Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Biol ; 20(6)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37769681

RESUMO

It is now established that endo-lysosomes, also referred to as late endosomes, serve as intracellular calcium store, in addition to the endoplasmic reticulum. While abundant calcium-binding proteins provide the latter compartment with its calcium storage capacity, essentially nothing is known about the mechanism responsible for calcium storage in endo-lysosomes. In this paper, we propose that the structural organization of endo-lysosomal membranes drives the calcium storage capacity of the compartment. Indeed, endo-lysosomes exhibit a characteristic multivesicular ultrastructure, with intralumenal membranes providing a large amount of additional bilayer surface. We used a theoretical approach to investigate the calcium storage capacity of endosomes, using known calcium binding affinities for bilayers and morphological data on endo-lysosome membrane organization. Finally, we tested our predictions experimentally after Sorting Nexin 3 depletion to decrease the intralumenal membrane content. We conclude that the major negatively-charge lipids and proteins of endo-lysosomes serve as calcium-binding molecules in the acidic calcium stores of mammalian cells, while the large surface area of intralumenal membranes provide the necessary storage capacity.

2.
Biomed Pharmacother ; 167: 115570, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757498

RESUMO

Evidence suggests the use of natural compounds as support in the management of uterine contractility disorders. We recently demonstrated that the essential oil of Apiacea Prangos ferulacea (L.) (Prangoil) modulates intestinal smooth muscle contractility. Thus, we aimed to evaluate if Prangoil could also affect the contractility of uterine muscle in non-pregnant rat and to investigate the related action mechanism/s. The effects of the aromatic monoterpenes, ß-ocimene and carvacrol, constituents of Prangoil, were also evaluated. Spontaneous contractions and contraction-induced by K+-depolarization and oxytocin in rat uterus were recorded in vitro, using organ bath technique. Prangoil reduced the amplitude of spontaneous contractions as well as responses to KCl and oxytocin. ß-ocimene and carvacrol matched oil inhibitory effects. Prangoil effects were not affected by nitrergic and adenylyl cyclase inhibitors or non-specific potassium channel blocker, but they were reduced by nifedipine, L-type calcium channel inhibitor, or 2-aminoethoxydiphenylborate (2-APB), membrane-permeant inositol 1,4,5-triphosphate receptor inhibitor. The response to ß-ocimene was reduced by nifedipine and by 2-APB (20 µM), whilst carvacrol inhibitory effect was attenuated only by nifedipine. In conclusion, Prangoil, and its components, ß-ocimene and carvacrol, reduced spontaneous and KCl or oxytocin-induced contractions of rat myometrium, mainly modulating extracellular Ca2+ influx through L-Type channels and Ca2+ release from the intracellular store. Further studies could contribute to evaluate the potential use of Prangoil against disorders characterized by abnormal uterine contractions.

3.
Front Physiol ; 14: 1250273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711462

RESUMO

Arginine vasopressin (AVP) induces an increase in intracellular Ca2+ concentration ([Ca2+]i) with an oscillatory pattern in isolated perfused kidney inner medullary collecting duct (IMCD). The AVP-induced Ca2+ mobilization in inner medullary collecting ducts is essential for apical exocytosis and is mediated by the exchange protein directly activated by cyclic adenosine monophosphate (Epac). Murine principal kidney cortical collecting duct cells (mpkCCD) is the cell model used for transcriptomic and phosphoproteomic studies of AVP signaling in kidney collecting duct. The present study examined the characteristics of Ca2+ mobilization in mpkCCD cells, and utilized mpkCCD as a model to investigate the Epac-induced intracellular and intra-organellar Ca2+ mobilization. Ca2+ mobilization in cytosol, endoplasmic reticulum lumen, and mitochondrial matrix were monitored with a Ca2+ sensitive fluorescent probe and site-specific Ca2+ sensitive biosensors. Fluorescence images of mpkCCD cells and isolated perfused inner medullary duct were collected with confocal microscopy. Cell permeant ligands of ryanodine receptors (RyRs) and inositol 1,4,5 trisphosphate receptors (IP3Rs) both triggered increase of [Ca2+]i and Ca2+ oscillations in mpkCCD cells as reported previously in IMCD. The cell permeant Epac-specific cAMP analog Me-cAMP/AM also caused a robust Ca2+ mobilization and oscillations in mpkCCD cells. Using biosensors to monitor endoplasmic reticulum (ER) luminal Ca2+ and mitochondrial matrix Ca2+, Me-cAMP/AM not only triggered Ca2+ release from ER into cytoplasm, but also shuttled Ca2+ from ER into mitochondria. The Epac-agonist induced synchronized Ca2+ spikes in cytosol and mitochondrial matrix, with concomitant declines in ER luminal Ca2+. Me-cAMP/AM also effectively triggered store-operated Ca2+ entry (SOCE), suggesting that Epac-agonist is capable of depleting ER Ca2+ stores. These Epac-induced intracellular and inter-organelle Ca2+ signals were mimicked by the RyR agonist 4-CMC, but they were distinctly different from IP3R activation. The present study hence demonstrated that mpkCCD cells retain all reported features of Ca2+ mobilization observed in isolated perfused IMCD. It further revealed information on the dynamics of Epac-induced RyR-dependent Ca2+ signaling and ER-mitochondrial Ca2+ transfer. ER-mitochondrial Ca2+ coupling may play a key role in the regulation of ATP and reactive oxygen species (ROS) production in the mitochondria along the nephron. Our data suggest that mpkCCD cells can serve as a renal cell model to address novel questions of how mitochondrial Ca2+ regulates cytosolic Ca2+ signals, inter-organellar Ca2+ signaling, and renal tubular functions.

4.
Biology (Basel) ; 12(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37508398

RESUMO

The systemic effects of physical activity are mediated by the release of IL-6 and other myokines from contracting muscle. Although the release of IL-6 from muscle has been extensively studied, the information on the cellular mechanisms is fragmentary and scarce, especially regarding the role of Ca2+ signals. The aim of this study was to characterize the role of the main components of Ca2+ signals in human skeletal muscle cells during IL-6 secretion stimulated by the Ca2+ mobilizing agonist ATP. Primary cultures were prepared from surgical samples, fluorescence microscopy was used to evaluate the Ca2+ signals and the stimulated release of IL-6 into the medium was determined using ELISA. Intracellular calcium chelator Bapta, low extracellular calcium and the Ca2+ channels blocker La3+ reduced the ATP-stimulated, but not the basal secretion. Secretion was inhibited by blockers of L-type (nifedipine, verapamil), T-type (NNC55-0396) and Orai1 (Synta66) Ca2+ channels and by silencing Orai1 expression. The same effect was achieved with inhibitors of ryanodine receptors (ryanodine, dantrolene) and IP3 receptors (xestospongin C, 2-APB, caffeine). Inhibitors of calmodulin (calmidazolium) and calcineurin (FK506) also decreased secretion. IL-6 transcription in response to ATP was not affected by Bapta or by the T channel blocker. Our results prove that ATP-stimulated IL-6 secretion is mediated at the post-transcriptional level by Ca2+ signals, including the mobilization of calcium stores, the activation of store-operated Ca2+ entry, and the subsequent activation of voltage-operated Ca2+ channels and calmodulin/calcineurin pathways.

5.
Zygote ; 31(4): 393-401, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37212062

RESUMO

Although ethanol treatment is widely used to activate oocytes, the underlying mechanisms are largely unclear. Roles of intracellular calcium stores and extracellular calcium in ethanol-induced activation (EIA) of oocytes remain to be verified, and whether calcium-sensing receptor (CaSR) is involved in EIA is unknown. This study showed that calcium-free ageing (CFA) in vitro significantly decreased intracellular stored calcium (sCa) and CaSR expression, and impaired EIA, spindle/chromosome morphology and developmental potential of mouse oocytes. Although EIA in oocytes with full sCa after ageing with calcium does not require calcium influx, calcium influx is essential for EIA of oocytes with reduced sCa after CFA. Furthermore, the extremely low EIA rate in oocytes with CFA-downregulated CaSR expression and the fact that inhibiting CaSR significantly decreased the EIA of oocytes with a full complement of CaSR suggest that CaSR played a significant role in the EIA of ageing oocytes. In conclusion, CFA impaired EIA and the developmental potential of mouse oocytes by decreasing sCa and downregulating CaSR expression. Because mouse oocytes routinely treated for activation (18 h post hCG) are equipped with a full sCa complement and CaSR, the present results suggest that, while calcium influx is not essential, CaSR is required for the EIA of oocytes.


Assuntos
Cálcio , Etanol , Camundongos , Animais , Cálcio/metabolismo , Etanol/farmacologia , Oócitos/fisiologia , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Envelhecimento
6.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361866

RESUMO

Unidentified pathogenetic mechanisms and genetic and clinical heterogeneity represent critical factors hindering the development of treatments for inherited retinal dystrophies. Frameshift mutations in Cacna2d4, which codes for an accessory subunit of voltage-gated calcium channels (VGCC), cause cone-rod dystrophy RCD4 in patients, but the underlying mechanisms remain unknown. To define its pathogenetic mechanisms, we investigated the impact of a Cacna2d4 frameshift mutation on the electrophysiological profile and calcium handling of mouse rod photoreceptors by patch-clamp recordings and calcium imaging, respectively. In mutant (MUT) rods, the dysregulation of calcium handling extends beyond the reduction in calcium entry through VGCC and surprisingly involves internal calcium stores' depletion and upregulation of calcium entry via non-selective cationic channels (CSC). The similar dependence of CSC on basal calcium levels in WT and MUT rods suggests that the primary defect in MUT rods lies in defective calcium stores. Calcium stores' depletion, leading to upregulated calcium and sodium influx via CSC, represents a novel and, so far, unsuspected consequence of the Cacna2d4 mutation. Blocking CSC may provide a novel strategy to counteract the well-known pathogenetic mechanisms involved in rod demise, such as the reticulum stress response and calcium and sodium overload due to store depletion.


Assuntos
Cálcio , Distrofias de Cones e Bastonetes , Camundongos , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Cálcio da Dieta , Modelos Animais de Doenças , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sódio , Células Fotorreceptoras Retinianas Cones/metabolismo
7.
Am J Physiol Cell Physiol ; 322(1): C38-C48, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788146

RESUMO

The gaseous signaling molecule hydrogen sulfide (H2S) physiologically regulates store-operated Ca2+ entry (SOCE). The SOCE machinery consists of the plasma membrane-localized Orai channels (Orai1-3) and endoplasmic reticulum-localized stromal interaction molecule (STIM)1 and STIM2 proteins. H2S inhibits Orai3- but not Orai1- or Orai2-mediated SOCE. The current objective was to define the mechanism by which H2S selectively modifies Orai3. We measured SOCE and STIM1/Orai3 dynamics and interactions in HEK293 cells exogenously expressing fluorescently tagged human STIM1 and Orai3 in the presence and absence of the H2S donor GYY4137. Two cysteines (C226 and C232) are present in Orai3 that are absent in the Orai1 and Orai2. When we mutated either of these cysteines to serine, alone or in combination, SOCE inhibition by H2S was abolished. We also established that inhibition was dependent on an interaction with STIM1. To further define the effects of H2S on STIM1/Orai3 interaction, we performed a series of fluorescence recovery after photobleaching (FRAP), colocalization, and fluorescence resonance energy transfer (FRET) experiments. Treatment with H2S did not affect the mobility of Orai3 in the membrane, nor did it influence STIM1/Orai3 puncta formation or STIM1-Orai3 protein-protein interactions. These data support a model in which H2S modification of Orai3 at cysteines 226 and 232 limits SOCE evoked upon store depletion and STIM1 engagement, by a mechanism independent of the interaction between Orai3 and STIM1.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cisteína/metabolismo , Sulfeto de Hidrogênio/toxicidade , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores
8.
Cell Calcium ; 97: 102433, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34174726

RESUMO

Although the endoplasmic reticulum (ER) is present throughout axons, and IP3 and ryanodine receptors are widely expressed in nerve terminals, whether Ca2+ release from presynaptic stores contributes to action potential (AP)-evoked Ca2+ transients remains controversial. We investigated the release of Ca2+ from ER stores in boutons en passant of neocortical layer 5 pyramidal neurons. A hallmark of these stores is that they spontaneously release Ca2+ at a low frequency. Using a high-affinity Ca2+ indicator, we documented and characterised such spontaneous Ca2+ transients (sCaTs), which occurred at a rate of ~0.2 per min and raised the intracellular Ca2+ concentration ([Ca2+]i) by ~2 µM in the absence of exogenous buffers. Caffeine increased the average frequency of sCaTs by 90%, without affecting their amplitude and decay kinetics. Therefore, presynaptic ryanodine receptors were likely involved. To determine if presynaptic ER stores contribute to intracellular Ca2+ accumulation during repetitive stimulation, we measured [Ca2+]i during 2 s long trains of APs evoked at 10-50 Hz. We found that for frequencies <20 Hz, [Ca2+]i reached a steady state within ~500 ms after stimulation onset. However, for higher frequencies, [Ca2+]i continued to increase with AP number, suggesting that the rate of Ca2+ entry exceeded the rate of clearance. Comparison between measured and predicted values indicates supralinear summation of Ca2+. Block of the sarco/endoplasmic reticulum Ca2+-ATPase reduced the supralinearity of summation, without reducing the amplitude of a single AP-evoked Ca2+ transient. Together, our results implicate presynaptic ER stores as a source of Ca2+ during repetitive stimulation.

9.
J Cell Sci ; 134(3)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431515

RESUMO

Human spermatozoa are the archetype of long-term self-organizing transport in nature and are critical for reproductive success. They utilize coordinated head and flagellar movements to swim long distances within the female reproductive tract in order to find and fertilize the egg. However, to date, long-term analysis of the sperm head-flagellar movements, or indeed those of other flagellated microorganisms, remains elusive due to limitations in microscopy and flagellar-tracking techniques. Here, we present a novel methodology based on local orientation and isotropy of bio-images to obtain long-term kinematic and physiological parameters of individual free-swimming spermatozoa without requiring image segmentation (thresholding). This computer-assisted segmentation-free method evaluates, for the first time, characteristics of the head movement and flagellar beating for up to 9.2 min. We demonstrate its powerful use by showing how releasing Ca2+ from internal stores significantly alters long-term sperm behavior. The method allows for straightforward generalization to other bio-imaging applications, such as studies of bull sperm and Trypanosoma, or indeed of other flagellated microorganisms - appealing to communities other than those investigating sperm biology.


Assuntos
Cálcio , Movimentos da Cabeça , Animais , Bovinos , Feminino , Flagelos , Humanos , Masculino , Motilidade dos Espermatozoides , Cauda do Espermatozoide , Espermatozoides , Natação
10.
J Neurochem ; 156(6): 867-879, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32865230

RESUMO

Mitochondria and releasable endoplasmic reticulum (ER) calcium modulate neuronal calcium signaling, and both change in Alzheimer's disease (AD). The releasable calcium stores in the ER are exaggerated in fibroblasts from AD patients and in multiple models of AD. The activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key mitochondrial enzyme complex, is diminished in brains from AD patients, and can be plausibly linked to plaques and tangles. Our previous studies in cell lines and mouse neurons demonstrate that reductions in KGDHC increase the ER releasable calcium stores. The goal of these studies was to test whether the relationship was true in human iPSC-derived neurons. Inhibition of KGDHC for one or 24 hr increased the ER releasable calcium store in human neurons by 69% and 144%, respectively. The effect was mitochondrial enzyme specific because inhibiting the pyruvate dehydrogenase complex, another key mitochondrial enzyme complex, diminished the ER releasable calcium stores. The link of KGDHC to ER releasable calcium stores was cell type specific as the interaction was not present in iPSC or neural stem cells. Thus, these studies in human neurons verify a link between KGDHC and releasable ER calcium stores, and support the use of human neurons to examine mechanisms and potential therapies for AD.


Assuntos
Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/enzimologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Imuno-Histoquímica , Complexo Cetoglutarato Desidrogenase/metabolismo , Potássio/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
11.
Neuroscience ; 456: 60-70, 2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32278062

RESUMO

Acetylcholine acting via metabotropic receptors plays a key role in learning and memory by regulating synaptic plasticity and circuit activity. However, a recent overall view of the effects of muscarinic acetylcholine receptors (mAChRs) on excitatory and inhibitory long-term synaptic plasticity and on circuit activity is lacking. This review focusses on specific aspects of the regulation of synaptic plasticity and circuit activity by mAChRs in the hippocampus and cortex. Acetylcholine increases the excitability of pyramidal neurons, facilitating the generation of dendritic Ca2+-spikes, NMDA-spikes and action potential bursts which provide the main source of Ca2+ influx necessary to induce synaptic plasticity. The activation of mAChRs induced Ca2+ release from intracellular IP3-sensitive stores is a major player in the induction of a NMDA independent long-term potentiation (LTP) caused by an increased expression of AMPA receptors in hippocampal pyramidal neuron dendritic spines. In the neocortex, activation of mAChRs also induces a long-term enhancement of excitatory postsynaptic currents. In addition to effects on excitatory synapses, a single brief activation of mAChRs together with short repeated membrane depolarization can induce a long-term enhancement of GABA A type (GABAA) inhibition through an increased expression of GABAA receptors in hippocampal pyramidal neurons. By contrast, a long term depression of GABAA inhibition (iLTD) is induced by muscarinic receptor activation in the absence of postsynaptic depolarizations. This iLTD is caused by an endocannabinoid-mediated presynaptic inhibition that reduces the GABA release probability at the terminals of inhibitory interneurons. This bidirectional long-term plasticity of inhibition may dynamically regulate the excitatory/inhibitory balance depending on the quiescent or active state of the postsynaptic pyramidal neurons. Therefore, acetylcholine can induce varied effects on neuronal activity and circuit behavior that can enhance sensory detection and processing through the modification of circuit activity leading to learning, memory and behavior.


Assuntos
Região CA1 Hipocampal , Plasticidade Neuronal , Região CA1 Hipocampal/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Células Piramidais/metabolismo , Receptores Muscarínicos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
12.
Cells ; 9(8)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751129

RESUMO

Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11-E13) were TACAN, GluK5, nAChR ß2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ "leak" channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels. At the end of neurogenesis (E17 and onward), a more numerous and diverse population of Ca2+ uptake systems was observed. In addition to the actors listed above, prominent Ca2+-conducting systems of the cortical wall emerged, including acid-sensing ion channel 1 (ASIC1), Orai2, P2X2, and GluN1. Altogether, this study provides a detailed view of the pattern of expression of the main actors participating in the import, export, and release of Ca2+. This work can serve as a framework for further functional and mechanistic studies on Ca2+ signaling during cerebral cortex formation.


Assuntos
Sinalização do Cálcio/genética , Cálcio/metabolismo , Córtex Cerebral/citologia , Neurônios/metabolismo , Transcriptoma , Animais , Antiporters/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Córtex Cerebral/embriologia , Retículo Endoplasmático/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/genética , Análise de Célula Única , Canais de Potencial de Receptor Transitório/metabolismo
13.
Psychopharmacology (Berl) ; 237(11): 3303-3314, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32705289

RESUMO

RATIONALE: Ethanol can enhance GABA release in various brain regions via presynaptic mechanisms. However, the presynaptic action of ethanol on inhibitory GABA release is still not well understood. OBJECTIVES: Since calcium is required for neurotransmitter release from presynaptic terminals, the purpose of this study was to investigate the role of both internal and external calcium signaling in ethanol-induced enhancement of GABA release within the central amygdala nucleus (CeA) in acute brain slice preparations. METHODS: Whole-cell patch clamp electrophysiology was used to record miniature GABAA receptor-mediated inhibitory postsynaptic currents (mIPSCs) from CeA neurons. Ethanol-enhanced mIPSCs were recorded in the presence of antagonists that regulate internal and external calcium-mediated processes. RESULTS: Bath-applied ethanol dose-dependently increased the mean frequency of mIPSCs without altering mIPSC amplitude. Ethanol-induced increases in mIPSC frequency were antagonized by dantrolene, 2-APB, and the endoplasmic reticulum calcium pump (SERCA) antagonists thapsigargin and cyclopiazonic acid (CPA). Blocking calcium release from mitochondria or via exocytosis with ruthenium red also attenuated mIPSCs while frequency was not altered in the presence of a non-selective calcium channel blocker cadmium. The L-type calcium blocker nifedipine, but not its analogue nimodipine, blocked ethanol-induced enhancement in CeA neurons. CONCLUSIONS: These results demonstrate ethanol-induced presynaptic release of GABA is mediated by internal calcium stores and by disrupting neurotransmitter exocytosis within the CeA, a critical brain area involved in drugs of abuse and alcohol addiction.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Núcleo Central da Amígdala/metabolismo , Etanol/administração & dosagem , Terminações Pré-Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/fisiologia , Núcleo Central da Amígdala/efeitos dos fármacos , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
14.
Front Neuroanat ; 14: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372920

RESUMO

Calcium stores in neurons are heterogeneous in compartmentalization and molecular composition. Danio rerio (zebrafish) is an animal model with a simply folded cerebellum similar in cellular organization to that of mammals. The aim of the study was to identify new endoplasmic reticulum (ER) calcium store markers in zebrafish adult brain with emphasis on cerebellum and optic tectum. By quantitative polymerase chain reaction, we found three RNA transcripts coding for the intra-ER calcium binding protein calsequestrin: casq1a, casq1b, and casq2. In brain homogenates, two isoforms were detected by mass spectrometry and western blotting. Fractionation experiments of whole brain revealed that Casq1a and Casq2 were enriched in a heavy fraction containing ER microsomes and synaptic membranes. By in situ hybridization, we found the heterogeneous expression of casq1a and casq2 mRNA to be compatible with the cellular localization of calsequestrins investigated by immunofluorescence. Casq1 was expressed in neurogenic differentiation 1 expressing the granule cells of the cerebellum and the periventricular zone of the optic tectum. Casq2 was concentrated in parvalbumin expressing Purkinje cells. At a subcellular level, Casq1 was restricted to granular cell bodies, and Casq2 was localized in cell bodies, dendrites, and axons. Data are discussed in relation to the differential cellular and subcellular distribution of other cerebellum calcium store markers and are evaluated with respect to the putative relevance of calsequestrins in the neuron-specific functional activity.

15.
Front Neurosci ; 14: 48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116502

RESUMO

The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.

16.
Front Genet ; 11: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117448

RESUMO

The origin of eukaryotes was marked by the emergence of several novel subcellular systems. One such is the calcium (Ca2+)-stores system of the endoplasmic reticulum, which profoundly influences diverse aspects of cellular function including signal transduction, motility, division, and biomineralization. We use comparative genomics and sensitive sequence and structure analyses to investigate the evolution of this system. Our findings reconstruct the core form of the Ca2+-stores system in the last eukaryotic common ancestor as having at least 15 proteins that constituted a basic system for facilitating both Ca2+ flux across endomembranes and Ca2+-dependent signaling. We present evidence that the key EF-hand Ca2+-binding components had their origins in a likely bacterial symbiont other than the mitochondrial progenitor, whereas the protein phosphatase subunit of the ancestral calcineurin complex was likely inherited from the asgard archaeal progenitor of the stem eukaryote. This further points to the potential origin of the eukaryotes in a Ca2+-rich biomineralized environment such as stromatolites. We further show that throughout eukaryotic evolution there were several acquisitions from bacteria of key components of the Ca2+-stores system, even though no prokaryotic lineage possesses a comparable system. Further, using quantitative measures derived from comparative genomics we show that there were several rounds of lineage-specific gene expansions, innovations of novel gene families, and gene losses correlated with biological innovation such as the biomineralized molluscan shells, coccolithophores, and animal motility. The burst of innovation of new genes in animals included the wolframin protein associated with Wolfram syndrome in humans. We show for the first time that it contains previously unidentified Sel1, EF-hand, and OB-fold domains, which might have key roles in its biochemistry.

17.
Cell Rep ; 30(10): 3466-3477.e4, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160550

RESUMO

Astroglia regulate neurovascular coupling while engaging in signal exchange with neurons. The underlying cellular machinery is thought to rely on astrocytic Ca2+ signals, but what controls their amplitude and waveform is poorly understood. Here, we employ time-resolved two-photon excitation fluorescence imaging in acute hippocampal slices and in cortex in vivo to find that resting [Ca2+] predicts the scale (amplitude) and the maximum (peak) of astroglial Ca2+ elevations. We bidirectionally manipulate resting [Ca2+] by uncaging intracellular Ca2+ or Ca2+ buffers and use ratiometric imaging of a genetically encoded Ca2+ indicator to establish that alterations in resting [Ca2+] change co-directionally the peak level and anti-directionally the amplitude of local Ca2+ transients. This relationship holds for spontaneous and for induced (for instance by locomotion) Ca2+ signals. Our findings uncover a basic generic rule of Ca2+ signal formation in astrocytes, thus also associating the resting Ca2+ level with the physiological "excitability" state of astroglia.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Animais , Fluorescência , Locomoção , Camundongos , Frações Subcelulares
18.
Adv Exp Med Biol ; 1131: 985-1012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646542

RESUMO

Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.


Assuntos
Envelhecimento , Encéfalo , Sinalização do Cálcio , Doenças Neurodegenerativas , Plasticidade Neuronal , Encéfalo/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Plasticidade Neuronal/fisiologia
19.
Front Synaptic Neurosci ; 12: 573714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469426

RESUMO

There are growing indications for the involvement of calcium stores in the plastic properties of neurons and particularly in dendritic spines of central neurons. The store-operated calcium entry (SOCE) channels are assumed to be activated by the calcium sensor stromal interaction molecule (STIM)which leads to activation of its associated Orai channel. There are two STIM species, and the differential role of the two in SOCE is not entirely clear. In the present study, we were able to distinguish between transfected STIM1, which is more mobile primarily in young neurons, and STIM2 which is less mobile and more prominent in older neurons in culture. STIM1 mobility is associated with spontaneous calcium sparks, local transient rise in cytosolic [Ca2+]i, and in the formation and elongation of dendritic filopodia/spines. In contrast, STIM2 is associated with older neurons, where it is mobile and moves into dendritic spines primarily when cytosolic [Ca2+]i levels are reduced, apparently to activate resident Orai channels. These results highlight a role for STIM1 in the regulation of [Ca2+]i fluctuations associated with the formation of dendritic spines or filopodia in the developing neuron, whereas STIM2 is associated with the maintenance of calcium entry into stores in the adult neuron.

20.
J Physiol ; 597(13): 3473-3502, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31099020

RESUMO

KEY POINTS: Calcium (Ca2+ ) entry mediated by NMDA receptors is considered central to the induction of activity-dependent synaptic plasticity in hippocampal area CA1; this description does not, however, take into account the potential contribution of endoplasmic reticulum (ER) Ca2+ stores. The ER has a heterogeneous distribution in CA1 dendritic spines, and may introduce localized functional differences in Ca2+ signalling between synapses, as suggested by experiments on metabotropic receptor-dependent long-term depression. A physiologically detailed computational model of Ca2+ dynamics at a CA3-CA1 excitatory synapse characterizes the contribution of spine ER via metabotropic signalling during plasticity induction protocols. ER Ca2+ release via IP3 receptors modulates NMDA receptor-dependent plasticity in a graded manner, to selectively promote synaptic depression with relatively diminished effect on LTP induction; this may temper further strengthening at the stronger synapses which are preferentially associated with ER-containing spines. Acquisition of spine ER may thus represent a local, biophysically plausible 'metaplastic switch' at potentiated CA1 synapses, contributing to the plasticity-stability balance in neural circuits. ABSTRACT: Long-term plasticity mediated by NMDA receptors supports input-specific, Hebbian forms of learning at excitatory CA3-CA1 connections in the hippocampus. There exists an additional layer of stabilizing mechanisms that act globally as well as locally over multiple time scales to ensure that plasticity occurs in a constrained manner. Here, we investigated the role of calcium (Ca2+ ) stores associated with the endoplasmic reticulum (ER) in the local regulation of plasticity at individual CA1 synapses. Our study was spurred by (1) the curious observation that ER is sparsely distributed in dendritic spines, but over-represented in larger spines that are likely to have undergone activity-dependent strengthening, and (2) evidence suggesting that ER motility at synapses can be rapid, and accompany activity-regulated spine remodelling. We constructed a physiologically realistic computational model of an ER-bearing CA1 spine, and examined how IP3 -sensitive Ca2+ stores affect spine Ca2+ dynamics during activity patterns mimicking the induction of long-term potentiation and long-term depression (LTD). Our results suggest that the presence of ER modulates NMDA receptor-dependent plasticity in a graded manner that selectively enhances LTD induction. We propose that ER may locally tune Ca2+ -based plasticity, providing a braking mechanism to mitigate runaway strengthening at potentiated synapses. Our study provides a biophysically accurate description of postsynaptic Ca2+ regulation, and suggests that ER in the spine may promote the re-use of hippocampal synapses with saturated strengths.


Assuntos
Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Região CA1 Hipocampal/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA