Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.715
Filtrar
1.
Dent Mater ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724333

RESUMO

OBJECTIVE: to compare conventional nanohybrid (Ceram.x Spectra) and ormocer-based (Admira fusion) dental composite resins effects on human dental pulp stem cells (hDPSCs) in terms of cytotoxicity, self-renewal, migration and osteogenic differentiation. METHODS: hDPSCs were cultured in presence of different dilutions (undiluted, form 1:2 to 1:100) of CeramX (CX) and Admira fusion (AD) eluates and viability assay in standard or osteogenic conditions were performed. Samples and eluates were prepared according to ISO 10993-12. In addition, apoptosis, self-renewal and migration activity evaluations were carried out. Osteogenic differentiation potential was tested by Alkaline Phosphatase Activity, alizarin red staining and gene expression of specific markers (ALP, RUNX2, OCN, OPN and COL1α1). Statistical analysis was performed by means of a One-way analysis of variance (One-way ANOVA) followed by a Tukey's test for multiple comparison; results were presented as mean ± standard error of mean (SEM). RESULTS: Admira Fusion demonstrated to be highly biocompatible and showed positive effects on hDPSCs proliferation and differentiation; on the contrary, conventional nanohybrid composite showed to be more cytotoxic and without any notable effect on stem cells differentiation. Moreover, the obtained results were further corroborated by a significant upregulation of osteogenic differentiation markers obtained in presence of ormocer-based composite resin eluate. Specifically, in AD 1:50 group expression levels of ALP, Runx2, Col1α1 were double than control (ALP, p = 0.045; Runx2, p = 0.003; Col1α1, p = 0.001) and CX 1:50 (ALP, p = 0.006; RUNX2, p = 0.029; Col1α1, p = 0.005). Moreover, in the same group, OPN and OCN resulted about 5 times more expressed as compared to control (OPN, p = 0.009; OCN, p = 0.0005) and CX 1:50 (OPN, p = 0.012; OCN, p = 0.0006). SIGNIFICANCE: The less cytotoxicity obtained by AD than conventional nanohybrid composite may be attributed to a reduced monomers release in the oral environment, supporting the hypothesis of limited adverse effect and enhanced healing potential, mainly when the material is positioned in close contact with pulp tissue.

2.
Sci Rep ; 14(1): 10595, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719908

RESUMO

Delayed diagnosis in patients with pulmonary tuberculosis (PTB) often leads to serious public health problems. High throughput sequencing was used to determine the expression levels of lncRNAs, mRNAs, and miRNAs in the lesions and adjacent health lung tissues of patients with PTB. Their differential expression profiles between the two groups were compared, and 146 DElncRs, 447 DEmRs, and 29 DEmiRs were obtained between lesions and adjacent health tissues in patients with PTB. Enrichment analysis for mRNAs showed that they were mainly involved in Th1, Th2, and Th17 cell differentiation. The lncRNAs, mRNAs with target relationship with miRNAs were predicted respectively, and correlation analysis was performed. The ceRNA regulatory network was obtained by comparing with the differentially expressed transcripts (DElncRs, DEmRs, DEmiRs), then 2 lncRNAs mediated ceRNA networks were established. The expression of genes within the network was verified by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis revealed that the proportion of Th1 cells and Th17 cells was lower in PTB than in controls, while the proportion of Th2 cells increased. Our results provide rich transcriptome data for a deeper investigation of PTB. The ceRNA regulatory network we obtained may be instructive for the diagnosis and treatment of PTB.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , RNA Longo não Codificante , RNA Mensageiro , Tuberculose Pulmonar , Humanos , Tuberculose Pulmonar/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Células Th17/imunologia , Células Th17/metabolismo , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Regulação da Expressão Gênica , Pulmão/patologia , Pulmão/metabolismo , RNA Endógeno Competitivo
3.
Front Bioeng Biotechnol ; 12: 1396405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803845

RESUMO

Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.

4.
Sci Rep ; 14(1): 12251, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806615

RESUMO

Mesenchymal stem cells (MSCs) have demonstrated promising advantages in the therapies of many diseases, while its multi-directional differentiation potential and immunotoxicity are the major concerns hindered their clinical translation. In this study, human umbilical Mesenchymal stem cell (hUC-MSCs) were labeled with a near-infrared fluorescent dye DiR before infused into cynomolgus monkeys, and the amount of hUC-MSCs in the peripheral blood were dynamically estimated from 5 min to 28 days post a single administration at 3 × 106 cells/kg and 2 × 107 cells/kg intravenously. As results, some hUC-MSCs distributed to the whole body within 5 min, while most of the cells accumulate in the lungs along with the systemic blood circulation, and subsequently released into the blood. The toxicity potentials of hUC-MSCs were investigated in another 30 cynomolgus monkeys, and the cells were repeatedly administrated at doses of 3 × 106 cells/kg and 2 × 107 cells/kg for 5 times on a weekly basis, with a recovery period of 1 months. hUC-MSCs showed no obvious toxic effects in cynomolgus monkeys, except xenogeneic immune rejection to human stem cells. Low levels of the hUC-MSC gene were detected in the peripheral blood of a few animals administered 2 × 107 cells/kg at 30 min subsequent to the first and last administration, and there was no significant difference in the copy number of the hUC-MSC gene in the blood samples compared with the first and last administration, indicating that the hUC-MSC was not significantly amplified in vivo, and it its safe in non-human primates. Our study for the first time verified the safety of long-term use of hUC-MSCs in primates. We have pioneered a technology for the real-time detection of hUC-MSCs in peripheral blood and provide dynamicand rapid monitoring of the distribution characteristics of hUC-MSCs in vivo. Here, we provide data supporting the application of such products for clinical treatment and the application of stem cells in major refractory diseases and regenerative medicine.


Assuntos
Macaca fascicularis , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cordão Umbilical , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Cordão Umbilical/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Diferenciação Celular , Feminino
5.
STAR Protoc ; 5(2): 103082, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38781076

RESUMO

Enteroids are in vitro models to study gastrointestinal pathologies and test personalized therapeutics; however, the inherent complexity of enteroids often renders standard gene editing approaches ineffective. Here, we introduce a refined lentiviral transfection protocol, ensuring sufficient lentiviral engagement with enteroids while considering spatiotemporal growth variability throughout the extracellular matrix. Additionally, we highlight a selection process for transduced cells, introduce a protocol to accurately measure transduction efficiency, and explore methodologies to gauge effects of gene knockdown on biological processes.

6.
Cells ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786031

RESUMO

The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.


Assuntos
Proteína Morfogenética Óssea 2 , Mucosa Bucal , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Mucosa Bucal/metabolismo , Animais , Camundongos , Queratinas/metabolismo , Queratinas/genética , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Ontologia Genética
7.
Dev Cell ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38776925

RESUMO

During neural tube (NT) development, the notochord induces an organizer, the floorplate, which secretes Sonic Hedgehog (SHH) to pattern neural progenitors. Conversely, NT organoids (NTOs) from embryonic stem cells (ESCs) spontaneously form floorplates without the notochord, demonstrating that stem cells can self-organize without embryonic inducers. Here, we investigated floorplate self-organization in clonal mouse NTOs. Expression of the floorplate marker FOXA2 was initially spatially scattered before resolving into multiple clusters, which underwent competition and sorting, resulting in a stable "winning" floorplate. We identified that BMP signaling governed long-range cluster competition. FOXA2+ clusters expressed BMP4, suppressing FOXA2 in receiving cells while simultaneously expressing the BMP-inhibitor NOGGIN, promoting cluster persistence. Noggin mutation perturbed floorplate formation in NTOs and in the NT in vivo at mid/hindbrain regions, demonstrating how the floorplate can form autonomously without the notochord. Identifying the pathways governing organizer self-organization is critical for harnessing the developmental plasticity of stem cells in tissue engineering.

8.
Biochem Biophys Res Commun ; 721: 150141, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38781663

RESUMO

The applicability of computational and dynamical systems models to organisms is scrutinized, using examples from developmental biology and cognition. Developmental morphogenesis is dependent on the inherent material properties of developing animal (metazoan) tissues, a non-computational modality, but cell differentiation, which utilizes chromatin-based revisable memory banks and program-like function-calling, via the developmental gene co-expression system unique to the metazoans, has a quasi-computational basis. Multi-attractor dynamical models are argued to be misapplied to global properties of development, and it is suggested that along with computationalism, classic forms of dynamicism are similarly unsuitable to accounting for cognitive phenomena. Proposals are made for treating brains and other nervous tissues as novel forms of excitable matter with inherent properties which enable the intensification of cell-based basal cognition capabilities present throughout the tree of life. Finally, some connections are drawn between the viewpoint described here and active inference models of cognition, such as the Free Energy Principle.

9.
Front Plant Sci ; 15: 1322223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689848

RESUMO

During leaf development, the timing of transition from cell proliferation to expansion is an important factor in determining the final organ size. However, the regulatory system involved in this transition remains less understood. To get an insight into this system, we investigated the compensation phenomenon, in which the cell number decreases while the cell size increases in organs with determinate growth. Compensation is observed in several plant species suggesting coordination between cell proliferation and expansion. In this study, we examined an Arabidopsis mutant of ANGUSTIFOLIA 3 (AN3)/GRF-INTERACTING FACTOR 1, a positive regulator of cell proliferation, which exhibits the compensation. Though the AN3 role has been extensively investigated, the mechanism underlying excess cell expansion in the an3 mutant remains unknown. Focusing on the early stage of leaf development, we performed kinematic, cytological, biochemical, and transcriptome analyses, and found that the cell size had already increased during the proliferation phase, with active cell proliferation in the an3 mutant. Moreover, at this stage, chloroplasts, vacuoles, and xylem cells developed earlier than in the wild-type cells. Transcriptome data showed that photosynthetic activity and secondary cell wall biosynthesis were activated in an3 proliferating cells. These results indicated that precocious cell differentiation occurs in an3 cells. Therefore, we suggest a novel AN3 role in the suppression of cell expansion/differentiation during the cell proliferation phase.

10.
Trends Cancer ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693002

RESUMO

CD8+ cytotoxic T lymphocytes (CTLs) are central mediators of tumor immunity and immunotherapies. Upon tumor antigen recognition, CTLs differentiate from naive/memory-like toward terminally exhausted populations with more limited function against tumors. Such differentiation is regulated by both immune signals, including T cell receptors (TCRs), co-stimulation, and cytokines, and metabolism-associated processes. These immune signals shape the metabolic landscape via signaling, transcriptional and post-transcriptional mechanisms, while metabolic processes in turn exert spatiotemporal effects to modulate the strength and duration of immune signaling. Here, we review the bidirectional regulation between immune signals and metabolic processes, including nutrient uptake and intracellular metabolic pathways, in shaping CTL differentiation and exhaustion. We also discuss the mechanisms underlying how specific nutrient sources and metabolite-mediated signaling events orchestrate CTL biology. Understanding how metabolic programs and their interplay with immune signals instruct CTL differentiation and exhaustion is crucial to uncover tumor-immune interactions and design novel immunotherapies.

11.
Cell Syst ; 15(5): 445-461.e4, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692274

RESUMO

BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Linha Primitiva , Transdução de Sinais , Linha Primitiva/metabolismo , Linha Primitiva/embriologia , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Transdução de Sinais/fisiologia , Animais , Mesoderma/metabolismo , Mesoderma/embriologia , Via de Sinalização Wnt/fisiologia , Proteínas Wnt/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gastrulação/fisiologia
12.
J Pathol ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734880

RESUMO

The hyperplasia-carcinoma sequence is a stepwise tumourigenic programme towards endometrial cancer in which normal endometrial epithelium becomes neoplastic through non-atypical endometrial hyperplasia (NAEH) and atypical endometrial hyperplasia (AEH), under the influence of unopposed oestrogen. NAEH and AEH are known to exhibit polyclonal and monoclonal cell growth, respectively; yet, aside from focal PTEN protein loss, the genetic and epigenetic alterations that occur during the cellular transition remain largely unknown. We sought to explore the potential molecular mechanisms that promote the NAEH-AEH transition and identify molecular markers that could help to differentiate between these two states. We conducted target-panel sequencing on the coding exons of 596 genes, including 96 endometrial cancer driver genes, and DNA methylome microarrays for 48 NAEH and 44 AEH lesions that were separately collected via macro- or micro-dissection from the endometrial tissues of 30 cases. Sequencing analyses revealed acquisition of the PTEN mutation and the clonal expansion of tumour cells in AEH samples. Further, across the transition, alterations to the DNA methylome were characterised by hypermethylation of promoter/enhancer regions and CpG islands, as well as hypo- and hyper-methylation of DNA-binding regions for transcription factors relevant to endometrial cell differentiation and/or tumourigenesis, including FOXA2, SOX17, and HAND2. The identified DNA methylation signature distinguishing NAEH and AEH lesions was reproducible in a validation cohort with modest discriminative capability. These findings not only support the concept that the transition from NAEH to AEH is an essential step within neoplastic cell transformation of endometrial epithelium but also provide deep insight into the molecular mechanism of the tumourigenic programme. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

13.
Front Cell Dev Biol ; 12: 1331563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690566

RESUMO

Genesis of skeletal muscle relies on the differentiation and fusion of mono-nucleated muscle progenitor cells into the multi-nucleated muscle fiber syncytium. The temporally-controlled cellular and morphogenetic changes underlying this process are initiated by a series of highly coordinated transcription programs. At the core, the myogenic differentiation cascade is driven by muscle-specific transcription factors, i.e., the Myogenic Regulatory Factors (MRFs). Despite extensive knowledge on the function of individual MRFs, very little is known about how they are coordinated. Ultimately, highly specific coordination of these transcription programs is critical for their masterfully timed transitions, which in turn facilitates the intricate generation of skeletal muscle fibers from a naïve pool of progenitor cells. The Mediator complex links basal transcriptional machinery and transcription factors to regulate transcription and could be the integral component that coordinates transcription factor function during muscle differentiation, growth, and maturation. In this study, we systematically deciphered the changes in Mediator complex subunit expression in skeletal muscle development, regeneration, aging, and disease. We incorporated our in vitro and in vivo experimental results with analysis of publicly available RNA-seq and single nuclei RNA-seq datasets and uncovered the regulation of Mediator subunits in different physiological and temporal contexts. Our experimental results revealed that Mediator subunit expression during myogenesis is highly dynamic. We also discovered unique temporal patterns of Mediator expression in muscle stem cells after injury and during the early regeneration period, suggesting that Mediator subunits may have unique contributions to directing muscle stem cell fate. Although we observed few changes in Mediator subunit expression in aging muscles compared to younger muscles, we uncovered extensive heterogeneity of Mediator subunit expression in dystrophic muscle nuclei, characteristic of chronic muscle degeneration and regeneration cycles. Taken together, our study provides a glimpse of the complex regulation of Mediator subunit expression in the skeletal muscle cell lineage and serves as a springboard for mechanistic studies into the function of individual Mediator subunits in skeletal muscle.

14.
J Comput Biol ; 31(5): 445-457, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752891

RESUMO

ABSTRACT An alternative transcription start site (ATSS) is a major driving force for increasing the complexity of transcripts in human tissues. As a transcriptional regulatory mechanism, ATSS has biological significance. Many studies have confirmed that ATSS plays an important role in diseases and cell development and differentiation. However, exploration of its dynamic mechanisms remains insufficient. Identifying ATSS change points during cell differentiation is critical for elucidating potential dynamic mechanisms. For relative ATSS usage as percentage data, the existing methods lack sensitivity to detect the change point for ATSS longitudinal data. In addition, some methods have strict requirements for data distribution and cannot be applied to deal with this problem. In this study, the Bayesian change point detection model was first constructed using reparameterization techniques for two parameters of a beta distribution for the percentage data type, and the posterior distributions of parameters and change points were obtained using Markov Chain Monte Carlo (MCMC) sampling. With comprehensive simulation studies, the performance of the Bayesian change point detection model is found to be consistently powerful and robust across most scenarios with different sample sizes and beta distributions. Second, differential ATSS events in the real data, whose change points were identified using our method, were clustered according to their change points. Last, for each change point, pathway and transcription factor motif analyses were performed on its differential ATSS events. The results of our analyses demonstrated the effectiveness of the Bayesian change point detection model and provided biological insights into cell differentiation.


Assuntos
Teorema de Bayes , Diferenciação Celular , Sítio de Iniciação de Transcrição , Diferenciação Celular/genética , Humanos , Cadeias de Markov , Método de Monte Carlo , Modelos Genéticos , Algoritmos , Simulação por Computador
15.
Cell Mol Life Sci ; 81(1): 221, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763964

RESUMO

In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.


Assuntos
Hormônio Foliculoestimulante , Células da Granulosa , Folículo Ovariano , Proteína Sequestossoma-1 , Ubiquitinação , Proteínas WT1 , Animais , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Feminino , Proteínas WT1/metabolismo , Proteínas WT1/genética , Camundongos , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Camundongos Endogâmicos C57BL , Autofagia/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Humanos , Camundongos Knockout
16.
ACS Appl Bio Mater ; 7(5): 3295-3305, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701399

RESUMO

Physicochemical properties of nanoparticles, such as particle size, surface charge, and particle shape, have a significant impact on cell activities. However, the effects of surface functionalization of nanoparticles with small chemical groups on stem cell behavior and function remain understudied. Herein, we incorporated different chemical functional groups (amino, DETA, hydroxyl, phosphate, and sulfonate with charges of +9.5, + 21.7, -14.1, -25.6, and -37.7, respectively) to the surface of inorganic silica nanoparticles. To trace their effects on mesenchymal stem cells (MSCs) of rat bone marrow, these functionalized silica nanoparticles were used to encapsulate Rhodamine B fluorophore dye. We found that surface functionalization with positively charged and short-chain chemical groups facilitates cell internalization and retention of nanoparticles in MSCs. The endocytic pathway differed among functionalized nanoparticles when tested with ion-channel inhibitors. Negatively charged nanoparticles mainly use lysosomal exocytosis to exit cells, while positively charged nanoparticles can undergo endosomal escape to avoid scavenging. The cytotoxic profiles of these functionalized silica nanoparticles are still within acceptable limits and tolerable. They exerted subtle effects on the actin cytoskeleton and migration ability. Last, phosphate-functionalized nanoparticles upregulate osteogenesis-related genes and induce osteoblast-like morphology, implying that it can direct MSCs lineage specification for bone tissue engineering. Our study provides insights into the rational design of biomaterials for effective drug delivery and regenerative medicine.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Células-Tronco Mesenquimais , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Propriedades de Superfície , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Nanopartículas/química , Animais , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Osteogênese/efeitos dos fármacos
17.
Expert Rev Endocrinol Metab ; 19(3): 217-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693782

RESUMO

INTRODUCTION: Type 1 diabetes (T1D) mellitus is an autoimmune disease in which immune cells, predominantly effector T cells, destroy insulin-secreting beta-cells. Beta-cell destruction led to various consequences ranging from retinopathy and nephropathy to neuropathy. Different strategies have been developed to achieve normoglycemia, including exogenous glucose compensation, whole pancreas transplantation, islet transplantation, and beta-cell replacement. AREAS COVERED: The last two decades of experience have shown that indigenous glucose compensation through beta-cell regeneration and protection is a peerless method for T1D therapy. Tremendous studies have tried to find an unlimited source for beta-cell regeneration, on the one hand, and beta-cell protection against immune attack, on the other hand. Recent advances in stem cell technology, gene editing methods, and immune modulation approaches provide a unique opportunity for both beta-cell regeneration and protection. EXPERT OPINION: Pluripotent stem cell differentiation into the beta-cell is considered an unlimited source for beta-cell regeneration. Devising engineered pancreas-specific regulatory T cells using Chimeric Antigen Receptor (CAR) technology potentiates an effective immune tolerance induction for beta-cell protection. Beta-cell regeneration using pluripotent stem cells and beta-cell protection using pancreas-specific engineered regulatory T cells promises to develop a curative protocol in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Regeneração , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Células-Tronco Pluripotentes , Transplante de Pâncreas/métodos
18.
Blood Cells Mol Dis ; 107: 102855, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38703475

RESUMO

BACKGROUND: Circular RNAs (circRNA) are pivotal in hematological diseases. Previous study showed that circ_0014614 (circDAP3) was significantly underexpressed in bone marrow-derived exosomes from essential thrombocythemia (ET) patients, affecting the differentiation of bone marrow lineage cells into megakaryocytes. METHODS: Fluorescence in situ hybridization (FISH) was used to display circ_0014614's primary cytoplasmic location in K562 cells. Cytoscape software was used to predict the circRNA-miRNA-mRNA networks, and their expression at the cellular level was detected by Quantitative reverse transcription-polymerase chain reaction (qRT-PCR). qRT-PCR was utilized to detect the expression levels of circ_0014614,miR-138-5p and caspase3 mRNA. Western blot was used to determine the protein levels of GATA-1, RUNX-1, NF-E2, CD41 and caspase3. The proliferation of K562 cells was assessed using the Cell Counting Kit-8 (CCK-8) Assay. Furthermore, the interplay between miR-138-5p and circ_0014614 or caspase3 was elucidated through a Dual-luciferase reporter assay. RESULTS: FISH assay indicated circ_0014614's primary cytoplasmic location in K562 cells. In ET bone marrow and K562 cells, circ_0014614 and caspase3 were down-regulated, whereas miR-138-5p saw a significant surge. Overexpressing circ_0014614 curtailed K562 cells' proliferation and differentiation. Further, circ_0014614 targeted miR-138-5p, with heightened miR-138-5p levels counteracting circ_0014614's inhibition. MiR-138-5p further targeted caspase3, and caspase3 silencing neutralized suppressed miR-138-5p's effects on K562 cell differentiation. CONCLUSION: Circ_0014614 was down-regulated in ET bone marrow and bone marrow lineage cells, and upregulating circ_0014614 can inhibit bone marrow lineage cells' proliferation and differentiation into megakaryocytes. Mechanistically, circ_0014614 functioned as ceRNA via sponging miR-138-5p and alleviated the inhibitory effect of miR-138-5p on its target caspase3, which potentially deters tumor activity in ET.

19.
Medicina (Kaunas) ; 60(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38792884

RESUMO

Background and Objectives: Tacrolimus is a macrolide lactone compound derived from the bacterium Streptomyces tsukubensis, widely known as an immunosuppressant. In basic research, the effects of tacrolimus on osteogenic differentiation have been tested using mesenchymal stem cells. In this study, tacrolimus's effects on the cellular survival and osteogenic differentiation of stem cell spheroids were investigated. Materials and Methods: Concave microwells were used to form stem cell spheroids in the presence of tacrolimus at final concentrations of 0 µg/mL, 0.1 µg/mL, 1 µg/mL, 10 µg/mL, and 100 µg/mL. A microscope was used to test cellular vitality qualitatively, and an assay kit based on water-soluble tetrazolium salt was used to measure cellular viability quantitatively. Alkaline phosphatase activity and an anthraquinone dye test for measuring calcium deposits were used to assess osteogenic differentiation. To assess the expression of osteogenic differentiation, a quantitative polymerase chain reaction, Western blot, and RNA sequencing were performed. Results: Spheroids across all concentrations maintained a relatively uniform and spherical shape. Cell viability assay indicated that tacrolimus, up to a concentration of 100 µg/mL, did not significantly impair cell viability within spheroids cultured in osteogenic media. The increase in calcium deposition, particularly at lower concentrations of tacrolimus, points toward an enhancement in osteogenic differentiation. There was an increase in COL1A1 expression across all tacrolimus concentrations, as evidenced by the elevated mean and median values, which may indicate enhanced osteogenic activity. Conclusions: This study showed that tacrolimus does not significantly impact the viability of stem cell spheroids in osteogenic media, even at high concentrations. It also suggests that tacrolimus may enhance osteogenic differentiation, as indicated by increased calcium deposition and COL1A1 expression. These findings advance our understanding of tacrolimus's potential roles in tissue repair, regeneration, and stem cell-based therapeutic applications.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Osteogênese , Esferoides Celulares , Tacrolimo , Tacrolimo/farmacologia , Osteogênese/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Imunossupressores/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo
20.
STAR Protoc ; 5(2): 103084, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38787727

RESUMO

Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine and disease modeling. Here, we present a protocol for establishing edited hPSC cell lines utilizing visualized orthogonal selective reporters. We describe steps for constructing plasmids, carrying out cell culture and electroporation, as well as performing drug-fluorescent dual enrichment, clone screening, and cell line characterization. This protocol facilitates the achievement of single-base homozygous mutations and reporter knockins, offering a reliable approach for precision genome editing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...