Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39125092

RESUMO

In response to the suboptimal electrochemical performance of low-valence vanadium oxides, Ganoderma lucidum biomass-derived carbon@V2O3 (V2O3@CGL) composites were prepared by evaporative self-assembly technology and high-temperature calcination. In the prepared composites, V2O3 effectively encapsulates CGL, serving as a support for V2O3 and enhancing electrical conductivity and structural stability. This results in improved overall performance for the composites. They revealed satisfactory electrochemical properties when assembled in aqueous zinc-ion batteries (AZIBs). The preliminary discharge specific capacity of the V2O3@CGL-2 (VOCG-2) composite electrode reached 407.87 mAh g-1 at 0.05 A g-1. After 1000 cycles, the capacity retention is 93.69% at 3 A g-1. This research underscores the feasibility of employing V2O3 and abundantly available biomass for high-performance AZIB cathodes.

2.
Adv Mater ; : e2406152, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073221

RESUMO

A dodecahedral activated N-doped porous carbon scaffold is synthesized and used for the nanoconfinement of Mg(BH4)2. The optimized mesoporous scaffold possesses an accumulated pore width of 2.65 nm, high specific surface area (3955.9 m2 g-1), and large pore volume (2.15 cm3 g-1), providing ample space for the confinement of Mg(BH4)2 particles and numerous surface active sites for interactions with the same. The confined Mg(BH4)2 system features a dehydrogenation onset temperature of 81.5 °C, an extremely high capacity of 10.2 wt% H2, and an almost single-step dehydrogenation profile. Moreover, the system exhibits superior capacity retention of 82.7% after 20 cycles at a moderate temperature of 250 °C. Precise activation control enables a transformation from microporous carbon materials to mesoporous ones, and hence the efficient nanoconfinement of Mg(BH4)2 and realization of one-step dehydrogenation. The evolution of borohydride intermediates is systematically revealed throughout the cycling process. Density functional theory calculations demonstrate defective N heteroatoms within the scaffold are vital in reducing the strength of B─H bonds, and the N-doped carbon can facilitate decomposition of the irreversible MgB12H12 intermediate. This study opens up new avenues for designing robust carbon scaffolds doped with heteroatoms and analyzing intermediate evolution in nanoconfined Mg-based borohydride systems.

3.
Small Methods ; : e2301579, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433396

RESUMO

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are widely utilized in all-solid-state sodium metal batteries (ASSSMBs) due to their excellent flexibility and safety. However, poor ionic conductivity and mechanical strength limit its development. In this work, an emerging solvent-free hot-pressing method is used to prepare mechanically robust PEO-based SPE, while sodium superionic conductors Na3 Zr2 Si2 PO12 (NZSP) and NaClO4 are introduced to improve ionic conductivity. The as-prepared electrolyte exhibits a high ionic conductivity of 4.42 × 10-4 S cm-1 and a suitable electrochemical stability window (4.5 V vs Na/Na+ ). Furthermore, the SPE enables intimate contact with the electrode. The Na||Na3 V2 (PO4 )3 @C ASSSMB delivers a high-capacity retention of 97.1% after 100 cycles at 0.5 C and 60 °C, and exhibits excellent Coulombic efficiency (CE) (close to 100%). The ASSSMB with the 20 µm thick electrolyte also demonstrates excellent cyclic stability. This study provides a promising strategy for designing stable polymer-ceramic composite electrolyte membranes through hot-pressing to realize high-energy-density sodium metal batteries.

4.
Angew Chem Int Ed Engl ; 63(15): e202400539, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332434

RESUMO

Sodium-ion batteries (SIBs) are recognized as promising energy storage devices. However, they suffer from rapid capacity decay at ultra-low temperatures due to high Na+ desolvation energy barrier and unstable solid electrolyte interphase (SEI). Herein, a weakly solvating electrolyte (WSE) with decreased ion-dipole interactions is designed for stable sodium storage in hard carbon (HC) anode at ultra-low temperatures. 2-methyltetrahydrofuran with low solvating power is incorporated into tetrahydrofuran to regulate the interactions between Na+ and solvents. The reduced Na+-dipole interactions facilitate more anionic coordination in the first solvation sheath, which consistently maintains anion-enhanced solvation structures from room to low temperatures to promote inorganic-rich SEI formation. These enable WSE with a low freezing point of -83.3 °C and faster Na+ desolvation kinetics. The HC anode thus affords reversible capacities of 243.2 and 205.4 mAh g-1 at 50 mA g-1 at -40 and -60 °C, respectively, and the full cell of HC||Na3V2(PO4)3 yields an extended lifespan over 250 cycles with high capacity retention of ~100 % at -40 °C. This work sheds new lights on the ion-dipole regulation for ultra-low temperature SIBs.

5.
Adv Mater ; 36(16): e2311523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193311

RESUMO

Layered transition-metal (TM) oxide cathodes have attracted growing attention in sodium-ion batteries (SIBs). However, their practical implementation is plagued by Jahn-Teller distortion and irreversible cation migration, leading to severe voltage decay and structure instability. Herein, O3-Na0.898K0.058Ni0.396Fe0.098Mn0.396Ti0.092O2 (KT-NFM) is reported as an ultrastable cathode material via multisite substitution with rigid KO6 pillars and flexible TiO6 octahedra. The K pillars induce contracted TMO2 slabs and their strong Coulombic repulsion to inhibit Ni/Fe migration; and Ti incorporation reinforces the hybridization of Ni(3deg*)-O(2p) to mitigate the undesired O3-O'3 phase transition. These enable the reversible redox of Ni2+↔Ni3 . 20+ and Fe3+↔Fe3.69+ for 138.6 mAh g-1 and ultrastable cycles with >90% capacity retention after 2000 cycles in a pouch cell of KT-NFM||hard carbon. This will provide insights into the design of ultrastable layered cathode materials of sodium-ion batteries and beyond.

6.
Proc Natl Acad Sci U S A ; 121(5): e2316914121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252828

RESUMO

High-performance sodium storage at low temperature is urgent with the increasingly stringent demand for energy storage systems. However, the aggravated capacity loss is induced by the sluggish interfacial kinetics, which originates from the interfacial Na+ desolvation. Herein, all-fluorinated anions with ultrahigh electron donicity, trifluoroacetate (TFA-), are introduced into the diglyme (G2)-based electrolyte for the anion-reinforced solvates in a wide temperature range. The unique solvation structure with TFA- anions and decreased G2 molecules occupying the inner sheath accelerates desolvation of Na+ to exhibit decreased desolvation energy from 4.16 to 3.49 kJ mol-1 and 24.74 to 16.55 kJ mol-1 beyond and below -20 °C, respectively, compared with that in 1.0 M NaPF6-G2. These enable the cell of Na||Na3V2(PO4)3 to deliver 60.2% of its room-temperature capacity and high capacity retention of 99.2% after 100 cycles at -40 °C. This work highlights regulation of solvation chemistry for highly stable sodium-ion batteries at low temperature.

7.
Adv Sci (Weinh) ; 11(4): e2307134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032135

RESUMO

Sustainability and adaptability in structural design of the organic cathodes present promises for applications in alkali metal ion batteries. Nevertheless, a formidable challenge lies in their high solubility in organic electrolytes, particularly for small molecular materials, impeding cycling stability and high capacity. This study focuses on the design and synthesis of organic small molecules, the isomers of (E)-5,5'-difluoro-[3,3'-biindolinylidene]-2,2'-dione (EFID) and 3,9-difluoro-6,12-dihydrodibenzo [c, h][2,6]naphthyridine-5,11-dione (FBND). While EFID, characterized by a less π-conjugated structure, exhibits subpar cycling stability in lithium-ion batteries (LIBs), intriguingly, another isomer, FBND, demonstrates exceptional capacity and cycling stability in LIBs. FBND delivers a remarkable capacity of 175 mAh g-1 at a current density of 0.05 A g-1 and maintains excellent cycling stability over 2000 cycles, retaining 90% of its initial capacity. Furthermore, an in-depth examination of redox reactions and storage mechanisms of FBND are conducted. The potential of FBND is also explored as an anode in lithium-ion batteries (LIBs) and as a cathode in sodium-ion batteries (SIBs). The FBND framework, featuring extended π-conjugated molecules with an imide structure compared to EFID, proves to be an excellent material template to develop advanced organic small molecular cathode materials for sustainable batteries.

8.
ACS Appl Mater Interfaces ; 15(48): 55620-55632, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983386

RESUMO

There is an enormous drive for moving toward cathode material research in LIBs due to the proposal of zero-emission electric vehicles together with the restriction of cathode materials in design. LiNi0.5Mn1.5O4 (LNMO) attracts great research interests as high-voltage Co-free cathodes in LIBs. However, a more extensive study is required for LNMO due to its poor electrochemical performance, especially at high temperature, because of the instability of the LNMO interface. Herein, we design structural modifications using Mg and Zr to alleviate the above-mentioned drawbacks by limiting Mn dissolution and tailoring interstitial sites (which are shown by structural and electrochemical characterizations). This strategy enhances the cycle life up to 1000 cycles at both 25 and 50 °C. In addition, a thorough characterization by impedance spectroscopy is applied to give an insight into the electronic and ionic transport properties and the intricate phase transitions occurring upon oxidation and reduction.

9.
Proc Natl Acad Sci U S A ; 120(48): e2314408120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983506

RESUMO

Sodium-sulfur (Na-S) batteries are attracting intensive attention due to the merits like high energy and low cost, while the poor stability of sulfur cathode limits the further development. Here, we report a chemical and spatial dual-confinement approach to improve the stability of Na-S batteries. It refers to covalently bond sulfur to carbon at forms of C-S/N-C=S bonds with high strength for locking sulfur. Meanwhile, sulfur is examined to be S1-S2 small species produced by thermally cutting S8 large molecules followed by sealing in the confined pores of carbon materials. Hence, the sulfur cathode achieves a good stability of maintaining a high-capacity retention of 97.64% after 1000 cycles. Experimental and theoretical results show that Na+ is hosted via a coordination structure (N···Na···S) without breaking the C-S bond, thus impeding the formation and dissolution of sodium polysulfide to ensure a good cycling stability. This work provides a promising method for addressing the S-triggered stability problem of Na-S batteries and other S-based batteries.

10.
J Colloid Interface Sci ; 652(Pt B): 1522-1532, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660609

RESUMO

Anode materials with excellent rate capability, capacity, and cycle life have been a challenge in obtaining cost-effective K-ion batteries (KIBs). Based on the concept of waste recycling, we prepared the S-doped (21.5%) amorphous carbon/carbon quantum dots coupled micro-frame (SCMF) by combining chemical exfoliation and S/Se-assisted carbonization. SCMF exhibited the advantages of integrating amorphous carbon and carbon quantum dots (CQDs). The CQDs serve as fast electron channels, while amorphous carbon can accommodate more large-size K-ions and mitigate volume expansion. In KIBs, SCMF maintained a high reversible capacity (414.0 mAh g-1, after 100 cycles at 100 mA g-1), a good rate capability (224.0 mAh g-1, 2000 mA g-1), and excellent capacity retention (208.9 mAh g-1, after 2000 cycles at 1000 mA g-1). The molecular dynamic simulation revealed that CQDs provided fast electron transport channels and that C, O and S atoms had suitable interactions with K, facilitating potassium storage. Moreover, the potassium-ion capacitor (PIC) assembled from SCMF and activated carbon exhibited stable electrochemical performance, proving its potential for application. The research provided valuable insights into the reuse of biomass waste in new secondary batteries.

11.
ACS Appl Mater Interfaces ; 15(36): 43145-43158, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37649386

RESUMO

Anode-free lithium metal batteries (AFLMBs) offer high-energy-density battery systems, but their commercial viability is hindered by irregular lithium dendrite growth and "dead Li" formation caused by current collector defects. This study employed filtered cathode vacuum arc (FCVA) technology to fabricate Cu current collectors (CCs) with a lithiophilic Zn3N2 film. This advanced preparation process ensures an evenly distributed film that reduces the nucleation overpotential, homogenizes the interfacial electric field during plating/stripping processes, inhibits lithium dendrite growth, and forms a stable solid-electrolyte interphase (SEI). Our results show that the advanced Zn3N2@Cu CCs exhibit superior performance with a high CE of above 99.3% after 230 cycles at a current density of 0.5 mA cm-2 and an area capacity of 1 mAh cm-2. Additionally, Li-Zn3N2@Cu||Li-Zn3N2@Cu symmetrical cells had a longer stable cycle time of over 1000 h than that of Li||Li and Li-Cu||Li-Cu symmetrical cells at a current density of 1 mA cm-2 and an area capacity of 2 mAh cm-2. Compared with bare Cu CCs, the capacity retention rate is increased from 14.9 to 63.1% after 100 cycles with a 0.5C rate in the AFLMBs with LFP as the cathode. This work provides a pioneering, eco-friendly, and effective solution for the fabrication of anode CCs in AFLMBs, addressing a significant challenge in their commercial application.

12.
ACS Appl Mater Interfaces ; 15(30): 36394-36403, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37479676

RESUMO

A lithium-rich manganese-based cathode material (LRMC) is currently considered as one of the most promising next-generation materials for lithium-ion batteries, which has received much attention, but the LRMC still faces some key scientific issues to break through, such as poor rate capacity, rapid voltage, capacity decay, and low first coulomb efficiency. In this work, homogeneous Li2ZrO3 (LZO) was successfully coated on the surface of Li1.2Mn0.54Ni0.13Co0.13O2 (LRO) by molten salt-assisted sintering technology. Li2ZrO3 has good chemical and electrochemical stability, which can effectively inhibit the side reaction between electrode materials and electrolytes and reduce the dissolution of transition metal ions. Thus, the as-prepared LRO@LZO composites are expected to improve the cycling performance. It can be found that the discharge specific capacity of LRO is 271 mAh g-1 at 0.1 C, and the capacity retention rate is still 93.7% after 100 cycles at 1 C. In addition, Li2ZrO3 is an excellent lithium-ion conductor, which is prone to increasing the lithium-ion transfer rate and improving the rate capacity of LRO. Therefore, this study provides a new solution to improve the structure stability and electrochemical performance of LRMCs.

13.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903389

RESUMO

In terms of new-generation energy-storing devices, aqueous zinc-ion batteries (AZIBs) are becoming the prime candidates because of their inexpensive nature, inherent safety, environmental benignity and abundant resources. Nevertheless, due to a restrained selection of cathodes, AZIBs often perform unsatisfactorily under long-life cycling and high-rate conditions. Consequently, we propose a facile evaporation-induced self-assembly technique for preparing V2O3@carbonized dictyophora (V2O3@CD) composites, utilizing economical and easily available biomass dictyophora as carbon sources and NH4VO3 as metal sources. When assembled in AZIBs, the V2O3@CD exhibits a high initial discharge capacity of 281.9 mAh g-1 at 50 mA g-1. The discharge capacity is still up to 151.9 mAh g-1 after 1000 cycles at 1 A g-1, showing excellent long-cycle durability. The extraordinary high electrochemical effectiveness of V2O3@CD could be mainly attributed to the formation of porous carbonized dictyophora frame. The formed porous carbon skeleton can ensure efficient electron transport and prevent V2O3 from losing electrical contact due to volume changes caused by Zn2+ intercalation/deintercalation. The strategy of metal-oxide-filled carbonized biomass material may provide insights into developing high-performance AZIBs and other potential energy storage devices, with a wide application range.

14.
Angew Chem Int Ed Engl ; 62(25): e202302767, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36883964

RESUMO

Solid-state lithium-metal batteries are considered as the next generation of high-energy-density batteries. However, their solid electrolytes suffer from low ionic conductivity, poor interface performance, and high production costs, restricting their commercial application. Herein, a low-cost cellulose acetate-based quasi-solid composite polymer electrolyte (C-CLA QPE) was developed with a high Li+ transference number ( t L i + ${{t}_{{{\rm L}{\rm i}}^{+}}}$ ) of 0.85 and excellent interface stability. The prepared LiFePO4 (LFP)|C-CLA QPE|Li batteries exhibited excellent cycle performance with a capacity retention of 97.7 % after 1200 cycles at 1 C and 25 °C. The experimental results and Density Function Theory (DFT) simulation revealed that the partially esterified side groups in the CLA matrix contribute to the migration of Li+ and enhance electrochemical stability. This work provides a promising strategy for fabricating cost-effective, stable polymer electrolytes for solid-state lithium batteries.


Assuntos
Lítio , Polímeros , Metais , Celulose , Simulação por Computador
15.
Adv Mater ; 35(7): e2207131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36305595

RESUMO

Growth of dendrites, limited coulombic efficiency (CE), and the lack of high-voltage electrolytes restrict the commercialization of zinc batteries and capacitors. These issues are resolved by a new electrolyte, based on the zinc(II)-betaine complex [Zn(bet)2 ][NTf2 ]2 . Solutions in acetonitrile (AN) avoid dendrite formation. A Zn||Zn cell operates stably over 10 110 h (5055 cycles) at 0.2 mA cm-2 or 110 h at 50 mA cm-2 , and has an area capacity of 113 mAh cm-2 at 80% depth of discharge. A zinc-graphite battery performs at 2.6 V with a midpoint discharge-voltage of 2.4 V. The capacity-retention at 3 A g-1 (150 C) is 97% after 1000 cycles and 68% after 10 000 cycles. The charge/discharge time is about 24 s at 3.0 A g-1 with an energy density of 49 Wh kg-1 at a power density of 6864 W kg-1 based on the cathode. A zinc||activated-carbon ion-capacitor (coin cell) exhibits an operating-voltage window of 2.5 V, an energy density of 96 Wh kg-1 with a power density of 610 W kg-1 at 0.5 A g-1 . At 12 A g-1 , 36 Wh kg-1 , and 13 600 W kg-1 are achieved with 90% capacity-retention and an average CE of 96% over 10 000 cycles. Quantum-chemical methods and vibrational spectroscopy reveal [Zn(bet)2 (AN)2 ]2+ as the dominant complex in the electrolyte.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36282634

RESUMO

LiMn1.5Ni0.5O4 (LMNO) spinel has recently been the subject of intense research as a cathode material because it is cheap, cobalt-free, and has a high discharge voltage (4.7 V). However, the decomposition of conventional liquid electrolytes on the cathode surface at this high oxidation state and the dissolution of Mn2+ have hindered its practical utility. We report here that simply ball-mill coating LMNO using flame-made nanopowder (NPs, 5-20 wt %, e.g., LiAlO2, LATSP, LLZO) electrolytes generates coated composites that mitigate these well-recognized issues. As-synthesized composite cathodes maintain a single P4332 cubic spinel phase. Transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS) show island-type NP coatings on LMNO surfaces. Different NPs show various effects on LMNO composite cathode performance compared to pristine LMNO (120 mAh g-1, 93% capacity retention after 50 cycles at C/3, ∼67 mAh g-1 at 8C, and ∼540 Wh kg-1 energy density). For example, the LMNO + 20 wt % LiAlO2 composite cathodes exhibit Li+ diffusivities improved by two orders of magnitude over pristine LMNO and discharge capacities up to ∼136 mAh g-1 after 100 cycles at C/3 (98% retention), while 10 wt % LiAlO2 shows ∼110 mAh g-1 at 10C and an average discharge energy density of ∼640 Wh kg-1. Detailed postmortem analyses on cycled composite electrodes demonstrate that NP coatings form protective layers. In addition, preliminary studies suggest potential utility in all-solid-state batteries (ASSBs).

17.
Nanomaterials (Basel) ; 12(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080106

RESUMO

Solid-state lithium batteries have attracted much attention due to their special properties of high safety and high energy density. Among them, the polymer electrolyte membrane with high ionic conductivity and a wide electrochemical window is a key part to achieve stable cycling of solid-state batteries. However, the low ionic conductivity and the high interfacial resistance limit its practical application. This work deals with the preparation of a composite solid electrolyte with high mechanical flexibility and non-flammability. Firstly, the crystallinity of the polymer is reduced, and the fluidity of Li+ between the polymer segments is improved by tertiary polymer polymerization. Then, lithium salt is added to form a solpolymer solution to provide Li+ and anion and then an inorganic solid electrolyte is added. As a result, the composite solid electrolyte has a Li+ conductivity (3.18 × 10-4 mS cm-1). The (LiNi0.5Mn1.5O4)LNMO/SPLL (PES-PVC-PVDF-LiBF4-LAZTP)/Li battery has a capacity retention rate of 98.4% after 100 cycles, which is much higher than that without inorganic oxides. This research provides an important reference for developing all-solid-state batteries in the greenhouse.

18.
Small ; 18(14): e2107357, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182015

RESUMO

Lithium-ion batteries based on single-crystal LiNi1- x - y Cox Mny O2 (NCM, 1-x-y ≥ 0.6) cathode materials are gaining increasing attention due to their improved structural stability resulting in superior cycle life compared to batteries based on polycrystalline NCM. However, an in-depth understanding of the less pronounced degradation mechanism of single-crystal NCM is still lacking. Here, a detailed postmortem study is presented, comparing pouch cells with single-crystal versus polycrystalline LiNi0.60 Co0.20 Mn0.20 O2 (NCM622) cathodes after 1375 dis-/charge cycles against graphite anodes. The thickness of the cation-disordered layer forming in the near-surface region of the cathode particles does not differ significantly between single-crystal and polycrystalline particles, while cracking is pronounced for polycrystalline particles, but practically absent for single-crystal particles. Transition metal dissolution as quantified by time-of-flight mass spectrometry on the surface of the cycled graphite anode is much reduced for single-crystal NCM622. Similarly, CO2 gas evolution during the first two cycles as quantified by electrochemical mass spectrometry is much reduced for single-crystal NCM622. Benefitting from these advantages, graphite/single-crystal NMC622 pouch cells are demonstrated with a cathode areal capacity of 6 mAh cm-2 with an excellent capacity retention of 83% after 3000 cycles to 4.2 V, emphasizing the potential of single-crystalline NCM622 as cathode material for next-generation lithium-ion batteries.

19.
Angew Chem Int Ed Engl ; 61(14): e202116668, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-34994498

RESUMO

Due to the large abundance, low redox potential, and multivalent properties of calcium (Ca), Ca-ion batteries (CIBs) show promising prospects for energy storage applications. However, current research on CIBs faces the challenges of unsatisfactory cycling stability and capacity, mainly restricted by the lack of suitable electrolytes and electrode materials. Herein, we firstly developed a 3.5 m concentrated electrolyte with a calcium bis(fluorosulfonyl)imide (Ca(FSI)2 ) salt dissolved in carbonate solvents. This electrolyte significantly improved the intercalation capacity for anions in the graphite cathode and contributed to the reversible insertion of Ca2+ in the organic anode. By combining this concentrated electrolyte with the low-cost and environmentally friendly graphite cathode and organic anode, the assembled Ca-based dual-ion battery (Ca-DIB) exhibits 75.4 mAh g-1 specific discharge capacity at 100 mA g-1 and 84.7 % capacity retention over 350 cycles, among the best results known for CIBs.

20.
ACS Appl Mater Interfaces ; 13(48): 57317-57325, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817991

RESUMO

Cycle stability improvement of a high-capacity Si anode is a challenge for its wide application in high-energy-density lithium-ion batteries. Active amorphous/nanosized Si embedded in an inactive matrix is a strategy to improve the cycle stability of Si anodes. Ternary Si100-x-yTixBy (5 ≤ y ≤ x ≤ 20) alloys are designed and prepared by ball milling using elemental Si, Ti, and B as starting materials. The formation sequence of inactive phases during mechanical alloying is predicted by an effective heat-of-formation model and verified by microstructural characterization. The local-fine distribution of free amorphous and nanocrystalline Si in the Si100-x-yTixBy is analyzed by confocal µ-Raman spectroscopy. When used as lithium-ion anodes, the capacity and voltage affected by Si and inactive compounds in the Si100-x-yTixBy are concerned to assess their high energy density. Furthermore, the impact of free active Si, the inactive phase, and amorphous Si on the cyclability of Si100-x-yTixBy is studied. The results show that the Si100-x-yTixBy material is a potential anode for high-energy-density Li-ion batteries and could be used to guide the design of multi-component Si-alloy anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA