Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.742
Filtrar
1.
J Exp Bot ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140865

RESUMO

Capsanthin and capsorubin are red κ-xanthophylls exclusively found in a handful of other plant species. Currently, capsanthin and capsorubin are only extracted from red pepper. Here, high purity production of capsanthin and capsorubin has been achieved in carrot taproot by synthetic metabolic engineering strategy. Expression of a capsanthin-capsorubin synthase gene (CaCCS) from pepper resulted in dominant production of capsanthin whereas expression of a LiCCS gene from tiger lily resulted in production of both capsanthin and capsorubin in carrot taproot. The highest content of capsanthin and capsorubin was obtained in LiC-1 carrot taproot hosting the LiCCS gene, 150.09 µg/g DW (dry weight). Co-expression of DcBCH1 with CCS could improve the purity of capsanthin and capsorubin by eliminating the non-target carotenoids (eg. α-carotene and ß-carotene). The highest purity of capsanthin and capsorubin was obtained in BLiC-1 carrot taproot hosting DcBCH1+LiCCS genes, 91.10% of total carotenoids. The non-native pigments were esterified partially and stored in the globular chromoplast of carrot taproot. Our results demonstrated the possibility of employing carrot taproot as green factories for high purity production of capsanthin and capsorubin. The capsanthin/capsorubin carrot germplasms were also valuable materials for breeding colorful carrots cultivars.

2.
Food Res Int ; 192: 114779, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147467

RESUMO

Rice bran protein fibril (RBPF)-high internal phase Pickering emulsions (HIPPEs) loaded with ß-carotene (CE) were constructed to enhance stability and bioavailability of CE. Rice bran (RB) protein with varying oxidation degrees was extracted from RB with varying storage period (0-10 days) to prepare RBPF by acid-heating (90 °C, 2-12 h) to stabilize HIPPEs. The influence of protein oxidation on the encapsulation properties of RBPF-HIPPEs was studied. The results showed that CE-HIPPEs could be stably stored for 56 days at 25 °C. When RB storage time was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs and the CE degradation rate initially fell, and then grew as the acid-heating time prolonged, while the ζ-potential value, viscosity, viscoelasticity, free fatty acid (FFA) release rate, and bioaccessibility first rose, and subsequently fell. When acid-heating time of RBPF was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs initially fell, and subsequently increased with RB storage time extended, while the ζ-potential value, viscosity, viscoelasticity, FFA release rate, and bioaccessibility initially increased, and then decreased. Overall, Moderate oxidation and moderate acid-heating enhanced the stability as well as rheological properties of CE-HIPPEs, thus improving the stability and bioaccessibility of CE. This study offered a new insight into the delivery of bioactive substances by protein fibril aggregates-based HIPPEs.


Assuntos
Emulsões , Oryza , Oxirredução , Tamanho da Partícula , beta Caroteno , beta Caroteno/química , Oryza/química , Disponibilidade Biológica , Proteínas de Plantas/química , Viscosidade , Malondialdeído
3.
Food Chem ; 460(Pt 3): 140745, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126945

RESUMO

An antioxidant amyloid fibril was prepared as an emulsifier by fibrillating limited enzymatic hydrolysis-modified rice protein (HRP). The purpose of this study was to investigate the feasibility of using fibrillated HRP to stabilize oil-in-water emulsion. A free radical scavenging assay revealed that the antioxidant activity of fibrillated HRP was 2.09 times higher than that of native rice protein. Fibrillated HRP demonstrated a marked reduction in interfacial tension, increased surface hydrophobicity and contact angle (> 80°), and rapid adsorption to the interface, with 35.34 ± 2.43% interfacial adsorbed protein content. The fibrillated HRP barriers resisted environment stresses such as NaCl, pH variations, long-term storage, while reducing lipid oxidation degree. Additionally, fibrillated HRP-based emulsion was more effective in protecting ß-carotene from degradation compared to other samples. These findings provide theoretical support for the development of rice protein-based antioxidant emulsifiers and modification of emulsifying properties of plant proteins.

4.
Molecules ; 29(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125059

RESUMO

Vitamin K, as a natural protector of our blood, bones, kidneys, and brain, is essential for human health. It is also considered an effective anti-aging agent with comprehensive biological effects, including antifungal, antibacterial, anti-inflammatory, analgesic, and even antioxidant properties. Of these, the least is known about the antioxidant properties of natural vitamin K. To fill this gap, this study compared the antioxidant properties of extracts obtained from commonly consumed green plants with different vitamin K contents with the activity of vitamin K standard solutions at concentrations corresponding to the vitamin K contents in the extracts. Various measurement methods were used in the research (i.e., DPPH, FRAP, CUPRAC, and the ß-carotene bleaching test). Among the tested methods, the ß-carotene bleaching test is the most sensitive in the assessment of this unusual compound. In light of the data presented, the antioxidant response of vitamin K alone is dose-dependent. However, in extracts, the activity of this compound is modulated by other constituents present in them. As a result, the activity does not always correlate with vitamin K content. The presented data supplement the knowledge about the antioxidant properties with the contribution resulting from the presence of vitamin K in green plant extracts.


Assuntos
Antioxidantes , Extratos Vegetais , Vitamina K , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Vitamina K/farmacologia , beta Caroteno/química , Humanos
5.
Dokl Biol Sci ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128955

RESUMO

The wild soybean Glycine soja Sieb. et Zucc. is an ancestor of the cultivated soybean Glycine max (L.) Merr. and a source of many valuable genes missing in the G. max genome, including genes that determine stress resistance to adverse environmental factors. Biochemical parameters (protein, oil, ascorbic acid, carotene, higher fatty acids, and specific activities and multiple forms of enzymes of the oxidoreductase and hydrolase classes) were studied in five G. soja accessions from the collection of the All-Russian Institute of Soybean (КА-1413, КА-342, КBl-29, КBl-24, and Kеl-72). The accessions provide unique natural gene banks. Wild seeds were collected in three districts (Arkharinskii, Blagoveshchensk, and Belogorskii) of Amur Oblast. Based on superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO), ribonuclease (RNase), acid phosphatase, esterase, and amylase (AML) activities and biochemical parameters of seeds, the G. soja accession KA-1413 was found to have higher contents of protein, oleic acid, and linolenic acid; a lower polyphenol oxidase specific activity; and higher activities of SODs, esterases, and RNases. The accession KA-1413 was therefore recommended to use as a source of dominant genes in breeding to increase the adaptive potential of new soybean varieties. A higher heterogeneity of multiple forms was observed for SOD, AML, RNase, and esterase, which can provide markers of adaptation to environmental conditions.

6.
J Agric Food Chem ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174497

RESUMO

Based on in vitro digestion, micellar synthesis, and Caco-2 cell model, this study investigated the effects of typical flavonoids in citrus (naringenin, naringin, hesperetin, hesperidin, quercetin, and rutin) at different doses on the micellization and cellular uptake of ß-carotene. In in vitro digestion, low-dose flavonoids enhanced ß-carotene bioaccesssibility by regulating the stability and dispersibility of the intestinal medium, particularly quercetin, which significantly increased the bioaccessibility by 44.6% (p < 0.05). Furthermore, naringenin, hesperetin, hesperidin, and quercetin enhanced the micellar incorporation rate of ß-carotene; however, naringin and rutin exhibited an opposite effect, particularly naringin, which significantly reduced it by 71.3% (p < 0.05). This phenomenon could be attributed to the high solubility of naringin and rutin in micelles, resulting in a competitive inhibitory effect on ß-carotene. Besides, all treatments significantly enhanced ß-carotene cellular uptake (p < 0.05) by promoting the expression of scavenger receptor class B type I and Niemann-Pick C1-Like 1.

7.
Plant J ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121193

RESUMO

Biofortification of green leafy vegetables with pro-vitamin A carotenoids, such as ß-carotene, has remained challenging to date. Here, we combined two strategies to achieve this goal. One of them involves producing ß-carotene in the cytosol of leaf cells to avoid the negative impacts on photosynthesis derived from changing the balance of carotenoids and chlorophylls in chloroplasts. The second approach involves the conversion of chloroplasts into non-photosynthetic, carotenoid-overaccumulating chromoplasts in leaves agroinfiltrated or infected with constructs encoding the bacterial phytoene synthase crtB, leaving other non-engineered leaves of the plant to sustain normal growth. A combination of these two strategies, referred to as strategy C (for cytosolic production) and strategy P (for plastid conversion mediated by crtB), resulted in a 5-fold increase in the amount of ß-carotene in Nicotiana benthamiana leaves. Following several attempts to further improve ß-carotene leaf contents by metabolic engineering, hormone treatments and genetic screenings, it was found that promoting the proliferation of plastoglobules with increased light-intensity treatments not only improved ß-carotene accumulation but it also resulted in a much higher bioaccessibility. The combination of strategies C and P together with a more intense light treatment increased the levels of accessible ß-carotene 30-fold compared to controls. We further demonstrated that stimulating plastoglobule proliferation with strategy P, but also with a higher-light treatment alone, also improved ß-carotene contents and bioaccessibility in edible lettuce (Lactuca sativa) leaves.

8.
Int J Epidemiol ; 53(5)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39180769

RESUMO

BACKGROUND: Published analyses of prostate cancer nested case-control and survival data in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study cohort suggested that men with higher baseline vitamin D [25(OH)D] concentrations have both (i) increased prostate cancer risk and (ii) decreased prostate cancer-specific fatality. METHODS: To investigate possible factors responsible for a spurious association with prostate cancer fatality, we reanalysed baseline serum vitamin D associations with prostate cancer risk and prostate cancer-specific fatality in case-control data nested within the ATBC Study (1000 controls and 1000 incident prostate cancer cases). Conditional logistic regression and Cox proportion hazard models were used, respectively, to estimate odds ratios for risk and hazard ratios for prostate cancer-specific fatality, overall and by disease aggressiveness. We replicated these case-control analyses using baseline serum measurements of alpha-tocopherol (vitamin E), beta-carotene and retinol (vitamin A), and used the entire ATBC Study cohort (n = 29 085) to estimate marginal associations between these baseline vitamins and prostate cancer incidence and fatality following blood collection. RESULTS: Vitamin D analyses agreed closely with those originally published, with opposite risk and fatality associations. By contrast, the analyses of alpha-tocopherol, beta-carotene and retinol yielded concordant associations for prostate cancer incidence and prostate cancer-specific fatality. CONCLUSIONS: We found evidence of neither artefacts in the nested prostate cancer case-control data set nor detection or collider biases in the fatality analyses. The present findings therefore support a valid inverse (i.e. beneficial) association between vitamin D and prostate cancer-specific survival that warrants further evaluation, including possibly in controlled trials.


Assuntos
Neoplasias da Próstata , Vitamina D , alfa-Tocoferol , beta Caroteno , Humanos , Masculino , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/sangue , Estudos de Casos e Controles , Vitamina D/sangue , Vitamina D/análogos & derivados , Pessoa de Meia-Idade , beta Caroteno/sangue , Idoso , Incidência , alfa-Tocoferol/sangue , Vitamina A/sangue , Fatores de Risco , Modelos de Riscos Proporcionais
9.
ACS Nano ; 18(34): 23518-23536, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39150909

RESUMO

Peripheral nerve injury is a major societal concern. Black phosphorus (BP) has inherent advantages over cell-based therapies in regenerative medicine. However, controlling spontaneous degradation and size-dependent cytotoxicity remains challenging and poses difficulties for clinical translation. In this study, we constructed zero-dimensional BP quantum dots (QDs) modified with antioxidant ß-carotene and comprehensively investigated them in Schwann cells (SCs) to elucidate their potential for peripheral nerve repair. In vitro experiments demonstrated that BPQD@ß-carotene has an inappreciable toxicity and good biocompatibility, favoring neural regrowth, angiogenesis, and inflammatory regulation of SCs. Furthermore, the PI3K/Akt and Ras/ERK1/2 signaling pathways were activated in SCs at the genetic, protein, and metabolite levels. The BPQD@ß-carotene-embedded GelMA/PEGDA scaffold enhanced functional recovery by promoting axon remyelination and regeneration and facilitating intraneural angiogenesis in peripheral nerve injury models of rats and beagle dogs. These results contribute to advancing knowledge of BP nanomaterials in tissue regeneration and show significant potential for application in translational medicine.


Assuntos
Antioxidantes , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Fósforo , Pontos Quânticos , Ratos Sprague-Dawley , Células de Schwann , Animais , Regeneração Nervosa/efeitos dos fármacos , Pontos Quânticos/química , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/patologia , Antioxidantes/farmacologia , Antioxidantes/química , Ratos , Cães , Fósforo/química , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Masculino , Células Cultivadas
10.
J Fluoresc ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954082

RESUMO

The current study looks into the characterization and differentiation of mango juices that are sold commercially using fluorescence spectroscopy. The emission spectra displayed well-defined and prominent peaks that suggested the existence of many fluorophores, such as water content, ß-carotene, tartrazine food color, and chlorophyll components. For this study, water and yellow food coloring solution, the two most popular adulterants were added to pure and authenticated mango pulp that had been diluted to an 8% concentration. The fluorophore profile of the samples was ascertained by using multivariate analysis (principal component analysis) in conjunction with fluorescence spectroscopy. The findings showed that the existence of water content is directly correlated with the spectral bands at 444 and 467 nm, and for food color at 580 nm thus the best indicators to detect adulteration of high water contents and food color. Chlorophyll and ß-carotene intensities varied among juices, acting as a discriminant marker to distinguish between those with unripened pulp (high chlorophyll intensity) and those with more water and other pigments (lower chlorophyll and ß-carotene intensities). With fluorescence emission spectroscopy, qualitative assessment of mango juice can be quickly determined by spectral features, providing details on composition and quality.

11.
Int J Biol Macromol ; 276(Pt 1): 134110, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047994

RESUMO

ß-Carotene is widely used in food systems because of its biological activity; however, ß-carotene has poor chemical stability and low bioavailability. Thus, researchers use encapsulated delivery systems to overcome these disadvantages. In this study, we prepared emulsion gels to encapsulate ß-carotene, using Longzhua mushroom polysaccharide (LMP), which can autonomously form weak gels. The LMP emulsion gel (LEG) exhibited a high water-holding capacity of up to 95.06 %. All samples showed adequate storage stability for 28 days. Increasing the polysaccharide content in the emulsion gel enhanced the encapsulation efficiency of ß-carotene (96.76 %-98.27 %), the release of free fatty acids (68.21 %-81.44 %), and the photostability (80.65 %-91.27 %), thermal stability (73.84 %-97.08 %), and bioaccessibility (18.28 %-30.26 %) of ß-carotene. In conclusion, LEG is a promising fat-soluble material that can be used for food-grade encapsulated delivery systems.


Assuntos
Agaricales , Emulsões , Géis , Polissacarídeos , beta Caroteno , beta Caroteno/química , Géis/química , Agaricales/química , Polissacarídeos/química , Portadores de Fármacos/química , Disponibilidade Biológica , Estabilidade de Medicamentos
12.
Int J Biol Macromol ; 277(Pt 1): 133696, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084971

RESUMO

For conventional emulsions used to encapsulate easily degradable bioactive compounds, achieving small droplet size and high encapsulation capacity is a challenging. Pickering emulsions stabilized by self-aggregated chitosan particles may offer high encapsulation efficiency due to the robust mechanical barrier formed by solid particles adsorbed at the oil-water interface. Therefore, the effects of pH, chitosan concentration, oil volume fraction, homogenization pressure, and homogenization cycle on the stability of chitosan Pickering emulsions and the degradation of ß-carotene were investigated. Effective interfacial adsorption of chitosan nanoparticles and moderate homogenization intensity facilitated the formation of small emulsion droplets. Unlike conventional emulsions, chitosan Pickering emulsions with smaller droplets provided enhanced protection for ß-carotene. This enhancement was primarily attributed to the improved interfacial coverage of chitosan nanoparticles with smaller droplet sizes, which was advantageous for ß-carotene protection. The optimal conditions for preparing ß-carotene-loaded chitosan Pickering emulsions were as follows: pH 6.5, chitosan concentration of 1.0 wt%, oil volume fraction of 20 %, homogenization pressure of 90 MPa, and 6 homogenization cycles. These findings indicate that chitosan Pickering emulsions are well-suited for encapsulating ß-carotene with both small droplet size and high encapsulation efficiency.


Assuntos
Quitosana , Emulsões , Nanopartículas , Tamanho da Partícula , beta Caroteno , Quitosana/química , beta Caroteno/química , Emulsões/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Estabilidade de Medicamentos
13.
Sci Rep ; 14(1): 16656, 2024 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030396

RESUMO

The association between vitamin A and single cardiometabolic diseases has been extensively studied, but the relationship between dietary vitamin A intake and the risk of cardiometabolic multimorbidity (CMM) has not been studied. Therefore, the present study was conducted to explore the association with CMM risk by analyzing different sources of vitamin A. This study utilized 13,603 subjects aged ≥ 18 years from 1997 to 2015 from the China Health and Nutrition Survey (CHNS). Dietary intake was calculated from 3 consecutive 24-h dietary recalls combined with a house hold food inventory. CMM is defined as the development of at least two cardiometabolic diseases. After a median follow-up of 9.0 years, there were 1050 new cases of CMM. The risk of CMM was significantly lower in those with higher vitamin A intake (Q1 vs Q5 HR 0.66, 95% CI 0.54-0.81). ß-carotene (Q1 vs Q5 HR 0.82, 95% CI 0.66-1.02) and retinol (Q1 vs Q5 HR 0.59, 95% CI 0.48-0.73) intake had a similarly negative correlation. Using restricted cubic spline found an L-shaped relationship between retinol intake and CMM (p non-linear < 0.001). Negative associations were also found in specific CMD groups (hypertension, cardiovascular disease, stroke and diabetes). Dietary intake of vitamin A was negatively associated with CMM risk, and this protective effect was more pronounced in patients with cardiovascular disease. There was an L-shaped association between retinol intake and CMM risk.


Assuntos
Doenças Cardiovasculares , Dieta , Multimorbidade , Vitamina A , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Vitamina A/administração & dosagem , Adulto , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , China/epidemiologia , Inquéritos Nutricionais , Idoso , Fatores de Risco
14.
Animals (Basel) ; 14(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39061595

RESUMO

ß-carotene supplementation improves the reproductive performance of cattle. However, the research results on this topic have been inconsistent, and no clear conclusion has been reached. In previous reviews of this topic, the functional mechanism of ß-carotene in reproduction remained unclear, but subsequent studies have shown that the antioxidant effects of ß-carotene protect enzymes involved in ovarian sex steroid hormone production from the effects of oxygen radicals. This role consequently affects normal ovarian follicle dynamics, maintenance of luteal function, and the estrous cycle, and indirectly improves reproductive performance by preventing perinatal diseases and facilitating recovery from these diseases. Several factors must be considered in feeding management to determine whether ß-carotene supplementation is effective for improving reproductive performance in cows. The same is true when the animal consumes a large amount of the antioxidant ß-carotene due to lactation, aging, or season. Therefore, it is important to consider the balance between the supply and consumption of ß-carotene and evaluate whether ß-carotene supplementation has an effect on reproductive performance in cows.

15.
Antioxidants (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061854

RESUMO

This study was conducted to characterize different colored lines of cherry tomatoes and derive information regarding their metabolite accumulation. Different colored cherry tomato cultivars, namely 'Jocheong', 'BN Satnolang', 'Gold Chance', 'Black Q', and 'Snacktom', were assessed for their firmness, taste characteristics, and nutritional metabolites at the commercial ripening stage. The cultivars demonstrated firmness to withstand impacts during harvesting and postharvest operations. The significant variations in the Brix to acid ratio (BAR) and the contents of phenylalanine, glutamic acid, and aspartic acid highlight the distinct taste characteristics among the cultivars, and the nutritional metabolites are associated with the color of the cultivars. The cultivar choices would be the black-colored 'Black Q' for chlorophylls, ß-carotene, total flavonoids, and anthocyanins; the red-colored 'Snacktom' for lycopene; the orange-colored 'Gold Chance' for total phenolics; and the green-colored 'Jocheong' for chlorophylls, vitamin C, GABA, glutamic acid, essential amino acids, and total free amino acids. The antioxidant capacity varied among the cultivars, with 'Gold Chance' consistently exhibiting the highest activity across the four assays, followed by 'Snacktom'. This study emphasizes the importance of screening cultivars to support breeding programs for improving the nutritional content and encourages the inclusion of a diverse mix of different colored cherry tomatoes in packaging to obtain the cumulative or synergistic effects of secondary metabolites.

16.
Antioxidants (Basel) ; 13(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39061916

RESUMO

Hypertension stands as a pervasive global health challenge, contributing significantly to mortality rates worldwide. Various factors, including lifestyle choices and dietary habits, contribute to the development of hypertension. In recent years, oxidative stress has garnered significant attention as a factor influencing hypertension risk, prompting a shift in research focus towards exploring it as a potential target for prevention and treatment. Antioxidants found in our diet, such as vitamins C, E and carotenoids exhibit the ability to neutralize reactive oxygen species, thereby mitigating oxidative stress. In addition, Vitamin A has an antioxidant effect despite not being an antioxidant itself. Consequently, supplementation or increased intake of these antioxidants has been hypothesized to potentially lower blood pressure levels and aid in the management of hypertension, thereby potentially prolonging life expectancy. Research findings regarding this effect have been diverse. This paper examines the existing literature demonstrating favorable outcomes associated with antioxidant supplementation.

17.
Food Sci Nutr ; 12(7): 5111-5120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055182

RESUMO

Moderate non-covalent interaction of protein and polyphenols can improve the emulsifying property of protein itself. The corn protein hydrolysate (CPH) and tannic acid (TA) complex was successfully used to construct nanoemulsion for algal oil delivery. There has been no study on the feasibility of this nanoemulsion delivery system for other food functional components, for example, ß-carotene (ß-CE). CPH/TA complex-based nanoemulsion system for ß-CE delivery was studied, focusing on the effect of ß-CE content on the physicochemical stability of the nanoemulsions. The nanoemulsion delivery systems (dia. 150 nm) with low viscosity and good liquidity were easily fabricated by two-step emulsification. The nanoemulsions with high ß-CE content (>71.5 µg/mL) significantly increased (p < .05) the emulsion droplet size. However, there was no significant (p > .05) effect of ß-CE content on polydispersity index (PDI) and zeta potential of the nanoemulsions. The storage (30 days) experiment results demonstrated that the droplet size of the nanoemulsions with varying ß-CE content increased slightly during storage. However, the PDI values showed a slightly decreasing trend. Zeta potentials of the nanoemulsions showed no noticeable change during storage. Moreover, after storage of 30 days, the retention ratios of ß-CE were found to be up to 90%, which suggests an excellent protective effect for ß-CE by the nanoemulsion systems. The CPH/TA complex stabilized nanoemulsions could aggregate in gastric condition, but the ß-CE content did not have obvious effect on the digestive stability of the nanoemulsions. The CPH/TA complex could be employed as an emulsifier to construct a physicochemical stable nanoemulsion delivery system for lipophilic active components.

18.
Am J Physiol Endocrinol Metab ; 327(3): E258-E270, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39017681

RESUMO

Perinatal nutrition exerts a profound influence on adult metabolic health. This study aimed to investigate whether increased maternal vitamin A (VA) supply can lead to beneficial metabolic phenotypes in the offspring. The researchers utilized mice deficient in the intestine-specific homeobox (ISX) transcription factor, which exhibits increased intestinal VA retinoid production from dietary ß-carotene (BC). ISX-deficient dams were fed a VA-sufficient or a BC-enriched diet during the last week of gestation and the whole lactation period. Total retinol levels in milk and weanling livers were 2- to 2.5-fold higher in the offspring of BC-fed dams (BC offspring), indicating increased VA supplies during late gestation and lactation. The corresponding VA-sufficient and BC offspring (males and females) were compared at weaning and adulthood after being fed either a standard or high-fat diet (HFD) with regular VA content for 13 weeks from weaning. HFD-induced increases in adiposity metrics, such as fat depot mass and adipocyte diameter, were more pronounced in males than females and were attenuated or suppressed in the BC offspring. Notably, the BC offspring were protected from HFD-induced increases in circulating triacylglycerol levels and hepatic steatosis. These protective effects were associated with reduced food efficiency, enhanced capacity for thermogenesis and mitochondrial oxidative metabolism in adipose tissues, and increased adipocyte hyperplasia rather than hypertrophy in the BC offspring. In conclusion, maternal VA nutrition influenced by genetics may confer metabolic benefits to the offspring, with mild increases in late gestation and lactation protecting against obesity and metabolic dysregulation in adulthood.NEW & NOTEWORTHY A genetic mouse model, deficient in intestine-specific homeobox (ISX) transcription factor, is used to show that a mildly increased maternal vitamin A supply from ß-carotene feeding during late gestation and lactation programs energy and lipid metabolism in tissues and protects the offspring from diet-induced hypertrophic obesity and hepatic steatosis. This knowledge may have implications for human populations where polymorphisms in ISX and ISX target genes involved in vitamin A homeostasis are prevalent.


Assuntos
Dieta Hiperlipídica , Homeostase , Obesidade , Vitamina A , Animais , Feminino , Camundongos , Vitamina A/metabolismo , Masculino , Gravidez , Obesidade/metabolismo , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , beta Caroteno/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Lactação , Camundongos Knockout , Herança Materna , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Dieta , Fígado/metabolismo , Adiposidade/genética
19.
Front Microbiol ; 15: 1389224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827145

RESUMO

Dunaliella salina is by far the most salt-tolerant organism and contains many active substances, including ß-carotene, glycerol, proteins, and vitamins, using in the production of dried biomass or cell extracts for the biofuels, pharmaceutical formulations, food additives, and fine chemicals, especially ß-carotene. We report a high-quality genome sequence of D. Salina FACHB435, which has a 472 Mb genome size, with a contig N50 of 458 Kb. A total of 30,752 protein-coding genes were predicted. The annotation results evaluated by BUSCO was shown that completeness was 91.0% and replication was 53.1%. The fragments were 6.3% and the deletions were 2.6%. Phylogenomic and comparative genomic analyses revealed that A. thaliana diverged from Volvocales about 448 million years ago, then Volvocales C. eustigma, D. salina, and other species diverged about 250 million years ago. High light could promote the accumulation of ß-carotene in D. salina at a 13 d stage of culture. The enrichment of DEGs in KEGG, it notes that the predicted up-regulated genes of carotenoid metabolic pathway include DsCrtB, DsPDS, DsZ-ISO, DsZDS, DsCRTISO, DsLUT5, DsCrtL-B, and DsCCD8, while the predicted down-regulated genes include DsCrtF, and DsLUT1. The four genes that were both up-regulated and down-regulated were DsZEP, DsCrtR-b, DsCruA/P and DsCrtZ 4. The research results can provide scientific basis for the industrialization practice of D. salina.

20.
Front Nutr ; 11: 1295609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840701

RESUMO

Introduction: The biofortification of staple foods such as cassava is one of the technological breakthroughs in the nutritional improvement of foods. Fufu is one of the fermented cassava products produced and consumed in major West African countries, including Sierra Leone, and the majority of the processes involved in its production have direct and indirect effects on its properties. This study looked at how the concentration and retention of micronutrients in yellow-fleshed cassava fufu varied depending on genotype and processing method. Methods: Six yellow-fleshed cassava root genotypes (TMS-070557, TMS-011371, TMS-011412, TMS-011663, TMS-083724, TMS-083774) and one white (TME 419 as a control) were processed into fufu using both conventional (oven and sun-dried) and traditional (bowl and river) methods. The Statistical Analysis System (SAS) version 9.4 was used to analyze data using means, percentages, analysis of variance and means separated by least significant differences (LSD). Results and Discussion: In the modified traditional river method, raw and cooked fufu samples had significantly higher ß-carotene concentrations and true retention (TR) percentages (11.06 g/g (46.77%) and 4.54 g/g (16.94%), respectively) than other genotypes (p < 0.0001). Modified traditional fufu processing methods increased total ß-carotene concentrations, while raw roots showed a significant decrease in total carotenoid and ß-carotene concentrations, regardless of genotype or processing method. Sun-drying was the most effective method, with significantly higher concentrations and TR percentages of iron (10.01 mg/kg, 18.02%) and zinc (11.49 mg/kg, 40.64%) in raw and cooked fufu samples. Genotype TMS-083724 outperformed both conventional fufu processing methods, displaying a significant total carotenoid concentration and true retention percentage. Finally, this study found that the concentrations and percentages of TR of micronutrients varied depending on the processing method and genotype. It is recommended that a modified traditional river fufu processing method be further developed and improved in order to maximize provitamin A carotenoids, concentrations, and percentage TR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA