF or IGF1. Although plasma BDNF suggests steady-state conditions, the decline of serum BDNF during the nocturnal period could be attributed to physical inactivity and associated with reduced haemodynamic blood flow (heart rate reduction during sleep). The type of sample collection (peripheral venous cannula vs. blood sampling using a butterfly system) does not significantly affect the measured BDNF levels. The sample collection during the day did not significantly affect BDNF analysis, emphasizing the importance of considering activity levels rather than timing when designing standardized protocols for BDNF assessments.

13.
J Psychiatr Res ; 178: 180-187, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39146821

RESUMO

Schizophrenia is a complex neuropsychiatric disorder with positive, negative, and cognitive symptoms. In rats, sub-chronic administration of ketamine is used for the induction of schizophrenia model. Increased locomotor activity is one of the most important features of psychotic-like symptoms in rodents. On the other hand, risperidone is a potent antipsychotic medication that is approved for the treatment of schizophrenia and bipolar disorder. In the present research, we aimed to investigate the effect of sub-chronic treatment of ketamine on cognitive and behavioral functions, and brain-derived neurotrophic factor (BDNF) expression level in the prefrontal cortex. Also, we assessed the efficacy of risperidone on cognitive and behavioral impairments induced by ketamine. Possible sex differences were also measured. Ketamine was intraperitoneally injected at the dose of 30 mg/kg for five consecutive days. Risperidone was also intraperitoneally injected at the dose of 2 mg/kg. Novel object recognition memory, pain threshold, locomotor activity, rearing behavior, and BDNF level were evaluated. The results showed that ketamine injection for five consecutive days impaired the acquisition of long-term recognition memory and decreased BDNF level in the prefrontal cortex in both sexes. Also, it decreased pain threshold in females, increased rearing behavior in males, and induced hyperlocomotion with greater effect in females. On the other hand, risperidone restored or attenuated the effect of ketamine on all the behavioral effects and BDNF level. In conclusion, we suggested that there were sex differences in the effects of ketamine on pain perception, locomotion, and rearing behavior in a rat model of schizophrenia.

14.
J Photochem Photobiol B ; 258: 112998, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096719

RESUMO

Depression, a multifactorial mental disorder, characterized by cognitive slowing, anxiety, and impaired cognitive function, imposes a significant burden on public health. Photobiomodulation (PBM), involving exposure to sunlight or artificial light at a specific intensity and wavelength for a determined duration, influences brain activity, functional connectivity, and plasticity. It is recognized for its therapeutic efficacy in treating depression, yet its molecular and cellular underpinnings remain obscure. Here, we investigated the impact of PBM with 468 nm light on depression-like behavior and neuronal damage in the chronic unpredictable mild stress (CUMS) murine model, a commonly employed animal model for studying depression. Our results demonstrate that PBM treatment ameliorated behavioral deficits, inhibited neuroinflammation and apoptosis, and notably rejuvenates the hippocampal synaptic function in depressed mice, which may be mainly attributed to the up-regulation of brain-derived neurotrophic factor signaling pathways. In addition, in vitro experiments with a corticosterone-induced hippocampal neuron injury model demonstrate reduced oxidative stress and improved mitochondrial function, further validating the therapeutic potential of PBM. In summary, these findings suggest PBM as a promising, non-invasive treatment for depression, offering insights into its biological mechanisms and potential for clinical application.


Assuntos
Depressão , Modelos Animais de Doenças , Hipocampo , Terapia com Luz de Baixa Intensidade , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Camundongos , Depressão/metabolismo , Depressão/terapia , Hipocampo/efeitos da radiação , Hipocampo/metabolismo , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/efeitos da radiação , Sinapses/metabolismo , Estresse Oxidativo/efeitos da radiação , Camundongos Endogâmicos C57BL , Neurônios/efeitos da radiação , Neurônios/metabolismo , Plasticidade Neuronal/efeitos da radiação , Corticosterona , Comportamento Animal/efeitos da radiação , Apoptose/efeitos da radiação , Estresse Psicológico
15.
Adv Neurobiol ; 37: 179-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39207693

RESUMO

Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.


Assuntos
Encéfalo , Microglia , Plasticidade Neuronal , Sinapses , Microglia/metabolismo , Sinapses/metabolismo , Humanos , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Memória/fisiologia
16.
Mod Rheumatol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190552

RESUMO

OBJECTIVES: We aimed to assess the sleep quality of patients with primary Sjögren's syndrome (pSS) and the associated factors. Moreover, Preliminary exploration of the clinical significance of serum brain-derived neurotrophic factor (BDNF) in pSS patients with sleep disorders. METHODS: A self-report survey was administered to 111 pSS patients and 40 healthy individuals using the Pittsburgh Sleep Quality Index (PSQI) for sleep quality. General clinical information,the sleep quality and mental conditions were collected using on-site questionnaires and various scales. 40 healthy controls from the health examination center of the same hospital, who were age and sex matched. Detection of serum BDNF levels by ELISA method . Independent samples t tests, Chi-square analysis, logistic regression were used to analyze these data. RESULTS: Patients with pSS had higher scores on the PSQI than the healthy individuals. Abnormal sweating, high PHQ-9 and ESSPRI scores were independent risk factors for sleep disorders. pSS patients had lower serum BDNF than the healthy individuals, The area under the curve (AUC) of predicting sleep disorder in pSS patients using detection of serum BDNF level was 0.8470, and the sensitivity and specificity were 0.951 and 0.727, which were superior to PHQ-9 and GAD-7. CONCLUSION: Compared with the healthy individuals, pSS patients had a higher prevalence of sleep disorders and lower serum BNDF. Serum BDNF level demonstrated greater predictive advantage for sleep disorder in pSS patients.

17.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39204102

RESUMO

Neurotrophins are important regulators of neuronal and non-neuronal functions. As such, the neurotrophins and their receptors, the tropomyosin receptor kinase (Trk) family of receptor tyrosine kinases, has attracted intense research interest and their role in multiple diseases including Alzheimer's disease has been described. Attempts to administer neurotrophins to patients have been reported, but the clinical trials have so far have been hampered by side effects or a lack of clear efficacy. Thus, much of the focus during recent years has been on identifying small molecules acting as agonists or positive allosteric modulators (PAMs) of Trk receptors. Two examples of successful discovery and development of PAMs are the TrkA-PAM E2511 and the pan-Trk PAM ACD856. E2511 has been reported to have disease-modifying effects in preclinical models, whereas ACD856 demonstrates both a symptomatic and a disease-modifying effect in preclinical models. Both molecules have reached the stage of clinical development and were reported to be safe and well tolerated in clinical phase 1 studies, albeit with different pharmacokinetic profiles. These two emerging small molecules are interesting examples of possible novel symptomatic and disease-modifying treatments that could complement the existing anti-amyloid monoclonal antibodies for the treatment of Alzheimer's disease. This review aims to present the concept of positive allosteric modulators of the Trk receptors as a novel future treatment option for Alzheimer's disease and other neurodegenerative and cognitive disorders, and the current preclinical and clinical data supporting this new concept. Preclinical data indicate dual mechanisms, not only as cognitive enhancers, but also a tentative neurorestorative function.

18.
Open Forum Infect Dis ; 11(8): ofae463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39192994

RESUMO

Background: Despite antiretroviral therapy (ART), human immunodeficiency virus (HIV)-associated neurocognitive impairment persists. We investigated the association between serum levels of mature brain-derived neurotrophic factor (mBDNF), precursor brain-derived neurotrophic factor (proBDNF), and neurocognitive changes over time among adults with HIV in sub-Saharan Africa, seeking to elucidate the interplay between neurotrophic factors and neurocognitive outcomes post-ART. Methods: Utilizing data from the ACTG 5199 study in Johannesburg and Harare, serum mBDNF and proBDNF levels were measured via enzyme-linked immunosorbent assay. Neurocognitive performance was assessed at baseline and 24, 48, and 96 weeks using neuropsychological tests. The Friedman test and linear mixed-effects models were used to assess changes in mBDNF, proBDNF, and neurocognitive performance over time, accounting for individual variability and adjusting for multiple comparisons. Results: Among 155 participants, there were significant cognitive improvements (P < .001) and a rise in mBDNF levels from baseline to 96 weeks. The proBDNF levels initially remained stable (P = .57) but notably increased by 48 weeks (P = .04). Higher mBDNF levels were positively associated with enhanced neurocognitive performance at 48 weeks (ß = .16, P = .01) and 96 weeks (ß = .32, P < .001). Similarly, higher proBDNF levels were positively associated with neurocognitive performance at 96 weeks (ß = .25, P < .001). Conclusions: This study highlights the significant association between serum BDNF levels and neurocognitive improvement post-ART in adults with HIV. However, more research is needed to replicate these findings, establish causal relationships, and explore whether BDNF-enhancing activities can improve neurocognitive outcomes in people with HIV.

19.
Animals (Basel) ; 14(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39199870

RESUMO

In this study, we have investigated the immunolocalization of NGF (Nerve Growth Factor) and BDNF (Brain-Derived Neurotrophic Factor) in the pancreas of two species of marine mammals: Tursiops truncatus (common bottlenose dolphin), belonging to the order of the Artiodactyla, and Otaria flavescens (South American sea lion), belonging to the order of the Carnivora. Our results demonstrated a significant presence of NGF and BDNF in the pancreas of both species with a wide distribution pattern observed in the exocrine and endocrine components. We identified some differences that can be attributed to the different feeding habits of the two species, which possess a different morphological organization of the digestive system. Altogether, these preliminary observations open new perspectives on the function of neurotrophins and the adaptive mechanisms of marine mammals in the aquatic environment, suggesting potential parallels between the physiology of marine and terrestrial mammals.

20.
Biomedicines ; 12(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39200225

RESUMO

Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA