Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(16): e2209279, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738101

RESUMO

Self-assembly of nanocrystals into superlattices is a fascinating process that not only changes geometric morphology, but also creates unique properties that considerably enrich the material toolbox for new applications. Numerous studies have driven the blossoming of superlattices from various aspects. These include precise control of size and morphology, enhancement of properties, exploitation of functions, and integration of the material into miniature devices. The effective synthesis of metal-halide perovskite nanocrystals has advanced research on self-assembly of building blocks into micrometer-sized superlattices. More importantly, these materials exhibit abundant optical features, including highly coherent superfluorescence, amplified spontaneous laser emission, and adjustable spectral redshift, facilitating basic research and state-of-the-art applications. This review summarizes recent advances in the field of metal-halide perovskite superlattices. It begins with basic packing models and introduces various stacking configurations of superlattices. The potential of multiple capping ligands is also discussed and their crucial role in superlattice growth is highlighted, followed by detailed reviews of synthesis and characterization methods. How these optical features can be distinguished and present contemporary applications is then considered. This review concludes with a list of unanswered questions and an outlook on their potential use in quantum computing and quantum communications to stimulate further research in this area.

2.
Nanomaterials (Basel) ; 11(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34835599

RESUMO

A new strategy using silver nanoparticles (Ag NPs) to synthesize thiolated Au NCs is demonstrated. The quasi-spherical Ag NPs serve as a platform, functioning as a reducing agent for Au (III) and attracting capping ligands to the surface of the Ag NPs. Glutathione disulfide (GSSG) and dithiothreitol (DTT) were used as capping ligands to synthesize thiolated Au NCs (glutathione-Au NCs and DTT-Au NCs). The glutathione-Au NCs and DTT-Au NCs showed red color luminance with similar emission wavelengths (630 nm) at an excitation wavelength of 354 nm. The quantum yields of the glutathione-Au NCs and DTT-Au NCs were measured to be 7.3% and 7.0%, respectively. An electrophoretic mobility assay showed that the glutathione-Au NCs moved toward the anode, while the DTT-Au NCs were not mobile under the electric field, suggesting that the total net charge of the thiolated Au NCs is determined by the charges on the capping ligands. The detection of the KSV values, 26 M-1 and 0 M-1, respectively, revealed that glutathione-Au NCs are much more accessible to an aqueous environment than DTT-Au NCs.

3.
ACS Appl Mater Interfaces ; 13(39): 47072-47080, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34581182

RESUMO

Perovskite nanocrystals (PNCs) have demonstrated their potential use in many applications such as optical encryption because of their excellent optical properties. However, the optical encryption using PNCs is mainly based on the formation of static patterns with luminescence on/off switching. In this work, we demonstrated that the capping ligands play an important role in tuning the luminescence intensity of the PNCs during ion exchange. The surfactant, oleylamine (OAm), is essential in shifting the luminescence color of the PNCs from green to yellow during the ion exchange. In the absence of OAm, the luminescence in the green and yellow regions is quenched during the ion exchange and the luminescence is recovered in the red region by adding trioctylphosphine (TOP) into the ion-exchange solution. On the basis of these findings, we proposed a dynamic optical encryption strategy using PNCs with different capping ligands by tuning the luminescence intensity. The encoded message is hidden in the green pattern at the beginning, shown during the ion exchange, and erased when the pattern is completely converted from a green color to a red color after the ion exchange ends. This dynamic encryption strategy enhances the security level and is compatible with human eye-perceivable patterns and binary coding algorithms.

4.
ACS Appl Mater Interfaces ; 13(31): 37553-37562, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338503

RESUMO

Liquid-phase transmission electron microscopy (LP-TEM) enables real-time imaging of nanoparticle self-assembly, formation, and etching with single nanometer resolution. Despite the importance of organic nanoparticle capping ligands in these processes, the effect of electron beam irradiation on surface-bound and soluble capping ligands during LP-TEM imaging has not been investigated. Here, we use correlative LP-TEM and fluorescence microscopy (FM) to demonstrate that polymeric nanoparticle ligands undergo competing crosslinking and chain scission reactions that nonmonotonically modify ligand coverage over time. Branched polyethylenimine (BPEI)-coated silver nanoparticles were imaged with dose-controlled LP-TEM followed by labeling their primary amine groups with fluorophores to visualize the local thickness of adsorbed capping ligands. FM images showed that free ligands crosslinked in the LP-TEM image area over imaging times of tens of seconds, enhancing local capping ligand coverage on nanoparticles and silicon nitride membranes. Nanoparticle surface ligands underwent chain scission over irradiation times of minutes to tens of minutes, which depleted surface ligands from the nanoparticle and silicon nitride surface. Conversely, solutions of only soluble capping ligand underwent successive crosslinking reactions with no chain scission, suggesting that nanoparticles enhanced the chain scission reactions by acting as radiolysis hotspots. The addition of a hydroxyl radical scavenger, tert-butanol, eliminated chain scission reactions and slowed the progression of crosslinking reactions. These experiments have important implications for performing controlled and reproducible LP-TEM nanoparticle imaging as they demonstrate that the electron beam can significantly alter ligand coverage on nanoparticles in a nonintuitive manner. They emphasize the need to understand and control the electron beam radiation chemistry of a given sample to avoid significant perturbations to the nanoparticle capping ligand chemistry, which are invisible in electron micrographs.

5.
ACS Nano ; 15(2): 2578-2588, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33496576

RESUMO

Colloidal synthesis of alloyed multimetallic nanocrystals with precise composition control remains a challenge and a critical missing link in theory-driven rational design of functional nanomaterials. Liquid-phase transmission electron microscopy (LP-TEM) enables direct visualization of nanocrystal formation mechanisms that can inform discovery of design rules for nanocrystal synthesis, but it remains unclear whether the salient flask synthesis chemistry is preserved under electron beam irradiation during LP-TEM. Here, we demonstrate controlled in situ LP-TEM synthesis of alloyed AuCu nanocrystals while maintaining the molecular structure of electron beam sensitive metal thiolate precursor complexes. Ex situ flask synthesis experiments formed alloyed nanocrystals containing on average 70 atomic% Au using heteronuclear metal thiolate complexes as a precursor, while gold-rich alloys with nearly no copper formed in their absence. Systematic dose rate-controlled in situ LP-TEM synthesis experiments established a range of electron beam synthesis conditions that formed alloyed AuCu nanocrystals that had statistically indistinguishable alloy composition, aggregation state, and particle size distribution shape compared to ex situ flask synthesis, indicating the flask synthesis chemistry was preserved under these conditions. Reaction kinetic simulations of radical-ligand reactions revealed that polymer capping ligands acted as effective hydroxyl radical scavengers during LP-TEM synthesis and prevented oxidation of metal thiolate complexes at low dose rates. Our results revealed a key role of the capping ligands aside from their well-known functions, which was to prevent copper oxidation and facilitate formation of prenucleation cluster intermediates via formation of metal thiolate complexes. This work demonstrates that complex ion precursor chemistry can be maintained during LP-TEM imaging, enabling probing nonclassical nanocrystal formation mechanisms with LP-TEM under reaction conditions representative of ex situ flask synthesis.

6.
Nano Lett ; 18(11): 6795-6803, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30160126

RESUMO

Among the various reported post synthetic modifications of colloidal nanocrystals, cation exchange (CE) is one of the most promising and versatile approaches for the synthesis of nanostructures that cannot be directly synthesized from their constitutive precursors. Numerous studies have reported on the qualitative analysis of these reactions, but rigorous quantitative study of the thermodynamics of CE in colloidal nanoparticles is still lacking. We demonstrate using isothermal titration calorimetry (ITC), the thermodynamics of the CE between cadmium selenide (CdSe) nanocrystals and silver in solution can be quantified. We survey the influence of CdSe nanocrystal diameter, capping ligands and temperature on the thermodynamics of the exchange reaction. Results obtained from ITC provide a detailed description of overall thermodynamic parameters-equilibrium constant ( K eq), enthalpy (Δ H), entropy (Δ S) and stoichiometry ( n)-of the exchange reaction. We compared the free energy change of reaction (Δ G) between CdSe and Ag+ obtained directly from ITC for both CdSe bulk and nanoparticles with values calculated from previously reported methods. While the calculated value is closer to the experimentally obtained Δ G rxn for bulk particles, nanocrystals show an additional Gibbs free energy stabilization of ∼-14 kJ/mol Se. We discuss a thermochemical cycle elucidating the steps involved in the overall cation exchange process. This work demonstrates the application of ITC to probe the thermochemistry of nanoscale transformations under relevant solution conditions.

7.
Nano Lett ; 17(7): 4443-4452, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28590743

RESUMO

The interfacial adsorption, desorption, and exchange behaviors of thiolated ligands on nanotextured Au nanoparticle surfaces exhibit phenomenal site-to-site variations essentially dictated by the local surface curvatures, resulting in heterogeneous thermodynamic and kinetic profiles remarkably more sophisticated than those associated with the self-assembly of organothiol ligand monolayers on atomically flat Au surfaces. Here we use plasmon-enhanced Raman scattering as a spectroscopic tool combining time-resolving and molecular fingerprinting capabilities to quantitatively correlate the ligand dynamics with detailed molecular structures in real time under a diverse set of ligand adsorption, desorption, and exchange conditions at both equilibrium and nonequilibrium states, which enables us to delineate the effects of nanoscale surface curvature on the binding affinity, cooperativity, structural ordering, and the adsorption/desorption/exchange kinetics of organothiol ligands on colloidal Au nanoparticles. This work provides mechanistic insights on the key thermodynamic, kinetic, and geometric factors underpinning the surface curvature-dependent interfacial ligand behaviors, which serve as a central knowledge framework guiding the site-selective incorporation of desired surface functionalities into individual metallic nanoparticles for specific applications.

8.
Nano Lett ; 17(4): 2713-2718, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28346828

RESUMO

When nanocrystals are made to undergo chemical transformations, there are often accompanying large mechanical deformations and changes to overall particle morphology. These effects can constrain development of multistep synthetic methods through loss of well-defined particle morphology and functionality. Here, we demonstrate a surface protection strategy for solution phase chemical conversion of colloidal nanostructures that allows for preservation of overall particle morphology despite large volume changes. Specifically, via stabilization with strong coordinating capping ligands, we demonstrate the effectiveness of this method by transforming ß-FeOOH nanorods into magnetic Fe3O4 nanorods, which are known to be difficult to produce directly. The surface-protected conversion strategy is believed to represent a general self-templating method for nanocrystal synthesis, as confirmed by applying it to the chemical conversion of nanostructures of other morphologies (spheres, rods, cubes, and plates) and compositions (hydroxides, oxides, and metal organic frameworks).

9.
Adv Mater ; 28(27): 5689-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26823380

RESUMO

Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs.

10.
Small ; 11(43): 5728-39, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26395565

RESUMO

Capping agents play an important role in the colloidal synthesis of nanomaterials because they control the nucleation and growth of particles, as well as their chemical and colloidal stability. During recent years tetrazole derivatives have proven to be advanced capping ligands for the stabilization of semiconductor and metal nanoparticles. Tetrazole-capped nanoparticles can be prepared by solution-phase or solventless single precursor approaches using metal derivatives of tetrazoles. The solventless thermolysis of metal tetrazolates can produce both individual semiconductor nanocrystals and nanostructured metal monolithic foams displaying low densities and high surface areas. Alternatively, highly porous nanoparticle 3D assemblies are achieved through the controllable aggregation of tetrazole-capped particles in solutions. This approach allows for the preparation of non-ordered hybrid structures consisting of different building blocks, such as mixed semiconductor and metal nanoparticle-based (aero)gels with tunable compositions. Another unique property of tetrazoles is their complete thermal decomposition, forming only gaseous products, which is employed in the fabrication of organic-free semiconductor films from tetrazole-capped nanoparticles. After deposition and subsequent thermal treatment these films exhibit significantly improved electrical transport. The synthetic availability and advances in the functionalization of tetrazoles necessitate further design and study of tetrazole-capped nanoparticles for various applications.

11.
J Phys Chem Lett ; 6(12): 2170-6, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26266587

RESUMO

Surface-curvature-amplified conformational disorder in alkyl capping ligands has been observed previously when the nanoparticle radii approach the ligand length. Herein, sum frequency generation studies on oleic-acid-capped nanoplates show that even on faceted surfaces with dimensions tens of times greater than the ligand length a significant proportion of gauche defects exist in the capping layer. The molecular disorder on the nanosized facets is attributed to a facet-edge effect, which is diminished when increasing the facet size or assembling the nanofacets side to side. This feature is further explored to probe the self-assembly dynamics of nanoplates.

12.
Chemistry ; 21(29): 10296-301, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26096150

RESUMO

Control over particle size and composition are pivotal to tune the properties of metal organic frameworks (MOFs), for example, for biomedical applications. Particle-size control and functionalization of MIL-88A were achieved by using stoichiometric replacement of a small fraction of the divalent fumarate by monovalent capping ligands. A fluorine-capping ligand was used to quantify the surface coverage of capping ligand at the surface of MIL-88A. Size control at the nanoscale was achieved by using a monovalent carboxylic acid-functionalized poly(ethylene glycol) (PEG-COOH) ligand at different concentrations. Finally, a biotin-carboxylic acid capping ligand was used to functionalize MIL-88A to bind fluorescently labeled streptavidin as an example towards bioapplications.

13.
ACS Appl Mater Interfaces ; 7(15): 7838-42, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25838194

RESUMO

Ultrathin gold nanowires (AuNWs) with diameters below 2 nm and high aspect ratios are considered to be a promising base material for transparent electrodes. To achieve the conductivity expected for this system, oleylamine must be removed. Herein we present the first study on the conductivity, optical transmission, stability, and structure of AuNW networks before and after sintering with different techniques. Freshly prepared layers consisting of densely packed AuNW bundles were insulating and unstable, decomposing into gold spheres after a few days. Plasma treatments increased the conductivity and stability, coarsened the structure, and left the optical transmission virtually unchanged. Optimal conditions reduced sheet resistances to 50 Ω/sq.

14.
Beilstein J Nanotechnol ; 5: 1664-1674, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383278

RESUMO

We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabricated by a combination of self-assembly and microcontact printing techniques, and are characterized by electron microscopy, UV-visible spectroscopy and Raman spectroscopy. Selective binding of the S-BPP molecules to the gold nanoparticles through Au-S bonds is found, with no evidence for the formation of N-Au bonds between the pyridine or pyrazole groups of BPP and the gold surface. Subtle, but significant shifts with temperature of specific Raman S-BPP modes are also observed. We attribute these to dynamic changes in the orientation and/or increased mobility of the molecules on the gold nanoparticle facets. As for their conductance, the temperature-dependence for S-BPP networks differs significantly from standard alkanethiol-capped networks, especially above 220 K. Relating the latter two observations, we propose that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures.

15.
ACS Nano ; 8(9): 9463-70, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25131410

RESUMO

The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA