Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 355: 124280, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815890

RESUMO

Cr(VI) is a common hazardous heavy metal contaminant that seriously endangers human and aquatic animal health. GPX4 was the key enzyme that reduces heavy metal toxicity through inhibiting ferroptosis pathway. Astaxanthin was GPX4 activator that can weaken biological toxicity induced by Cr(VI) exposure. The present study was conducted to evaluate the major role of GPX4 in astaxanthin protects Cr(VI)-induced oxidative damage, blood-brain barrier injury and neurotoxicity in brain-liver axis through inhibiting ferroptosis pathway. In the current study, astaxanthin intervention can effectively alleviate Cr(VI)-induced oxidative stress, blood-brain barrier damage, and neurotoxicity. GPX4 plays a major role in mediating astaxanthin nutritional intervention to reduce ROS and liver non-heme iron accumulation, which would contribute to the reduction of ferroptosis. Meanwhile, astaxanthin maintains the stability of transport receptors and protein macromolecules such as TMEM163, SLC7A11, SLC3A2, FPN1 and GLUT1 in the brain liver axis, promoting substance exchange and energy supply. Moreover, astaxanthin alleviates Cr(VI)-induced neurotoxicity by promoting tight protein expression and reducing blood-brain barrier permeability.


Assuntos
Barreira Hematoencefálica , Cromo , Poluentes Químicos da Água , Xantofilas , Peixe-Zebra , Xantofilas/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Cromo/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo
2.
J Agric Food Chem ; 72(18): 10406-10419, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38659208

RESUMO

The impact of leptin resistance on intestinal mucosal barrier integrity, appetite regulation, and hepatic lipid metabolism through the microbiota-gut-brain-liver axis has yet to be determined. Water extract of Phyllanthus emblica L. fruit (WEPE) and its bioactive compound gallic acid (GA) effectively alleviated methylglyoxal (MG)-triggered leptin resistance in vitro. Therefore, this study investigated how WEPE and GA intervention relieve leptin resistance-associated dysfunction in the intestinal mucosa, appetite, and lipid accumulation through the microbiota-gut-brain-liver axis in high-fat diet (HFD)-fed rats. The results showed that WEPE and GA significantly reduced tissues (jejunum, brain, and liver) MG-evoked leptin resistance, malondialdehyde (MDA), proinflammatory cytokines, SOCS3, orexigenic neuropeptides, and lipid accumulation through increasing leptin receptor, tight junction proteins, antimicrobial peptides, anorexigenic neuropeptides, excretion of fecal triglyceride (TG), and short-chain fatty acids (SCFAs) via a positive correlation with the Allobaculum and Bifidobacterium microbiota. These novel findings suggest that WEPE holds the potential as a functional food ingredient for alleviating obesity and its complications.


Assuntos
Apetite , Eixo Encéfalo-Intestino , Frutas , Homeostase , Obesidade , Phyllanthus emblica , Extratos Vegetais , Animais , Humanos , Masculino , Ratos , Apetite/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Encéfalo/efeitos dos fármacos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Dieta Hiperlipídica , Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Leptina/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/microbiologia , Phyllanthus emblica/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley
3.
Lipids Health Dis ; 23(1): 58, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395962

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) patients have exhibited extra-hepatic neurological changes, but the causes and mechanisms remain unclear. This study investigates the causal effect of NAFLD on cortical structure through bidirectional two-sample Mendelian randomization analysis. METHODS: Genetic data from 778,614 European individuals across four NAFLD studies were used to determine genetically predicted NAFLD. Abdominal MRI scans from 32,860 UK Biobank participants were utilized to evaluate genetically predicted liver fat and volume. Data from the ENIGMA Consortium, comprising 51,665 patients, were used to evaluate the associations between genetic susceptibility, NAFLD risk, liver fat, liver volume, and alterations in cortical thickness (TH) and surface area (SA). Inverse-variance weighted (IVW) estimation, Cochran Q, and MR-Egger were employed to assess heterogeneity and pleiotropy. RESULTS: Overall, NAFLD did not significantly affect cortical SA or TH. However, potential associations were noted under global weighting, relating heightened NAFLD risk to reduced parahippocampal SA and decreased cortical TH in the caudal middle frontal, cuneus, lingual, and parstriangularis regions. Liver fat and volume also influenced the cortical structure of certain regions, although no Bonferroni-adjusted p-values reached significance. Two-step MR analysis revealed that liver fat, AST, and LDL levels mediated the impact of NAFLD on cortical structure. Multivariable MR analysis suggested that the impact of NAFLD on the cortical TH of lingual and parstriangularis was independent of BMI, obesity, hyperlipidemia, and diabetes. CONCLUSION: This study provides evidence that NAFLD causally influences the cortical structure of the brain, suggesting the existence of a liver-brain axis in the development of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/genética , Análise da Randomização Mendeliana , Imageamento por Ressonância Magnética , Encéfalo , Estudo de Associação Genômica Ampla
4.
Psychopharmacology (Berl) ; 241(3): 525-542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277004

RESUMO

RATIONALE: The plasma ceramide levels in Alzheimer's disease (AD) patients are found abnormally elevated, which is related to cognitive decline. OBJECTIVES: This research was aimed to investigate the mechanisms of aberrant elevated ceramides in the pathogenesis of AD. RESULTS: The ICR mice intracerebroventricularly injected with Aß1-42 and APP/PS1 transgenic mice were employed as AD mice. The cognitive deficiency, impaired episodic and spatial memory were observed without altered spontaneous ability. The serum levels of p-tau and ceramide were evidently elevated. The modified expressions and activities of glycogen synthase kinase-3ß (GSK-3ß) and protein phosphatase 2A (PP2A) influenced the serum content of p-tau. The levels of ceramide synthesis-related genes including sptlc1, sptlc2, cers2, and cers6 in the liver of AD mice were increased, while the ceramide degradation-related gene asah2 did not significantly change. The regulations of these genes were conducted by activated nuclear factor kappa-B (NF-κB) signaling. NF-κB, promoted by free fatty acid (FFA), also increased the hepatic concentrations of proinflammatory cytokines. The FFA amount was modulated by fatty acid synthesis-related genes acc1 and srebp-1c. Besides, the decreased levels of pre-proopiomelanocortin (pomc) mRNA and increased agouti-related protein (agrp) mRNA were found in the hypothalamus without significant alteration of melanocortin receptor 4 (MC4R) mRNA. The bioinformatic analyses proved the results using GEO datasets and AlzData. CONCLUSIONS: Ceramide was positively related to the increased p-tau and impaired cognitive function. The increased generation of ceramide and endoplasmic reticulum stress in the hypothalamus was positively related to fatty acid synthesis and NF-κB signaling via brain-liver axis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , NF-kappa B , Ceramidas/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos ICR , Camundongos Transgênicos , RNA Mensageiro , Ácidos Graxos , Proteínas tau/metabolismo
5.
Biosci Rep ; 43(6)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37279097

RESUMO

Hepatic encephalopathy (HE) is a neurological disease occurring in patients with hepatic insufficiency and/or portal-systemic blood shunting based on cirrhosis. The pathogenesis is not completely clear till now, but it is believed that hyperammonemia is the core of HE. Hyperammonemia caused by increased sources of ammonia and decreased metabolism further causes mental problems through the gut-liver-brain axis. The vagal pathway also plays a bidirectional role in the axis. Intestinal microorganisms play an important role in the pathogenesis of HE through the gut-liver-brain axis. With the progression of cirrhosis to HE, intestinal microbial composition changes gradually. It shows the decrease of potential beneficial taxa and the overgrowth of potential pathogenic taxa. Changes in gut microbiota may lead to a variety of effects, such as reduced production of short-chain fatty acids (SCFAs), reduced production of bile acids, increased intestinal barrier permeability, and bacterial translocation. The treatment aim of HE is to decrease intestinal ammonia production and intestinal absorption of ammonia. Prebiotics, probiotics, antibiotics, and fecal microbiota transplantation (FMT) can be used to manipulate the gut microbiome to improve hyperammonemia and endotoxemia. Especially the application of FMT, it has become a new treated approach to target microbial composition and function. Therefore, restoring intestinal microbial homeostasis can improve the cognitive impairment of HE, which is a potential treatment method.


Assuntos
Microbioma Gastrointestinal , Encefalopatia Hepática , Hiperamonemia , Humanos , Encefalopatia Hepática/terapia , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/microbiologia , Amônia/metabolismo , Hiperamonemia/terapia , Hiperamonemia/metabolismo , Cirrose Hepática/metabolismo , Fibrose , Encéfalo/metabolismo
6.
Life Sci ; 321: 121533, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863487

RESUMO

AIMS: The role of the parasympathetic nervous system (PNS) in the pathogenesis of nonalcoholic steatohepatitis (NASH) is largely unknown. In this study, the effect of PNS modulation on NASH was investigated using chemogenetics. MAIN METHODS: A streptozotocin (STZ) and high-fat diet (HFD)-induced NASH mouse model was used. To activate or inhibit the PNS, chemogenetic human M3-muscarinic receptor coupled with either Gq or Gi protein-containing viruses was injected into the dorsal motor nucleus of the vagus at week 4 and clozapine N-oxide was administered intraperitoneally for a week from week 11. Three groups (PNS-stimulation, PNS-inhibition, and control) were compared in terms of heart rate variability (HRV), histological lipid droplet area, nonalcoholic fatty liver disease activity score (NAS), the area of F4/80-positive macrophages, and biochemical responses. KEY FINDINGS: The STZ/HFD-treated mouse model showed typical histological characteristics of NASH. HRV analysis confirmed that PNS-stimulation and PNS-inhibition groups had significantly higher and lower PNS activity, respectively (both P < 0.05). The PNS-stimulation group showed a significantly smaller hepatic lipid droplet area (14.3 % vs. 20.6 %, P = 0.02) and lower NAS (5.2 vs. 6.3, P = 0.047) than the control group. The area of F4/80-positive macrophages was significantly smaller in the PNS-stimulation group than in the control group (4.1 % vs. 5.6 %, P = 0.04). The PNS-stimulation group showed a lower serum aspartate aminotransferase level than the control group (119.0 vs. 356.0 U/L, P = 0.04). SIGNIFICANCE: In STZ/HFD-treated mice, chemogenetic stimulation of the PNS significantly reduced hepatic fat accumulation and inflammation. The hepatic PNS may play a pivotal role in the pathogenesis of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Inflamação/patologia , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Sistema Nervoso Parassimpático , Lipídeos , Camundongos Endogâmicos C57BL
7.
Front Neurosci ; 17: 1061485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968490

RESUMO

Background and purpose: Non-alcoholic fatty liver disease (NAFLD) is known to adversely affect stroke recovery. However, few studies investigate how stroke elicits liver dysfunction, particularly, how stroke in type 2 diabetes mellitus (T2DM) exacerbates progression of NAFLD. In this study, we test whether exosomes harvested from human umbilical cord blood (HUCBC) derived CD133 + cells (CD133 + Exo) improves neuro-cognitive outcome as well as reduces liver dysfunction in T2DM female mice. Methods: Female, adult non-DM and T2DM mice subjected to stroke presence or absence were considered. T2DM-stroke mice were randomly assigned to receive PBS or Exosome treatment group. CD133 + Exo (20 µg/200 µl PBS, i.v.) was administered once at 3 days after stroke. Evaluation of neurological (mNSS, adhesive removal test) and cognitive function [novel object recognition (NOR) test, odor test] was performed. Mice were sacrificed at 28 days after stroke and brain, liver, and serum were harvested. Results: Stroke induces severe and significant short-term and long-term neurological and cognitive deficits which were worse in T2DM mice compared to non-DM mice. CD133 + Exo treatment of T2DM-stroke mice significantly improved neurological function and cognitive outcome indicated by improved discrimination index in the NOR and odor tests compared to control T2DM-stroke mice. CD133 + Exo treatment of T2DM stroke significantly increased vascular and white matter/axon remodeling in the ischemic brain compared to T2DM-stroke mice. However, there were no differences in the lesion volume between non-DM stroke, T2DM-stroke and CD133 + Exo treated T2DM-stroke mice. In T2DM mice, stroke induced earlier and higher TLR4, NLRP3, and cytokine expression (SAA, IL1ß, IL6, TNFα) in the liver compared to heart and kidney, as measured by Western blot. T2DM-stroke mice exhibited worse NAFLD progression with increased liver steatosis, hepatocellular ballooning, fibrosis, serum ALT activity, and higher NAFLD Activity Score compared to T2DM mice and non-DM-stroke mice, while CD133 + Exo treatment significantly attenuated the progression of NAFLD in T2DM stroke mice. Conclusion: Treatment of female T2DM-stroke mice with CD133 + Exo significantly reduces the progression of NAFLD/NASH and improves neurological and cognitive function compared to control T2DM-stroke mice.

8.
Microbiol Spectr ; 10(3): e0032922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35583337

RESUMO

The gut microbiota is important in the occurrence and development of obesity. It can not only via its metabolites, but also through microbiota-gut-brain-liver interactions, directly or indirectly, influence obesity. Quinoa, known as one kind of pseudocereals and weight loss food supplements, has been high-profile for its high nutritional value and broad applications. In this context, we produced high-fat diet-induced (HFD) obese mouse models and assessed the efficacy of quinoa with saponin and quinoa without saponin on obesity. We explored the potential therapeutic mechanisms of quinoa using methods such as 16S rRNA, Western blotting, Immunohistochemical (IHC). Our results indicated that quinoa can improve the obese symptoms significantly on HFD mice, as well as aberrant glucose and lipid metabolism. Further analyses suggest that quinoa can regulate microbiota in the colon and have predominantly regulation on Bacteroidetes, Actinobacteria and Desulfovibrio, meanwhile can decrease the F/B ratio and the abundance of Blautia. Contemporaneously, quinoa can upregulate the expression of TGR5 in the colon and brain, as well as GLP-1 in the colon, liver and brain. while downregulate the expression of TLR4 in the colon and liver, as well as markers of ER stress and oxidative stress in livers and serums. Beyond this, tight junctional proteins in colons and brains are also increased in response to quinoa. Therefore, quinoa can effectively reduce obesity and may possibly exert through microbiota-gut-brain-liver interaction mechanisms. IMPORTANCE Gut microbiota has been investigated extensively, as a driver of obesity as well as a therapeutic target. Studies of its mechanisms are predominantly microbiota-gut-brain axis or microbiota-gut-liver axis. Recent studies have shown that there is an important correlation between the gut-brain-liver axis and the energy balance of the body. Our research focus on microbiota-gut-brain-liver axis, as well as influences of quinoa in intestinal microbiota. We extend this study to the interaction between microbiota and brains, and the result shows obvious differences in the composition of the microbiome between the HFD group and others. These observations infer that besides the neurotransmitter and related receptors, microbiota itself may be a mediator for regulating bidirectional communication, along the gut-brain-liver axis. Taken together, these results also provide strong evidence for widening the domain of applicability of quinoa.


Assuntos
Chenopodium quinoa , Microbioma Gastrointestinal , Saponinas , Animais , Encéfalo/metabolismo , Chenopodium quinoa/genética , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , RNA Ribossômico 16S , Saponinas/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico
9.
Arch Biochem Biophys ; 725: 109269, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35508252

RESUMO

Eugenol, an active ingredient of many medicinal aromatic plants, has been proved to have the hypolipidemic effect, but its potential mechanism of action is still unknown. This study aimed to investigate whether eugenol regulates liver lipid accumulation in high-fat diet (HFD) induced nonalcoholic fatty liver disease (NAFLD) rats via the gut-brain-liver axis involving glucagon-like peptide-1 (GLP-1). Hepatic vagotomy was performed in NAFLD rats to determine the role of eugenol in regulating hepatic lipid accumulation via vagus nerve. The results showed that after eight weeks of eugenol administration in NAFLD rats, serum total cholesterol (TC), triglyceride (TG) and hepatic TG decreased. However, eugenol showed no significant effect on the increased food intakes and weight gain caused by the HFD. Eugenol promoted the secretion of GLP-1 into the blood, increased GLP-1 receptor (GLP-1R) expression in the duodenum, liver, arcuate nucleus (ARC) and paraventricular nucleus (PVN), increased c-fos expression in the nucleus tractus solitarii (NTS), and promoted ZO-1 and occludin expression in duodenum. Furthermore, steatosis and lipid accumulation were significantly alleviated. Hepatic vagotomy partially attenuated the improvement of eugenol in hepatic lipid accumulation in NAFLD rats. In conclusion, eugenol regulates hepatic lipid metabolism via a gut-brain-liver axis involving in GLP-1, providing a new strategy for the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Eugenol/metabolismo , Eugenol/farmacologia , Eugenol/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Triglicerídeos/metabolismo
10.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466498

RESUMO

Hepatic encephalopathy (HE) is one of the main consequences of liver disease and is observed in severe liver failure and cirrhosis. Recent studies have provided significant evidence that HE shows several neurological symptoms including depressive mood, cognitive dysfunction, impaired circadian rhythm, and attention deficits as well as motor disturbance. Liver disease is also a risk factor for the development of diabetes mellitus. Diabetic encephalopathy (DE) is characterized by cognitive dysfunction and motor impairment. Recent research investigated the relationship between metabolic changes and the pathogenesis of neurological disease, indicating the importance between metabolic organs and the brain. Given that a diverse number of metabolites and changes in the brain contribute to neurologic dysfunction, HE and DE are emerging types of neurologic disease. Here, we review significant evidence of the association between HE and DE, and summarise the common risk factors. This review may provide promising therapeutic information and help to design a future metabolic organ-related study in relation to HE and DE.


Assuntos
Encéfalo/patologia , Diabetes Mellitus/patologia , Encefalopatia Hepática/patologia , Fígado/patologia , Animais , Disfunção Cognitiva/patologia , Humanos
11.
Metabolites ; 10(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998280

RESUMO

The autonomic regulation of hepatic metabolism offers a novel target for the treatment of non-alcoholic fatty liver disease (NAFLD). However, the molecular characteristics of neurons that regulate the brain-liver axis remain unclear. Since mice lacking neuronal lipoprotein lipase (LPL) develop perturbations in neuronal lipid-sensing and systemic energy balance, we reasoned that LPL might be a component of pre-autonomic neurons involved in the regulation of hepatic metabolism. Here, we show that, despite obesity, mice with reduced neuronal LPL (NEXCreLPLflox (LPL KD)) show improved glucose tolerance and reduced hepatic lipid accumulation with aging compared to wilt type (WT) controls (LPLflox). To determine the effect of LPL deficiency on neuronal physiology, liver-related neurons were identified in the paraventricular nucleus (PVN) of the hypothalamus using the transsynaptic retrograde tracer PRV-152. Patch-clamp studies revealed reduced inhibitory post-synaptic currents in liver-related neurons of LPL KD mice. Fluorescence lifetime imaging microscopy (FLIM) was used to visualize metabolic changes in LPL-depleted neurons. Quantification of free vs. bound nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) revealed increased glucose utilization and TCA cycle flux in LPL-depleted neurons compared to controls. Global metabolomics from hypothalamic cell lines either deficient in or over-expressing LPL recapitulated these findings. Our data suggest that LPL is a novel feature of liver-related preautonomic neurons in the PVN. Moreover, LPL loss is sufficient to cause changes in neuronal substrate utilization and function, which may precede changes in hepatic metabolism.

12.
Microorganisms ; 8(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272588

RESUMO

Gut microbiota play an important role in maintaining intestinal health and are involved in the metabolism of carbohydrates, lipids, and amino acids. Recent studies have shown that the central nervous system (CNS) and enteric nervous system (ENS) can interact with gut microbiota to regulate nutrient metabolism. The vagal nerve system communicates between the CNS and ENS to control gastrointestinal tract functions and feeding behavior. Vagal afferent neurons also express receptors for gut peptides that are secreted from enteroendocrine cells (EECs), such as cholecystokinin (CCK), ghrelin, leptin, peptide tyrosine tyrosine (PYY), glucagon-like peptide-1 (GLP-1), and 5-hydroxytryptamine (5-HT; serotonin). Gut microbiota can regulate levels of these gut peptides to influence the vagal afferent pathway and thus regulate intestinal metabolism via the microbiota-gut-brain axis. In addition, bile acids, short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), and Immunoglobulin A (IgA) can also exert metabolic control through the microbiota-gut-liver axis. This review is mainly focused on the role of gut microbiota in neuroendocrine regulation of nutrient metabolism via the microbiota-gut-brain-liver axis.

13.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G889-G906, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32146836

RESUMO

Each individual is endowed with a unique gut microbiota (GM) footprint that mediates numerous host-related physiological functions, such as nutrient metabolism, maintenance of the structural integrity of the gut mucosal barrier, immunomodulation, and protection against microbial pathogens. Because of increased scientific interest in the GM, its central role in the pathophysiology of many intestinal and extraintestinal conditions has been recognized. Given the close relationship between the gastrointestinal tract and the liver, many pathological processes have been investigated in the light of a microbial-centered hypothesis of hepatic damage. In this review we introduce to neophytes the vast world of gut microbes, including prevalent bacterial distribution in healthy individuals, how the microbiota is commonly analyzed, and the current knowledge of the role of GM in liver disease pathophysiology. Also, we highlight the potentials and downsides of GM-based therapy.


Assuntos
Bactérias/patogenicidade , Microbioma Gastrointestinal , Intestinos/microbiologia , Hepatopatias/microbiologia , Fígado/microbiologia , Animais , Bactérias/metabolismo , Disbiose , Transplante de Microbiota Fecal , Interações Hospedeiro-Patógeno , Humanos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/terapia , Probióticos/uso terapêutico
14.
Cell Rep ; 30(12): 4165-4178.e7, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209476

RESUMO

Oxidation resistance gene 1 (OXR1) protects cells against oxidative stress. We find that male mice with brain-specific isoform A knockout (Oxr1A-/-) develop fatty liver. RNA sequencing of male Oxr1A-/- liver indicates decreased growth hormone (GH) signaling, which is known to affect liver metabolism. Indeed, Gh expression is reduced in male mice Oxr1A-/- pituitary gland and in rat Oxr1A-/- pituitary adenoma cell-line GH3. Oxr1A-/- male mice show reduced fasting-blood GH levels. Pull-down and proximity ligation assays reveal that OXR1A is associated with arginine methyl transferase PRMT5. OXR1A-depleted GH3 cells show reduced symmetrical dimethylation of histone H3 arginine 2 (H3R2me2s), a product of PRMT5 catalyzed methylation, and chromatin immunoprecipitation (ChIP) of H3R2me2s shows reduced Gh promoter enrichment. Finally, we demonstrate with purified proteins that OXR1A stimulates PRMT5/MEP50-catalyzed H3R2me2s. Our data suggest that OXR1A is a coactivator of PRMT5, regulating histone arginine methylation and thereby GH production within the pituitary gland.


Assuntos
Arginina/metabolismo , Histonas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica , Hormônio do Crescimento/sangue , Hormônio do Crescimento/metabolismo , Hormônios/metabolismo , Imunidade/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/química , Proteínas Mitocondriais/deficiência , Especificidade de Órgãos , Hipófise/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Ratos , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT5/metabolismo , Relação Estrutura-Atividade , Transcriptoma/genética
15.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G538-G543, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878846

RESUMO

Glucose is an essential metabolic substrate for all mammalian cells, and its availability in the circulation is carefully controlled to avoid wide variations. Different mechanisms are involved in the glucose disposal, such as an adequate pancreatic and hepatic function. Insulin is the main hormone in glycemic control, and its action occurs directly in the cells, as well as in the liver, in an indirect way, to ultimately control the glycemia. Insulin has also an important action within the central nervous system, more precisely in the hypothalamus that projects directly to preautonomic nuclei in the brain stem to control hepatic glucose production. The central action of insulin relies on autonomic outflow through the vagal innervation of the liver, where insulin is able to modulate the production of glucose at this organ level. In this way, responses generated in the CNS reach the effector organs by autonomic efferent pathways as part of an important brain-organ axis in the control of glycemia. The purpose of this minireview is to shed light on the brain-liver axis in the control of hepatic glucose by central action of insulin via the autonomic nervous system.


Assuntos
Encéfalo/metabolismo , Gluconeogênese , Insulina/metabolismo , Fígado/metabolismo , Animais , Encéfalo/fisiologia , Humanos , Fígado/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA