Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Oral Biol ; 166: 106043, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968906

RESUMO

OBJECTIVE: Combing PD-1/PD-L1 immune checkpoint inhibitors with natural products has exhibited better efficacy than monotherapy. Hence, the purpose of this research was to examine the anti-cancer effects of brusatol, a natural quassinoid-terpenoid derived from Brucea javanica, when used in conjunction with an anti-mouse-PD-1 antibody in a murine head and neck squamous cell carcinoma (HNSCC) model and elucidate underlying mechanisms. DESIGN: A murine HNSCC model and an SCC-15 cell xenograft nude mouse model were established to investigate the anti-cancer effects of brusatol and anti-PD-1 antibody. Mechanistic studies were performed using immunohistochemistry. Cell proliferation, migration, colony formation, and invasion were evaluated by MTT, migration, colony formation, and transwell invasion assays. PD-L1 levels in oral squamous cell carcinoma (OSCC) cells were assessed through qRT-PCR, flow cytometry, and western blotting assays. The impact of brusatol on Jurkat T cell function was assessed by an OSCC/Jurkat co-culture assay. RESULTS: Brusatol improved tumor suppression by anti-PD-1 antibody in HNSCC mouse models. Mechanistic studies revealed brusatol inhibited tumor cell growth and angiogenesis, induced apoptosis, increased T lymphocyte infiltration, and reduced PD-L1 expression in tumors. Furthermore, in vitro assays confirmed brusatol inhibited PD-L1 expression in OSCC cells and suppressed cell migration, colony formation, and invasion. Co-culture assays indicated that brusatol's PD-L1 inhibition enhanced Jurkat T cell-mediated OSCC cell death and reversed the inhibitory effect induced by OSCC cells. CONCLUSIONS: Brusatol improves anti-PD-1 antibody efficacy by targeting PD-L1, suggesting its potential as an adjuvant in anti-PD-1 immunotherapy.

2.
Biomed Pharmacother ; 177: 116977, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901203

RESUMO

BACKGROUND: Pancreatic cancer (PanCa), ranked as the 4th leading cause of cancer-related death worldwide, exhibits an dismal 5-year survival rate of less than 5 %. Chronic pancreatitis (CP) is a known major risk factor for PanCa. Brusatol (BRT) possesses a wide range of biological functions, including the inhibition of PanCa proliferation. However, its efficacy in halting the progression from CP to pancreatic carcinogenesis remains unexplored. METHODS: We assess the effects of BRT against pancreatic carcinogenesis from CP using an experimentally induced CP model with cerulein, and further evaluate the therapeutic efficacy of BRT on PanCa by employing Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mouse model. RESULTS: Our finding demonstrated that BRT mitigated the severity of cerulein-induced pancreatitis, reduced pancreatic fibrosis and decreased the expression of α-smooth muscle actin (α-SMA), which is a biomarker for pancreatic fibrosis. In addition, BRT exerted effects against cerulein-induced pancreatitis via inactivation of NLRP3 inflammasome. Moreover, BRT significantly inhibited tumor growth and impeded cancer progression. CONCLUSIONS: The observed effect of BRT on impeding pancreatic carcinogenesis through targeting NLRP3 inflammasome suggests its good potential as a potential agent for treatment of PanCa.

3.
Chem Biol Drug Des ; 103(6): e14565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862254

RESUMO

Ferroptosis is a novel form of programmed cell death that is triggered by iron-dependent lipid peroxidation. Brusatol (BRU), a natural nuclear factor erythroid 2-related factor 2 inhibitor, exhibits potent anticancer effects in various types of cancer. However, the exact mechanism of BRU in the treatment of hepatocellular carcinoma (HCC) remains unknown. The anticancer effects of BRU in HCC were detected using cell counting kit-8 and colony formation assays and a xenograft model. RNA sequencing (RNA-seq) and bioinformatics analyses of HCC cells were utilized to elucidate the mechanism underlying the effects of BRU in HCC. The levels of reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and Fe2+ were measured using assay kits. The expression of activating transcription factor 3 (ATF3) was tested using RT-qPCR, western blotting, and immunofluorescence staining. The role of ATF3 in BRU-induced ferroptosis was examined using siATF3. BRU significantly inhibited HCC cell proliferation, both in vitro and in vivo. BRU activated the ferroptosis signaling pathway and increased ATF3 expression. Furthermore, ATF3 knockdown impeded BRU-induced ferroptosis. BRU suppressed HCC growth through ATF3-mediated ferroptosis, supporting BRU as a promising therapeutic agent for HCC.


Assuntos
Fator 3 Ativador da Transcrição , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Quassinas , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Ferroptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Quassinas/farmacologia , Quassinas/química , Quassinas/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos
4.
Bull Exp Biol Med ; 176(5): 703-708, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724815

RESUMO

The activity of known modulators of the Nrf2 signaling pathway (bardoxolone and brusatol) was studied on cultures of tumor organoids of metastatic colorectal cancer previously obtained from three patients. The effect of modulators was studied both as monotherapy and in combination with standard chemotherapy drugs used to treat colorectal cancer. The Nrf2 inhibitor brusatol and the Nrf2 activator bardoxolone have antitumor activity. Moreover, bardoxolone and brusatol also significantly enhance the effect of the chemotherapy drugs 5-fluorouracil, oxaliplatin, and irinotecan metabolite SN-38. Thus, bardoxolone and brusatol can be considered promising candidates for further preclinical and clinical studies in the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Fluoruracila , Irinotecano , Fator 2 Relacionado a NF-E2 , Organoides , Oxaliplatina , Quassinas , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Quassinas/farmacologia , Quassinas/uso terapêutico , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico
5.
Exp Cell Res ; 438(2): 114053, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663476

RESUMO

Bladder cancer is a common tumor that impacts the urinary system and marked by a significant fatality rate and an unfavorable prognosis. Promising antineoplastic properties are exhibited by brusatol, which is obtained from the dried ripe fruit of Brucea javanica. The present study aimed to evaluate the influence of brusatol on the progression of bladder cancer and uncover the molecular mechanism involved. We used Cell Counting Kit-8, colony formation and EdU assays to detect cell numbers, viability and proliferation. We used transwell migration assay to detect cell migration ability. The mechanism of brusatol inhibition of bladder cancer proliferation was studied by flow cytometry and western blotting. It was revealed that brusatol could reduce the viability and proliferation of T24 and 5637 cells. The transwell migration assay revealed that brusatol was able to attenuate the migration of T24 and 5637 cells. We found that treatment with brusatol increased the levels of reactive oxygen species, malondialdehyde and Fe2+, thereby further promoting ferroptosis in T24 and 5637 cells. In addition, treatment with RSL3 (an agonistor of ferroptosis) ferrostatin-1 (a selective inhibitor of ferroptosis) enhanced or reversed the brusatol-induced inhibition. In vivo, treatment with brusatol significantly suppressed the tumor growth in nude mice. Mechanistically, brusatol induced ferroptosis by upregulating the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase (Chac1) and decreasing the expression of SLC7A11 and Nrf2 in T24 and 5637 cells. To summarize, the findings of this research demonstrated that brusatol hindered the growth of bladder cancer and triggered ferroptosis via the Chac1/Nrf2/SLC7A11 pathway.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Movimento Celular , Proliferação de Células , Fator 2 Relacionado a NF-E2 , Quassinas , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Quassinas/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Espécies Reativas de Oxigênio/metabolismo , Progressão da Doença , Camundongos Endogâmicos BALB C , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673850

RESUMO

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Assuntos
Isotiocianatos , Fator 2 Relacionado a NF-E2 , Quassinas , Sulfóxidos , Transcriptoma , Animais , Bovinos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Isotiocianatos/farmacologia , Quassinas/farmacologia , Sulfóxidos/farmacologia , Transcriptoma/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Simulação por Computador , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
7.
J Pharm Pharmacol ; 76(7): 753-762, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394388

RESUMO

OBJECTIVE: Brusatol (BT) is a quassinoid compound extracted from Brucea javanica that is a traditional Chinese herbal medicine. Brusatol possesses biological and medical activity, including antitumor, antileukemia, anti-inflammatory, antitrypanosomal, antimalarial, and antitobacco mosaic virus activity. To summarize and discuss the antitumor effects of BT and its mechanisms of actions, we compiled this review by combining the extensive relevant literature and our previous studies. METHODS: We searched and retrieved the papers that reported the pharmacological effects of BT and the mechanism of BT antitumor activity from PubMed until July 2023. KEY FINDINGS: Numerous studies have shown that BT is a unique nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor that acts on various signaling pathways and has good antitumor properties. Brusatol shows great potential in cancer therapy by inhibiting cell proliferation, blocking the cell cycle, promoting tumor cell differentiation, accelerating tumor cell apoptosis, inducing autophagy, suppressing angiogenesis, inhibiting tumor invasion and metastasis, and reversing multidrug resistance. CONCLUSION: This review summarizes recent updates on the antitumor activity and molecular mechanisms of BT and provides references for future development and clinical translation of BT and its derivatives as antitumor drugs.


Assuntos
Apoptose , Quassinas , Quassinas/farmacologia , Quassinas/isolamento & purificação , Quassinas/uso terapêutico , Humanos , Animais , Apoptose/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Brucea/química , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia
8.
Oncol Rep ; 51(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186307

RESUMO

Gastroenteropancreatic neuroendocrine neoplasms (GEP­NEN) are a group of rare tumors whose specific pathogenetic mechanisms of resistance to therapies have not been completely revealed yet. Chemotherapy is the main therapeutic approach in patients with GEP­NEN, however, novel combination regimens and targeted therapy are continuously explored. In the present study, the anticancer effect of a novel Ruthenium (Ru)(II)­Bisdemethoxycurcumin (Ru­bdcurc) compound was evaluated in BON­1 cell line, one of the few cell lines derived from GEP­NEN, largely used in experimental research of this type of tumors. The experimental data revealed that the Ru­bdcurc compound induced cell death in a dose­dependent manner, in vitro. Biochemical studies demonstrated that, in response to the lower dose of treatment, BON­1 cells activated the nuclear factor erythroid 2­related factor 2 (NRF2) pathway with induction of some of its targets including catalase and p62 as well as of the antiapoptotic marker Bcl2, all acting as chemoresistance mechanisms. NRF2 induction associated also with increased expression of endogenous p53 which is reported to be dysfunctional in BON­1 cells and to inhibit apoptosis. Genetic or pharmacologic targeting of NRF2 inhibited the activation of the NRF2 pathway, as well as of endogenous dysfunctional p53, in response to the lower dose of Ru­bdcurc, increasing the cell death. To assess the interplay between NRF2 and dysfunctional p53, genetic targeting of p53 showed reduced activation of the NRF2 pathway in response to the lower dose of Ru­bdcurc, increasing the cell death. These findings identified for the first time a possible dysfunctional p53/NRF2 interplay in BON­1 cell line that can be a novel key determinant in cell resistance to cytotoxic agents to be evaluated also in GEP­NEN.


Assuntos
Antineoplásicos , Carcinoma Neuroendócrino , Curcumina , Tumores Neuroendócrinos , Rutênio , Humanos , Curcumina/farmacologia , Projetos Piloto , Fator 2 Relacionado a NF-E2 , Proteína Supressora de Tumor p53/genética , Antineoplásicos/farmacologia , Tumores Neuroendócrinos/tratamento farmacológico
9.
Pharmaceutics ; 16(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38258124

RESUMO

Challenges to docetaxel use in prostate cancer treatment include several resistance mechanisms as well as toxicity. To overcome these challenges and to improve the therapeutic efficacy in heterogeneous prostate cancer, the use of multiple agents that can destroy different subpopulations of the tumor is required. Brusatol, a multitarget inhibitor, has been shown to exhibit potent anticancer activity and play an important role in drug response and chemoresistance. Thus, the combination of brusatol and docetaxel in a nanoparticle platform for the treatment of prostate cancer is expected to produce synergistic effects. In this study, we reported the development of polymeric nanoparticles for the delivery of brusatol and docetaxel in the treatment of prostate cancer. The one-factor-at-a-time method was used to screen for formulation and process variables that impacted particle size. Subsequently, factors that had modifiable effects on particle size were evaluated using a 24 full factorial statistical experimental design followed by the optimization of drug loading. The optimization of blank nanoparticles gave a formulation with a mean size of 169.1 nm ± 4.8 nm, in agreement with the predicted size of 168.333 nm. Transmission electron microscopy showed smooth spherical nanoparticles. The drug release profile showed that the encapsulated drugs were released over 24 h. Combination index data showed a synergistic interaction between the drugs. Cell cycle analysis and the evaluation of caspase activity showed differences in PC-3 and LNCaP prostate cancer cell responses to the agents. Additionally, immunoblots showed differences in survivin expression in LNCaP cells after treatment with the different agents and formulations for 24 h and 72 h. Therefore, the nanoparticles are potentially suitable for the treatment of advanced prostate cancer.

10.
J Endocrinol Invest ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062319

RESUMO

BACKGROUND: Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) can be developed from differentiated thyroid cancer, and this dedifferentiated transformation leads to poor prognosis and high mortality. The role of Nrf2 in the dedifferentiation of differentiated thyroid cancer (DTC) induced by KRAS remains unclear. METHODS AND MATERIALS: In this study, two DTC cell lines, BCPAP and WRO, were used to evaluate the function of Nrf2 in the dedifferentiation caused by wild-type KRAS (KRAS-WT) and G12V point mutation KRAS (KRAS-G12V). RESULTS: The overexpression of KRAS-WT and KRAS-G12V increased the proliferative and invasive ability of BCPAP and WRO cells. Aggressive morphology was observed in KRAS-WT and KRAS-G12V overexpressed WRO cells. These results suggested that overexpression of KRAS-WT or KRAS-G12V may induce dedifferentiation in DTC cells. The expression of Nrf2 was increased by KRAS-WT and KRAS-G12V in DTC cells. In addition, compared with normal thyroid tissues, the expression of Nrf2 protein was considerably higher in thyroid cancer tissues on immunohistochemistry (IHC) staining, and the increased expression of Nrf2 indicated a poor prognosis of thyroid cancer. These results indicated that Nrf2 is the KRAS downstream molecule in thyroid cancer. Functional studies showed that the Nrf2 inhibitor Brusatol counteracted the proliferative and invasive abilities induced by KRAS-WT and KRAS-G12V in BCPAP and WRO cells. In addition, the xenograft assay further confirmed that Brusatol inhibits tumor growth induced by KRAS-WT and KRAS-G12V. CONCLUSION: Collectively, this study suggests that Nrf2 could be a promising therapeutic target in KRAS-mediated dedifferentiation of thyroid cancer.

11.
J Cell Mol Med ; 27(23): 3897-3910, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37859585

RESUMO

Renal cell carcinoma (RCC) is the most aggressive subtype of kidney tumour with a poor prognosis and an increasing incidence rate worldwide. Brusatol, an essential active ingredient derived from Brucea javanica, exhibits potent antitumour properties. Our study aims to explore a novel treatment strategy for RCC patients. We predicted 37 molecular targets of brusatol based on the structure of brusatol, and MEF2A (Myocyte Enhancer Factor 2A) was selected as our object through bioinformatic analyses. We employed various experimental techniques, including RT-PCR, western blot, CCK8, colony formation, immunofluorescence, wound healing, flow cytometry, Transwell assays and xenograft mouse models, to investigate the impact of MEF2A on RCC. MEF2A expression was found to be reduced in patients with RCC, indicating a close correlation with MEF2A deubiquitylation. Additionally, the protective effects of brusatol on MEF2A were observed. The overexpression of MEF2A inhibits RCC cell proliferation, invasion and migration. In xenograft mice, MEF2A overexpression in RCC cells led to reduced tumour size compared to the control group. The underlying mechanism involves the inhibition of RCC cell proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) through the modulation of Wnt/ß-catenin signalling. Altogether, we found that MEF2A overexpression inhibits RCC progression by Wnt/ß-catenin signalling, providing novel insight into diagnosis, treatment and prognosis for RCC patients.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Fatores de Transcrição MEF2/efeitos dos fármacos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
12.
Curr Pharm Des ; 29(30): 2408-2425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37861038

RESUMO

BACKGROUND: Platinum derivatives are chemotherapeutic agents preferred for the treatment of cancers including breast cancer. Oxaliplatin is an anticancer drug that is in phase II studies to treat metastatic breast cancer. However, its usage is constrained by chemoresistance and dose-related side effects. OBJECTIVE: The objective of this study is to examine the combinatorial efficacy of brusatol, an Nrf2 blocker, with oxaliplatin (a proven FN3K blocker in our study) in mitigating breast cancer growth in vitro. METHODS: We performed cytotoxicity assays, combination index (CI) analysis, colony formation assays, apoptosis assays, and Western blotting. RESULTS: Results of our study described the chemosensitizing efficacy of brusatol in combination with lowdose oxaliplatin against breast cancer through synergistic effects in both BT-474 and T47D cells. A significant mitigation in the migration rate of these cancer cells was observed with the combination regimen, which is equivalent to the IC-50 dose of oxaliplatin (125 µM). Furthermore, ROS-mediated and apoptotic modes of cell death were observed with a combinatorial regimen. Colony formation of breast cancer cell lines was mitigated with a combinatorial regimen of bursatol and oxaliplatin than the individual treatment regimen. FN3K expression downregulated with oxaliplatin in T47D cells. The mitigation of FN3K protein expression with a combination regimen was not observed but the Nrf2 downstream antioxidant signaling proteins were significantly downregulated with a combination regimen similar to individual drug regimens. CONCLUSION: Our study concluded the combination efficacy of phytochemicals like brusatol in combination with low-dose oxaliplatin (FN3K blocker), which could enhance the chemosensitizing effect in breast cancer and minimize the overall dose requirement of oxaliplatin.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Oxaliplatina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral
13.
Biomed Pharmacother ; 167: 115567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742602

RESUMO

Brusatol (Bru), a bioactive compound found in Brucea sumatrana, exerts antitumour effects on several malignancies. However, the role and molecular mechanism of Bru in squamous cell carcinoma of the oesophagus (ESCC) remain unclear. Here, we found that Bru decreased the survival of ESCC cells. Subsequently, the ferroptosis inhibitors, deferoxamine and liproxstatin-1, rescued Bru-induced cell death, indicating that ferroptosis plays a major role in Bru-induced cell death. Furthermore, Bru promoted lipid peroxidation, glutathione (GSH) depletion, and ferrous iron overload in vitro. Consistent with these in vitro results, Bru significantly inhibited tumour growth in KYSE150 xenograft nude mice by triggering ferroptosis. Mechanistically, nuclear factor E2-related factor 2 (NRF2) inactivation via increased ubiquitin-proteasome degradation was found to be a vital determinant of ferroptosis induced by Bru. Notably, Bru significantly decreases GSH synthesis, iron storage, and efflux by downregulating the expression of NRF2 target genes (glutamate-cysteine ligase catalytic subunit (GCLC), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH1), and solute carrier family 40 member 1 (SLC40A1)), resulting in the accumulation of lethal lipid-based reactive oxygen species (ROS) and intracellular enrichment of chelated iron. Taken together, our findings indicate that ferroptosis is a novel mechanism underlying Bru-induced antitumour activity and will hopefully provide a valuable compound for ESCC treatment.

14.
Int J Biol Sci ; 19(10): 3029-3041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416770

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates redox homeostasis, plays a pivotal role in several cellular processes such as cell proliferation and survival, and has been found to be aberrantly activated in many cancers. As one of the key oncogenes, Nrf2 represents an important therapeutic target for cancer treatment. Research has unraveled the main mechanisms underlying the Nrf2 pathway regulation and the role of Nrf2 in promoting tumorigenesis. Many efforts have been made to develop potent Nrf2 inhibitors, and several clinical trials are being conducted on some of these inhibitors. Natural products are well-recognized as a valuable source for development of novel therapeutics for cancer. So far, a number of natural compounds have been identified as Nrf2 inhibitors, such as apigenin, luteolin, and quassinoids compounds including brusatol and brucein D. These Nrf2 inhibitors have been found to mediate an oxidant response and display therapeutic effects in different types of human cancers. In this article, we reviewed the structure and function of the Nrf2/Keap1 system and the development of natural Nrf2 inhibitors with an emphasis on their biological function on cancer. The current status regarding the Nrf2 as a potential therapeutic target for cancer treatment was also summarized. It is hoped that this review will stimulate research on naturally occurring Nrf2 inhibitors as therapeutic candidates for cancer treatment.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/tratamento farmacológico , Oxirredução , Carcinogênese
15.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175972

RESUMO

Triple-negative breast cancer (TNBC) has been clearly recognized as a heterogeneous tumor with the worst prognosis among the subtypes of breast cancer (BC). The advent and application of current small-molecule drugs for treating TNBC, as well as other novel inhibitors, among others, have made treatment options for TNBC more selective. However, there are still problems, such as poor patient tolerance, large administration doses, high dosing frequency, and toxic side effects, necessitating the development of more efficient and less toxic treatment strategies. High expression of Nrf2, a vital antioxidant transcription factor, often promotes tumor progression, and it is also one of the most effective targets in BC therapy. We found that in MDA-MB-231 cells and SUM159 cells, brusatol (BRU) combined with polydatin (PD) could significantly inhibit cell proliferation in vitro, significantly downregulate the expression of Nrf2 protein as well as the expression of downstream related target genes Heme Oxygenase-1 (HO-1) and NAD(P)H dehydrogenase, quinone 1 (NQO1), and promote reactive oxygen species (ROS) levels to further strengthen the anti-tumor effect. Furthermore, we discovered in our in vivo experiments that by reducing the drug dosage three times, we could significantly reduce tumor cell growth while avoiding toxic side effects, providing a treatment method with greater clinical application value for TNBC treatment.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias de Mama Triplo Negativas , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Transdução de Sinais , Linhagem Celular Tumoral
16.
Biomed Pharmacother ; 162: 114650, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031492

RESUMO

Brusatol (Bru), a Chinese medicine Brucea javanica extract, has a variety of antitumour effects. However, its role and underlying mechanism in melanoma have not been fully elucidated. In this study, we found that brusatol inhibited melanoma cell proliferation and migration and promoted cell apoptosis in vitro, in addition to suppressing melanoma cell tumorigenesis in vivo. Further studies on the mechanism revealed that brusatol significantly downregulated the expression of stearoyl-CoA desaturase 1 (SCD1). Increased SCD1 expression could impair the antitumour effects of brusatol on melanoma cells. Subsequently, we found that HOXB9, an important transcription factor, was directly bound to the promoter of SCD1, facilitating its transcription. Overexpression of HOXB9 inhibited brusatol-induced SCD1 reduction and promoted cell survival. Furthermore, our results revealed that miR-122-5p was significantly increased in response to brusatol treatment and led to a decrease in HOXB9 in melanoma. Collectively, our data suggested that the miR-122-5p/HOXB9/SCD1 axis might play an important role in the antitumour effects of brusatol and that brusatol might have potential clinical implications in melanoma therapy.


Assuntos
Melanoma , MicroRNAs , Quassinas , Humanos , Melanoma/patologia , Regulação da Expressão Gênica , MicroRNAs/genética , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Estearoil-CoA Dessaturase/genética
17.
Phytomedicine ; 109: 154567, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610120

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with high metastasis and lethality. Arrestin domain-containing 4 (ARRDC4) is involved in inhibiting cancer glycolytic phenotypes. Brusatol (BR), extracted from Bruceae Fructus, exerts good anti-cancer effects against a number of cancers. PURPOSE: In the present study, we aimed to explore the efficacy of BR on inhibiting CRC metastasis and elucidate the underlying mechanisms involving the upregulation of the ARRDC4 expression. METHODS: Cell viability, colony formation, wound healing and transwell assay were used to detect the anti-proliferative and anti-metastatic effects of BR against CRC in vitro. Microarray analysis was performed to find out differential genes in CRC cells after treatment with BR. Analysis of the CRC patients tumor samples and GEPIA database were first conducted to identify the expression of ARRDC4 on CRC. Stable overexpression and knockdown of ARRDC4 CRC cells were established by lentiviral transfection. The role of ARRDC4 in mediating the anti-metastatic effects of BR on CRC was measured using qRT-PCR, western blotting, immunohistochemical and immunofluorescence analysis. Orthotopic xenograft and pulmonary metastasis mouse models of CRC were established to determine the anti-cancer and anti-metastatic effects of ARRDC4 and BR. RESULTS: BR markedly suppressed the cell proliferation, migration, invasion and inhibited tumor growth and tumor metastasis. Microarray analysis demonstrated that BR treatment markedly increased the gene expression of ARRDC4 in CRC cells. ARRDC4 was significantly repressed in CRC in the clinical samples and GEPIA analysis. ARRDC4 overexpression plus BR produced better inhibitory effects on CRC metastasis than BR treatment alone, while ARRDC4 knockdown could partially eliminate the inhibitory effects of BR against CRC metastasis. BR exerted anti-metastatic effects against CRC via upregulating ARRDC4 and inhibiting epithelial-mesenchymal transition (EMT) processing through modulating PI3K/Hippo pathway. CONCLUSION: This study reported for the first time that BR is a potent ARRDC4 agonist, and is worthy of further development into a new therapeutic strategy for CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Animais , Camundongos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica
18.
Biomed Pharmacother ; 158: 114134, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525821

RESUMO

Cancer is currently the most important problem endangering human health. As antitumor drugs have always been the most common methods for treating cancers, searching for new antitumor agents is of great significance. Brusatol, a quassinoid from the seeds of Brucea javanica, exhibits a potent tumor-suppressing effect with improved disease outcome. Studies have shown that brusatol not only shows potential tumor inhibition through multiple pharmacological effects, such as promoting apoptosis and inhibiting metastasis but also exhibits significant synergistic antitumor effects in combination with chemotherapeutic agents and overcoming chemical resistance in a wide range of cancer types. In this paper, the antitumor effects and mechanisms of brusatol were reviewed to provide evidence that brusatol has the exact antitumor efficacy of chemotherapeutic agents and show the potential of brusatol to be developed as a promising antitumor drug.


Assuntos
Antineoplásicos , Neoplasias , Quassinas , Humanos , Brucea javanica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sementes , Quassinas/farmacologia , Quassinas/uso terapêutico , Neoplasias/tratamento farmacológico
19.
Toxicol Res (Camb) ; 11(5): 791-803, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337251

RESUMO

Brusatol, a major quassinoid extract of Bruceae fructus, is an important bioactive component with antineoplastic capacity. Several beneficial pharmacological and biological properties of brusatol have been uncovered to date, including anti-inflammatory, anticolitis, antimalarial, and anticancer activities. To confer anticancer benefits, brusatol is reported to effectively inhibit the Nrf2-mediated antioxidant response and trigger apoptotic signaling. In this study, we investigated the regulatory mechanisms underlying apoptotic processes in brusatol-treated A549 cells in detail. Our experiments showed that brusatol induces cell death through intracellular ROS-triggered mitochondria-dependent apoptotic events and does not involve necrosis. Mechanistically, p21-activated protein kinase 2 (PAK2) was cleaved by caspase-3 to generate an activated p34 fragment involved in brusatol-induced apoptosis of A549 cells. Notably, PAK2 knockdown led to downregulation of caspase-3-mediated PAK2 activity, in turn, effectively attenuating brusatol-induced apoptosis, highlighting a crucial role of caspase-3-activated PAK2 in this process. Moreover, knockdown of PAK2 resulted in significant inhibition of c-Jun N-terminal kinase (JNK) activity in brusatol-treated A549 cells, clearly suggesting that JNK serves as a downstream substrate of caspase-3-cleaved/activated PAK2 in the apoptotic cascade. SP600125, a specific JNK inhibitor, significantly suppressed brusatol-induced JNK activity but only partially prevented apoptosis, implying that JNK serves as only one of a number of substrates for PAK2 in the brusatol-triggered apoptotic cascade. Based on the collective results, we propose a signaling cascade model for brusatol-induced apoptosis in human A549 cells involving ROS, caspases, PAK2, and JNK.

20.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290582

RESUMO

Esophageal adenocarcinoma (EAC), the predominant type of esophageal cancer in the United States, develops through Barrett's esophagus (BE)-dysplasia-carcinoma cascade. Gastroesophageal reflux disease, where acidic bile salts refluxate into the esophagus, is the main risk factor for the development of BE and its progression to EAC. The NFE2-related factor 2 (NRF2) is the master cellular antioxidant regulator. We detected high NRF2 protein levels in the EAC cell lines and primary tissues. Knockdown of NRF2 significantly enhanced acidic bile salt-induced oxidative stress, DNA damage, and inhibited EAC cell growth. Brusatol, an NRF2 inhibitor, significantly inhibited NRF2 transcriptional activity and downregulated the NRF2 target genes. We discovered that in addition to inducing apoptosis, Brusatol alone or in combination with cisplatin (CDDP) induced significant lipid peroxidation and ferroptosis, as evidenced by reduced xCT and GPX4 expression, two known ferroptosis markers. The combination of Brusatol and CDDP significantly inhibited EAC tumor xenograft growth in vivo and confirmed the in vitro data showing ferroptosis as an important mechanism in the tumors treated with Brusatol or Brusatol and CDDP combination. Our data support the role of NRF2 in protecting against stress-induced apoptosis and ferroptosis in EACs. Targeting NRF2 in combination with platinum therapy can be an effective strategy for eliminating cancer cells in EAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...