Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 78(Pt 12): 1428-1438, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458614

RESUMO

The mechanisms by which enzymes promote catalytic reactions efficiently through their structural changes remain to be fully elucidated. Recent progress in serial femtosecond X-ray crystallography (SFX) using X-ray free-electron lasers (XFELs) has made it possible to address these issues. In particular, mix-and-inject serial crystallography (MISC) is promising for the direct observation of structural changes associated with ongoing enzymic reactions. In this study, SFX measurements using a liquid-jet system were performed on microcrystals of bacterial copper amine oxidase anaerobically premixed with a substrate amine solution. The structure determined at 1.94 Šresolution indicated that the peptidyl quinone cofactor is in equilibrium between the aminoresorcinol and semiquinone radical intermediates, which accumulate only under anaerobic single-turnover conditions. These results show that anaerobic conditions were well maintained throughout the liquid-jet SFX measurements, preventing the catalytic intermediates from reacting with dioxygen. These results also provide a necessary framework for performing time-resolved MISC to study enzymic reaction mechanisms under anaerobic conditions.


Assuntos
Amina Oxidase (contendo Cobre) , Cristalografia por Raios X , Catálise , Aminas , Cetonas
2.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 10): 363-370, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189720

RESUMO

Succinyl-CoA synthetase (SCS) catalyzes a three-step reaction in the citric acid cycle with succinyl-phosphate proposed as a catalytic intermediate. However, there are no structural data to show the binding of succinyl-phosphate to SCS. Recently, the catalytic mechanism underlying acetyl-CoA production by ATP-citrate lyase (ACLY) has been debated. The enzyme belongs to the family of acyl-CoA synthetases (nucleoside diphosphate-forming) for which SCS is the prototype. It was postulated that the amino-terminal portion catalyzes the full reaction and the carboxy-terminal portion plays only an allosteric role. This interpretation was based on the partial loss of the catalytic activity of ACLY when Glu599 was mutated to Gln or Ala, and on the interpretation that the phospho-citryl-CoA intermediate was trapped in the 2.85 Šresolution structure from cryogenic electron microscopy (cryo-EM). To better resolve the structure of the intermediate bound to the E599Q mutant, the equivalent mutation, E105αQ, was made in human GTP-specific SCS. The structure of the E105αQ mutant shows succinyl-phosphate bound to the enzyme at 1.58 Šresolution when the mutant, after phosphorylation in solution by Mg2+-ATP, was crystallized in the presence of magnesium ions, succinate and desulfo-CoA. The E105αQ mutant is still active but has a specific activity that is 120-fold less than that of the wild-type enzyme, with apparent Michaelis constants for succinate and CoA that are 50-fold and 11-fold higher, respectively. Based on this high-resolution structure, the cryo-EM maps of the E599Q ACLY complex reported previously should have revealed the binding of citryl-phosphate and CoA and not phospho-citryl-CoA.


Assuntos
ATP Citrato (pro-S)-Liase , Succinato-CoA Ligases , ATP Citrato (pro-S)-Liase/química , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A , Acil Coenzima A , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Difosfatos , Guanosina Trifosfato/metabolismo , Humanos , Magnésio , Complexos Multienzimáticos , Nucleosídeos , Oxo-Ácido-Liases , Succinato-CoA Ligases/química , Succinatos , Ácido Succínico/metabolismo
3.
J Biol Chem ; 295(35): 12461-12473, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661196

RESUMO

UDP-glucuronic acid is converted to UDP-galacturonic acid en route to a variety of sugar-containing metabolites. This reaction is performed by a NAD+-dependent epimerase belonging to the short-chain dehydrogenase/reductase family. We present several high-resolution crystal structures of the UDP-glucuronic acid epimerase from Bacillus cereus The geometry of the substrate-NAD+ interactions is finely arranged to promote hydride transfer. The exquisite complementarity between glucuronic acid and its binding site is highlighted by the observation that the unligated cavity is occupied by a cluster of ordered waters whose positions overlap the polar groups of the sugar substrate. Co-crystallization experiments led to a structure where substrate- and product-bound enzymes coexist within the same crystal. This equilibrium structure reveals the basis for a "swing and flip" rotation of the pro-chiral 4-keto-hexose-uronic acid intermediate that results from glucuronic acid oxidation, placing the C4' atom in position for receiving a hydride ion on the opposite side of the sugar ring. The product-bound active site is almost identical to that of the substrate-bound structure and satisfies all hydrogen-bonding requirements of the ligand. The structure of the apoenzyme together with the kinetic isotope effect and mutagenesis experiments further outlines a few flexible loops that exist in discrete conformations, imparting structural malleability required for ligand rotation while avoiding leakage of the catalytic intermediate and/or side reactions. These data highlight the double nature of the enzymatic mechanism: the active site features a high degree of precision in substrate recognition combined with the flexibility required for intermediate rotation.


Assuntos
Bacillus cereus/enzimologia , Proteínas de Bactérias/química , Carboidratos Epimerases/química , Cristalografia por Raios X , Ligantes , NAD/química , Oxirredução , Rotação , Açúcares de Uridina Difosfato/química
4.
Proc Natl Acad Sci U S A ; 116(9): 3572-3577, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808749

RESUMO

Cytochrome c oxidase (CcO) reduces dioxygen to water and harnesses the chemical energy to drive proton translocation across the inner mitochondrial membrane by an unresolved mechanism. By using time-resolved serial femtosecond crystallography, we identified a key oxygen intermediate of bovine CcO. It is assigned to the PR-intermediate, which is characterized by specific redox states of the metal centers and a distinct protein conformation. The heme a3 iron atom is in a ferryl (Fe4+ = O2-) configuration, and heme a and CuB are oxidized while CuA is reduced. A Helix-X segment is poised in an open conformational state; the heme a farnesyl sidechain is H-bonded to S382, and loop-I-II adopts a distinct structure. These data offer insights into the mechanism by which the oxygen chemistry is coupled to unidirectional proton translocation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/química , Ferro/química , Oxigênio/química , Animais , Catálise , Domínio Catalítico , Bovinos , Cobre/química , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/genética , Oxirredução , Conformação Proteica
5.
Free Radic Biol Med ; 87: 1-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163004

RESUMO

Glutathione peroxidases (GPxs) are enzymes working with either selenium or sulfur catalysis. They adopted diverse functions ranging from detoxification of H(2)O(2) to redox signaling and differentiation. The relative stability of the selenoenzymes, however, remained enigmatic in view of the postulated involvement of a highly unstable selenenic acid form during catalysis. Nevertheless, density functional theory calculations obtained with a representative active site model verify the mechanistic concept of GPx catalysis and underscore its efficiency. However, they also allow that the selenenic acid, in the absence of the reducing substrate, reacts with a nitrogen in the active site. MS/MS analysis of oxidized rat GPx4 complies with the predicted structure, an 8-membered ring, in which selenium is bound as selenenylamide to the protein backbone. The intermediate can be re-integrated into the canonical GPx cycle by glutathione, whereas, under denaturing conditions, its selenium moiety undergoes ß-cleavage with formation of a dehydro-alanine residue. The selenenylamide bypass prevents destruction of the redox center due to over-oxidation of the selenium or its elimination and likely allows fine-tuning of GPx activity or alternate substrate reactions for regulatory purposes.


Assuntos
Glutationa Peroxidase/química , Glutationa/química , Oxirredução , Selenocisteína/química , Animais , Catálise , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/química , Cinética , Teoria Quântica , Ratos , Selênio/química , Selenocisteína/metabolismo , Enxofre/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA