Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.503
Filtrar
1.
J Ethnopharmacol ; 334: 118566, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK: This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS: The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1ß, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS: TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1ß, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION: Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.

2.
Virol Sin ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025463

RESUMO

Myocarditis is an inflammatory disease of the cardiac muscle and one of the primary causes of dilated cardiomyopathy. Group B coxsackievirus (CVB) is one of the leading causative pathogens of viral myocarditis, which primarily affects children and young adults. Due to the lack of vaccines, the development of antiviral medicines is crucial to controlling CVB infection and the progression of myocarditis. In this study, we investigated the antiviral effect of baicalein, a flavonoid extracted from Scutellaria baicaleinsis. Our results demonstrated that baicalein treatment significantly reduced cytopathic effect and increased cell viability in CVB3-infected cells. In addition, significant reductions in viral protein 3D, viral RNA, and viral particles were observed in CVB3-infected cells treated with baicalein. We found that baicalein exerted its inhibitory effect in the early stages of CVB3 infection. Baicalein also suppressed viral replication in the myocardium and effectively alleviated myocarditis induced by CVB3 infection. Our study revealed that baicalein exerts its antiviral effect by inhibiting the activity of caspase-1 and viral protease 2A. Taken together, our findings demonstrate that baicalein has antiviral activity against CVB3 infection and may serve as a potential therapeutic option for the myocarditis caused by enterovirus infection.

3.
J Sex Med ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972660

RESUMO

BACKGROUND: Diabetes mellitus commonly causes endothelial cell and smooth muscle cell death in penile cavernous tissue. AIM: The study sought to study the mode of cell death in the penile cavernous tissue in type 1 diabetic rats. METHODS: A total of 36 Sprague Dawley rats 10 weeks of age were randomly divided into 2 groups: a normoglycemic group and type 1 diabetic group (intraperitoneal injection of Streptozotocin (STZ), 60 mg/kg). We randomly selected 6 rats from each group for tests at the end of 11, 14, and 18 weeks of age, respectively. All rats were able to eat and drink freely. The ratio of maximum intracavernous pressure to mean arterial pressure, concentration of serum testosterone, level of nitric oxide in the penile cavernosum, and expression of active caspase-1 (pyroptosis) and active caspase-3 (apoptosis) were determined. OUTCOMES: At the end of weeks 4 and 8 of type 1 diabetes, the proportions of endothelial cells and smooth muscle cells undergoing apoptosis and pyroptosis in penile cavernous tissue are different. RESULTS: The ratio of maximum intracavernous pressure to mean arterial pressure and nitric oxide levels were significantly lower in the 4- and 8-week diabetic groups than in the normoglycemic group (P < .01). Penile endothelial cell pyroptosis (5.67 ± 0.81%), smooth muscle cell apoptosis (23.72 ± 0.48%), total cell pyroptosis (9.67 ± 0.73%), and total apoptosis (10.52 ± 1.45%) were significantly greater in the 4-week diabetic group than in the normoglycemic group (P < .01). The proportion of endothelial cell pyroptosis (24.4 ± 3.69%), endothelial cell apoptosis (22.13 ± 2.43%), total cell pyroptosis (14.75 ± 0.93%), and total apoptosis (14.82 ± 1.08%) in the penile tissues of the 8-week diabetic group were significantly greater than those in the normoglycemic group (P < .01).The 8-week survival proportions of diabetic endothelial cells (38.86 ± 8.85%) and smooth muscle cells (44.46 ± 2.94%) was significantly lower than the 4-week survival proportions of endothelial cells (93.17 ± 8.07%) and smooth muscle cells (75.12 ± 4.76%) (P < .05). CLINICAL TRANSLATION: Inhibition of cell death by different methods at different stages may be the key to the treatment of type 1 diabetes-induced erectile dysfunction. STRENGTHS AND LIMITATIONS: The effect of type 1 diabetes on other types of cell death in penile cavernous tissue needs further study. CONCLUSION: The mode of death of endothelial cells in the cavernous tissue of the penis in the early stage in diabetic rats is dominated by pyroptosis, and the death of smooth muscle cells is dominated by apoptosis. Endothelial cell and smooth muscle cell death are not consistent at different stages of diabetes progression.

4.
Immun Inflamm Dis ; 12(7): e1303, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967379

RESUMO

BACKGROUND: Psoriasis refers to a highly prevalent and immunologically mediated dermatosis with considerable deterioration in life quality. Wogonin, a sort of flavonoid, has been mentioned to elicit protective activities in skin diseases. However, whether Wogonin is implicated in the treatment of psoriasis and its specific mechanisms are not fully understood. AIM: The present work attempted to elaborate the role of Wogonin during the process of psoriasis and to concentrate on the associated action mechanism. METHODS: Cell counting kit-8 (CCK-8) method was initially applied to assay the viability of human keratinocyte HaCaT cells treated by varying concentrations of Wogonin. To mimic psoriasis in vitro, HaCaT cells were exposed to M5 cytokines. CCK-8 and 5-Ethynyl-2'-deoxyuridine  assays were adopted for the measurement of cell proliferation. Inflammatory levels were examined with enzyme-linked immunosorbent assay. Immunofluorescence staining tested nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and Caspase-1 expressions. Western blot examined the protein expressions of proliferation-, inflammation-, pyroptosis-associated factors, and NLRP3. RESULTS: Wogonin treatment antagonized the proliferation, inflammatory response, and NLRP3/caspase-1/Gasdermin-D (GSDMD)-mediated pyroptosis in M5-challenged HaCaT cells. Besides, NLRP3 elevation partially abrogated the effects of Wogonin on M5-induced proliferation, inflammatory response, and NLRP3/caspase-1/GSDMD-mediated pyroptosis in HaCaT cells. CONCLUSION: In a word, Wogonin might exert anti-proliferation, anti-inflammatory and anti-pyroptosis activities in M5-induced cell model of psoriasis and the blockade of NLRP3/Caspase-1/GSDMD pathway might be recognized as a potential mechanism underlying the protective mechanism of Wogonin in psoriasis, suggesting Wogonin as a prospective anti-psoriasis drug.


Assuntos
Caspase 1 , Proliferação de Células , Flavanonas , Queratinócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Transdução de Sinais , Humanos , Flavanonas/farmacologia , Piroptose/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Psoríase/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Células HaCaT , Linhagem Celular , Gasderminas , Proteínas de Ligação a Fosfato
5.
Phytomedicine ; 132: 155847, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38996505

RESUMO

BACKGROUND: Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE: This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS: Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS: HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1ß pathway and increased proinflammatory IL1ß in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1ß pathway. CONCLUSIONS: The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1ß pathway, specifically by targeting AKK and tryptophan metabolites.

6.
Reprod Sci ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026050

RESUMO

Granulosa cells (GCs), the largest cell population and primary source of steroid hormones in the ovary, are the important somatic ovarian components. They have critical roles in folliculogenesis by supporting oocyte, facilitating its growth, and providing a microenvironment suitable for follicular development and oocyte maturation, thus having essential functions in maintaining female fertility and in reproductive health in general. Pyroptotic death of GCs and associated inflammation have been implicated in the pathogenesis of several reproductive disorders in females including Premature Ovarian Insufficiency (POI) and Polycystic Ovary Syndrome (PCOS). Here, I reviewed factors, either intrinsic or extrinsic, that induce or inhibit pyroptosis in GCs in various models of these disorders, both in vitro and in vivo, and also covered associated molecular mechanisms. Most of these studied factors influence NLRP3 inflammasome- and GSDMD (Gasdermin D)-mediated pyroptosis in GCs, compared to other inflammasomes and gasdermins (GSDMs). I conclude that a more complete mechanistic understanding of these factors in terms of GC pyroptosis is required to be able to develop novel strategies targeting inflammatory cell death in the ovary.

7.
mBio ; 15(7): e0297523, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38837391

RESUMO

Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.


Assuntos
Caspases , Inflamação , Especificidade por Substrato , Caspases/metabolismo , Caspases/genética , Humanos , Inflamação/metabolismo , Animais , Domínio Catalítico , Piroptose
8.
Immunol Invest ; : 1-14, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874911

RESUMO

INTRODUCTION: Mycoplasma pneumoniae (MP) is the most common pathogen of community-acquired pneumonia in children. However, the role of neutrophil extracellular traps (NETs) in the pathogenesis of MP is unclear. METHODS: Both the level of NETs were detected between the 60 MP pneumonia patients and 20 healthy controls, whose the clinical characteristics were compared. Additionally, NETs formation induced by community-acquired respiratory distress syndrome (CARDS) toxin was also analyzed through transcriptome sequencing. RESULTS: The levels of cell-free DNA, Cit-H3, and MPO-DNA complexes were significantly increased in the patients with MP pneumonia. Importantly, both cell-free DNA and LDH were higher in hospitalized patients with severity than those without severity. In addition, CARDS toxin induced the NETs formation in vitro and in vivo. Transcriptomics GO and KEGG pathway analysis indicate that NOD like receptor signaling pathway and Toll-like receptor signaling pathway are significantly enriched. Finally, we found that DNase I significantly attenuated the higher levels of Cit-H3, and up-regulation of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) by down-regulating the expression of NLRP3 and Caspase1(p20) in the lung tissues. DISCUSSION: These results indicate that inhibiting excessive activation of NLRP3 inflammasomes, and NETs formation may alleviate MP pneumonia.

9.
J Inflamm Res ; 17: 3801-3813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887753

RESUMO

Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry a fatality rate that hovers around 30-40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the etiology of ALI, NLRP3 Inflammasome is essential to the body's innate immune response. The composition of this inflammasome complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the NLRP3 inflammasome to combat acute lung injury.

10.
Mol Med Rep ; 30(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873985

RESUMO

Macrophage pyroptosis mediates vascular inflammation and atherosclerosis (AS). Hydrogen sulfide (H2S) exerts a protective role in preventing inflammation and AS. However, its molecular mechanisms of regulating the pyroptosis signaling pathway and inhibiting macrophage pyroptosis remain unexplored. The present study aimed to determine whether H2S mitigates macrophage pyroptosis by downregulating the pyroptosis signaling pathway and S­sulfhydrating caspase­1 under the stimulation of oxidized low­density lipoprotein (ox­LDL), a pro­atherosclerotic factor. Macrophages derived from THP­1 monocytes were pre­treated using exogenous H2S donors sodium hydrosulfide (NaHS) and D,L­propargylglycine (PAG), a pharmacological inhibitor of endogenous H2S­producing enzymes, alone or in combination. Subsequently, cells were stimulated with ox­LDL or the desulfhydration reagent dithiothreitol (DTT) in the presence or absence of NaHS and/or PAG. Following treatment, the levels of H2S in THP­1 derived macrophages were measured by a methylene blue colorimetric assay. The pyroptotic phenotype of THP­1 cells was observed and evaluated by light microscopy, Hoechst 33342/propidium iodide fluorescent staining and lactate dehydrogenase (LDH) release assay. Caspase­1 activity in THP­1 cells was assayed by caspase­1 activity assay kit. Immunofluorescence staining was used to assess the accumulation of active caspase­1. Western blotting and ELISA were performed to determine the expression of pyroptosis­specific markers (NLRP3, pro­caspase­1, caspase­1, GSDMD and GSDMD­N) in cells and the secretion of pyroptosis­related cytokines [interleukin (IL)­1ß and IL­18] in the cell­free media, respectively. The S­sulfhydration of pro­caspase­1 in cells was assessed using a biotin switch assay. ox­LDL significantly induced macrophage pyroptosis by activating the pyroptosis signaling pathway. Inhibition of endogenous H2S synthesis by PAG augmented the pro­pyroptotic effects of ox­LDL. Conversely, exogenous H2S (NaHS) ameliorated ox­LDL­and ox­LDL + PAG­induced macrophage pyroptosis by suppressing the activation of the pyroptosis signaling pathway. Mechanistically, ox­LDL and the DTT increased caspase­1 activity and downstream events (IL­1ß and IL­18 secretion) of the caspase­1­dependent pyroptosis pathway by reducing S­sulfhydration of pro­caspase­1. Conversely, NaHS increased S­sulfhydration of pro­caspase­1, reducing caspase­1 activity and caspase­1­dependent macrophage pyroptosis. The present study demonstrated the molecular mechanism by which H2S ameliorates macrophage pyroptosis by suppressing the pyroptosis signaling pathway and S­sulfhydration of pro­caspase­1, thereby suppressing the generation of active caspase-1 and activity of caspase-1.


Assuntos
Caspase 1 , Sulfeto de Hidrogênio , Lipoproteínas LDL , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Piroptose , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Piroptose/efeitos dos fármacos , Humanos , Caspase 1/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Proteínas de Ligação a Fosfato/metabolismo , Células THP-1 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Gasderminas , Alcinos , Glicina/análogos & derivados , Sulfetos
11.
Immun Inflamm Dis ; 12(6): e1309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860765

RESUMO

BACKGROUND: Astragaloside IV (AS-IV) is the most active monomer in the traditional Chinese herbal medicine Radix Astragali, which has a wide range of antiviral, anti-inflammatory, and antifibrosis pharmacological effects, and shows protective effects in acute lung injury. METHODS: This study utilized the immunofluorescence, flow cytometry, enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, western blot, and hematoxylin and eosin staining methods to investigate the mechanism of AS-IV in reducing viral pneumonia caused by influenza A virus in A549 cells and BALB/c mice. RESULTS: The results showed that AS-IV suppressed reactive oxygen species production in influenza virus-infected A549 cells in a dose-dependent manner, and subsequently inhibited the activation of nucleotide-binding oligomerization domain-like receptor thermal protein domain associated protein 3 inflammasome and Caspase-1, decreased interleukin (IL) -1ß and IL-18 secretion. In BALB/c mice infected with Poly (I:C), oral administration of AS-IV can significantly reduce Poly (I:C)-induced acute pneumonia and lung pathological injury. CONCLUSIONS: AS-IV alleviates the inflammatory response induced by influenza virus in vitro and lung flammation and structural damage caused by poly (I:C) in vivo.


Assuntos
Caspase 1 , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Orthomyxoviridae , Espécies Reativas de Oxigênio , Saponinas , Transdução de Sinais , Triterpenos , Animais , Saponinas/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Caspase 1/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico , Vírus da Influenza A/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
12.
J Neuroinflammation ; 21(1): 151, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840215

RESUMO

BACKGROUND: Mounting evidence links glucose intolerance and diabetes as aspects of metabolic dysregulation that are associated with an increased risk of developing dementia. Inflammation and inflammasome activation have emerged as a potential link between these disparate pathologies. As diet is a key factor in both the development of metabolic disorders and inflammation, we hypothesize that long term changes in dietary factors can influence nervous system function by regulating inflammasome activity and that this phenotype would be sex-dependent, as sex hormones are known to regulate metabolism and immune processes. METHODS: 5-week-old male and female transgenic mice expressing a caspase-1 bioluminescent reporter underwent cranial window surgeries and were fed control (65% complex carbohydrates, 15% fat), high glycemic index (65% carbohydrates from sucrose, 15% fat), or ketogenic (1% complex carbohydrates, 79% fat) diet from 6 to 26 weeks of age. Glucose regulation was assessed with a glucose tolerance test following a 4-h morning fast. Bioluminescence in the brain was quantified using IVIS in vivo imaging. Blood cytokine levels were measured using cytokine bead array. 16S ribosomal RNA gene amplicon sequencing of mouse feces was performed to assess alterations in the gut microbiome. Behavior associated with these dietary changes was also evaluated. RESULTS: The ketogenic diet caused weight gain and glucose intolerance in both male and female mice. In male mice, the high glycemic diet led to increased caspase-1 biosensor activation over the course of the study, while in females the ketogenic diet drove an increase in biosensor activation compared to their respective controls. These changes correlated with an increase in inflammatory cytokines present in the serum of test mice and the emergence of anxiety-like behavior. The microbiome composition differed significantly between diets; however no significant link between diet, glucose tolerance, or caspase-1 signal was established. CONCLUSIONS: Our findings suggest that diet composition, specifically the source and quantity of carbohydrates, has sex-specific effects on inflammasome activation in the central nervous system and behavior. This phenotype manifested as increased anxiety in male mice, and future studies are needed to determine if this phenotype is linked to alterations in microbiome composition.


Assuntos
Caspase 1 , Dieta Cetogênica , Camundongos Transgênicos , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Caspase 1/metabolismo , Dieta Cetogênica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/farmacologia , Sistema Nervoso Central/metabolismo , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL
13.
Clin Rheumatol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879629

RESUMO

Familial Mediterranean fever (FMF) is a recessively inherited autoinflammatory disorder with wide phenotypic variation that has been observed among individuals who have the same genotype. Modifying genes, epigenetic factors, or environmental factors might all have an impact on genotype-phenotype correlation in FMF. The current research aims to determine the expression levels of microRNAs (miR-148b and miR-17) in Egyptian FMF participants. We also aimed to investigate Caspase -1 gene expression to make a correlation with disease severity. The study comprised 25 clinically diagnosed FMF cases and 25 healthy subjects matched for age and sex. The molecular diagnosis of FMF cases was assessed using real-time SNP genotyping assay. MiR-148b and miR-17 expression were profiled using TaqMan assay technology. The expression level of Caspase -1 gene was also verified using qRT-PCR. MiR-17 in the studied cases was significantly upregulated compared to healthy individuals (P = 0.006), whereas miR-148b was significantly downregulated in the examined patients (P = 0.030). Moreover, statistically significant upregulation of Caspase-1 expression was also elucidated in relation to normal subjects (P = 0.033). The results obtained indicated that miR-17 and miR-148b might be potential regulatory biomarkers in FMF cases. We further hypothesized that the upregulation of Caspase-1 could hint at its significance as a future therapeutic target to alleviate the inflammatory process in these patients. Key Points • The role of miRNAs in FMF and various mechanisms involved in FMF pathogenesis has received increasing attention. • Studying the expression profiles of miR-17 and miR-148b in FMF patients revealed their potential role as regulatory biomarkers in these patients. • Significant upregulation of Caspase-1 expression in FMF cases could hint at its significance as a future therapeutic target. • Future studies on larger cohorts are warranted to clarify and better understand the role of miRNAs in the pathogenesis and severity of FMF.

14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 810-817, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862438

RESUMO

OBJECTIVE: To explore the neuroprotective effect of coenzyme Q10 and its possible mechanism in mice with chronic restraint stress (CRS). METHODS: Mouse models of CRS were treated with intraperitoneal injections of coenzyme Q10 at low, moderate and high doses (50, 100 and 200 mg/kg, respectively, n=8), VX765 (a caspase-1 specific inhibitor, 50 mg/kg, n=8), or fluoxetine (10 mg/kg, n=8) on a daily basis for 4 weeks, and the changes in depression-like behaviors of the mice were assessed by sugar water preference test, forced swimming test and tail suspension test. The expression of glial fibrillary acidic protein (GFAP) in the hippocampus of the mice was detected using immunohistochemistry, and the number of synaptic spines was determined with Golgi staining. Western blotting was performed to detect the changes in the expressions of GFAP and pyroptosis-related proteins in the hippocampus, and the colocalization of neurons and caspase-1 p10 was examined with immunofluorescence assay. RESULTS: Compared with the normal control mice, the mouse models of CRS showed significantly reduced sugar water preference and increased immobility time in forced swimming and tail suspension tests (P < 0.05), and these depression-like behaviors were obviously improved by treatment with coenzyme Q10, VX765 or FLX. The mouse models showed a significantly decreased positive rate of GFAP and lowered GFAP protein expression in the hippocampus with obviously decreased synaptic spines, enhanced expressions of GSDMD-N, caspase-1 and IL-1ß, and increased colocalization of neurons and caspase-1 p10 (all P < 0.05). All these changes were significantly ameliorated in the mouse models after treatment with Q10. CONCLUSION: Coenzyme Q10 can alleviate depression-like behaviors in mice with CRS by down-regulating the pyroptosis signaling pathway.


Assuntos
Depressão , Modelos Animais de Doenças , Hipocampo , Piroptose , Restrição Física , Transdução de Sinais , Estresse Psicológico , Ubiquinona , Animais , Camundongos , Piroptose/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Caspase 1/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Comportamento Animal/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
15.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892264

RESUMO

Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.


Assuntos
Anticonvulsivantes , Descoberta de Drogas , Epilepsia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Animais , Descoberta de Drogas/métodos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Desenvolvimento de Medicamentos
16.
Front Med (Lausanne) ; 11: 1347599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938378

RESUMO

Purpose: Previous studies have reported Caspase-1 (Casp1) is upregulated in mouse models of Juvenile X-linked Retinoschisis (XLRS), however no functional role for Casp1 in disease progression has been identified. We performed electroretinogram (ERG) and standardized optical coherence tomography (OCT) in mice deficient in the Retinoschisin-1 (Rs1) and Casp1 and Caspase-11 (Casp11) genes (Rs1-KO;Casp1/11-/- ) to test the hypothesis that Casp1 may play a role in disease evolution and or severity of disease. Currently, no studies have ventured to investigate the longer-term effects of Casp1 on phenotypic severity and disease progression over time in XLRS, and specifically the effect on electroretinogram. Methods: Rs1-KO;Casp1/11-/- mice were generated by breeding Rs1-KO mice with Casp1/11-/- mice. OCT imaging was analyzed at 2-, 4-, and 15-16 months of age. Outer nuclear layer (ONL) thickness and adapted standardized cyst severity score were measured and averaged from 4 locations 500 µm from the optic nerve. Adapted standardized cyst severity score was 1: absent cysts, 2: <30 µm, 3: 30-49 µm, 4: 50-69 µm, 5: 70-99 µm, 6: >99 µm. Electroretinograms (ERG) were recorded in dark-adapted and light-adapted conditions at 2 and 4 months. Results obtained from Rs1-KO and Rs1-KO;Casp1/11-/- eyes were compared with age matched WT control eyes at 2 months. Results: Intraretinal schisis was not observed on OCT in WT eyes, while schisis was apparent in most Rs1-KO and Rs1-KO;Casp1/11-/- eyes at 2 and 4 months of age. There was no difference in the cyst severity score from 2 to 4 months of age, or ONL thickness from 2 to 16 months of age between Rs1-KO and Rs1-KO;Casp1/11-/- eyes. ERG amplitudes were similarly reduced in Rs1-KO and Rs1-KO;Casp1/11-/- compared to WT controls at 2 months of age, and there was no difference between Rs1-KO and Rs1-KO;Casp1/11-/- eyes at 2 or 4 months of age, suggesting no impact on the electrical function of photoreceptors over time in the absence of Casp1. Conclusion: Although Casp1 has been reported to be significantly upregulated in Rs1-KO mice, our preliminary data suggest that removing Casp1/11 does not modulate photoreceptor electrical function or alter the trajectory of the retinal architecture over time.

17.
Mol Cell Biochem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941031

RESUMO

Bisphenol A (BPA), a common endocrine-disrupting chemical, is found in a wide range of home plastics. Early-life BPA exposure has been linked to neurodevelopmental disorders; however, the link between neuroinflammation, pyroptosis, and the development of psychiatric disorders is rarely studied. The current study attempted to investigate the toxic effect of BPA on inflammatory and microglial activation markers, as well as behavioral responses, in the brains of male rats in a dose- and age-dependent manner. Early BPA exposure began on postnatal day (PND) 18 at dosages of 50 and 125 mg/kg/day. We started with a battery of behavioral activities, including open field, elevated plus- and Y-maze tests, performed on young PND 60 rats and adult PND 95 rats. BPA causes anxiogenic-related behaviors, as well as cognitive and memory deficits. The in vivo and in silico analyses revealed for the first time that BPA is a substantial activator of nuclear factor kappa B (NF-κB), interleukin (IL)-1ß, -2, -12, cyclooxygenase-2, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with higher beclin-1 and LC3B levels in BPA rats' PFC and hippocampus. Furthermore, BPA increased the co-localization of caspase-1 immunoreactive neurons, as well as unique neurodegenerative histopathological hallmarks. In conclusion, our results support the hypothesis that neuroinflammation and microglial activation are involved with changes in the brain after postnatal BPA exposure and that these alterations may be linked to the development of psychiatric conditions later in life. Collectively, our findings indicate that BPA triggers anxiety-like behaviors and pyroptotic death of nerve cells via the NF-κB/IL-1ß/NLRP3/Caspase-1 pathway.

18.
Life Sci ; 352: 122872, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942361

RESUMO

Aim Hepatic ischemia reperfusion injury (HIRI) is a leading cause of mortality post liver transplantation, hypovolemic shock and trauma. In this study, we tested, on molecular bases, the possible protective role of two different derivatives of 2-oxindole in a preclinical model of HIRI in rats. MAIN METHODS: HIRI was operated in male Wistar albino rats and prophylactic treatment with oxindole-curcumin (Coxi) or oxindole-vanillin (Voxi) was carried out before the operation. The biochemical and histopathological investigations, in addition to the mechanistic characterizations of the effect of the tested drugs were performed. KEY FINDINGS: HIRI was assured with elevated liver enzymes and marked changes in histopathological features, inflammatory response and oxidative stress. Pretreatment with Coxi and Voxi improved the hepatic histopathological alterations, reduced the elevated serum liver enzymes level and hepatic Malondialdehyde (MDA) content, increased the hepatic Superoxide Dismutase (SOD) activity and reduced Glutathione (GSH) content, downregulated the expression of TNF-α, IL-6, Nod-Like Receptor p3 (NLRP3), Cleaved caspase1, Cleaved caspase 3 proteins, alongside the expression level of IL-1ß, ICAM-1, VCAM-1 and BAX genes, attenuated NF-кB p-P65 Ser536 and Myeloperoxidase (MPO)-positive neutrophils, and activated the PI3K/AKT pathway. SIGNIFICANCE: Coxi and Voxi have promising hepatoprotective activity against HIRI in rats through ameliorating the biochemical and histopathological alterations, attenuating inflammatory and oxidative stress status by modulating the inflammatory TNF-α/ICAM-1, the pyroptosis NLRP3/Caspase-1, and the antioxidant PI3K/AKT pathways.

19.
Front Immunol ; 15: 1405084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835771

RESUMO

Introduction: Cynaroside exhibits various biological properties, including anti-inflammatory, antiviral, antitumor, and cardioprotective effects. However, its involvement in methotrexate (MTX)-induced intestinal inflammation remains inadequately understood. Thus, we investigated the impact of cynaroside on MTX-induced intestinal inflammation and its potential mechanisms. Methods: To assess the protective potential of cynaroside against intestinal inflammation, Sprague-Dawley rats were subjected to a regimen of 7 mg/kg MTX for 3 days, followed by treatment with cynaroside at varying doses (10, 20, or 40 mg/kg). Histopathological evaluations were conducted alongside measurements of inflammatory mediators to elucidate the involvement of the NLRP3 inflammasome in alleviating intestinal inflammation. Results: Administration of 7 mg/kg MTX resulted in decreased daily food intake, increased weight loss, and elevated disease activity index in rats. Conversely, treatment with cynaroside at 20 or 40 mg/kg ameliorated the reductions in body weight and daily food intake and suppressed the MTX-induced elevation in the disease activity index. Notably, cynaroside administration at 20 or 40 mg/kg attenuated inflammatory cell infiltration, augmented goblet cell numbers and lowered serum levels of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-18, as well as the CD68-positive cell rate in the intestines of MTX-induced rats. Furthermore, cynaroside downregulated the expression levels of NLRP3, cleaved caspase 1, and cleaved IL-1ß in MTX-induced rats. Discussion: Collectively, our findings indicated that cymaroside alleviates intestinal inflammatory injury by inhibiting the activation of NLRP3 inflammasome in MTX-induced rats.


Assuntos
Enterite , Inflamassomos , Metotrexato , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Ratos , Masculino , Enterite/induzido quimicamente , Enterite/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Modelos Animais de Doenças
20.
Exp Neurol ; 379: 114842, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823674

RESUMO

Postoperative cognitive dysfunction (POCD) is a common complication in elderly surgical patients, significantly affecting their quality of life. Dexmedetomidine (Dex), an anesthetic, has shown promise in alleviating POCD, but its underlying mechanism remains unclear. This study aims to explore how Dex improves POCD in aged rats by targeting the PINK1-mediated mitochondrial autophagy pathway, reducing caspase-1/11-GSDMD-induced hippocampal neuronal pyroptosis. Transcriptome sequencing identified 300 differentially expressed genes enriched in the mitochondrial autophagy pathway in Dex-treated POCD rat hippocampal tissue, with Pink1 as a key candidate. In a POCD rat model, Dex treatment upregulated hippocampal PINK1 expression. In vitro experiments using H19-7 rat hippocampal neurons revealed that Dex enhanced mitochondrial autophagy and suppressed neuronal pyroptosis by upregulating PINK1. Further mechanistic validation demonstrated that Dex activated PINK1-mediated mitochondrial autophagy, inhibiting caspase-1/11-GSDMD-induced neuronal pyroptosis. In vivo experiments confirmed Dex's ability to reduce caspase-1/11-GSDMD-dependent hippocampal neuronal pyroptosis and improve postoperative cognitive function in aged rats. Dexmedetomidine improves postoperative cognitive dysfunction in elderly rats by enhancing mitochondrial autophagy via PINK1 upregulation, mitigating caspase-1/11-GSDMD-induced neuronal pyroptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...