Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(19)2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37830632

RESUMO

Cell-in-cell (CIC) structures contribute to tumor aggressiveness and poor prognosis in oral squamous cell carcinoma (OSCC). In vitro 3D models may contribute to the understanding of the underlying molecular mechanisms of these events. We employed a spheroid model to study the CIC structures in OSCC. Spheroids were obtained from OSCC (HSC3) and cancer-associated fibroblast (CAF) lines using the Nanoshuttle-PLTM bioprinting system (Greiner Bio-One). Spheroid form, size, and reproducibility were evaluated over time (EvosTM XL; ImageJ version 1.8). Slides were assembled, stained (hematoxylin and eosin), and scanned (Axio Imager Z2/VSLIDE) using the OlyVIA System (Olympus Life Science) and ImageJ software (NIH) for cellular morphology and tumor zone formation (hypoxia and/or proliferative zones) analysis. CIC occurrence, complexity, and morphology were assessed considering the spheroid regions. Well-formed spheroids were observed within 6 h of incubation, showing the morphological aspects of the tumor microenvironment, such as hypoxic (core) and proliferative zone (periphery) formation. CIC structures were found in both homotypic and heterotypic groups, predominantly in the proliferative zone of the mixed HSC3/CAF spheroids. "Complex cannibalism" events were also noted. These results showcase the potential of this model in further studies on CIC morphology, formation, and relationship with tumor prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Reprodutibilidade dos Testes , Microambiente Tumoral
2.
Front Oncol ; 12: 931092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847959

RESUMO

For over a century, cells within other cells have been detected by pathologists as common histopathological findings in tumors, being generally identified as "cell-in-cell" structures. Despite their characteristic morphology, these structures can originate from various processes, such as cannibalism, entosis and emperipolesis. However, only in the last few decades has more attention been given to these events due to their importance in tumor development. In cancers such as oral squamous cell carcinoma, cell-in-cell events have been linked to aggressiveness, metastasis, and therapeutic resistance. This review aims to summarize relevant information about the occurrence of various cell-in-cell phenomena in the context of oral squamous cell carcinoma, addressing their causes and consequences in cancer. The lack of a standard terminology in diagnosing these events makes it difficult to classify the existing cases and to map the behavior and impacts of these structures. Despite being frequently reported in oral squamous cell carcinoma and other cancers, their impacts on carcinogenesis aren't fully understood. Cell-in-cell formation is seen as a survival mechanism in the face of a lack of nutritional availability, an acid microenvironment and potential harm from immune cell defense. In this deadly form of competition, cells that engulf other cells establish themselves as winners, taking over as the predominant and more malignant cell population. Understanding the link between these structures and more aggressive behavior in oral squamous cell carcinoma is of paramount importance for their incorporation as part of a therapeutic strategy.

3.
Biomedicines ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740361

RESUMO

Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.

4.
Biochem Med (Zagreb) ; 32(2): 020801, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35464744

RESUMO

The internalization of apoptotic cells by non-phagocytic cells has been observed in different tissues and could be an important mechanism for the elimination of dying cells. Here, we describe a probable event of phagocytosis of apoptotic cells mediated by urothelial cells in urinary sediment. A 90-years-old male patient was admitted unconscious to the hospital, visible signs included: pale skin and dry mucous membranes, presumptively diagnosed as dehydration. Blood test revealed anaemia (haemoglobin 130 g/L) and hyperglycaemia (glucose 7.8 mmol/L), urinalysis showed a picture of urinary tract infection (leukocyturia and bacteriuria). The microscopic analysis of urinary sediment revealed the presence of urothelial cells and leukocytes internalized in urothelial cells. Anti-CD68 (membrane marker of macrophages) was tested by immunocytochemistry and a negative result was observed. Based on the findings phagocytosis of apoptotic cells mediated by urothelial cells was identified. This phenomenon can be observed in urinary sediment and should not be confused with a neoplastic process since it is a physiological event of cell elimination.


Assuntos
Bacteriúria , Infecções Urinárias , Idoso de 80 Anos ou mais , Bacteriúria/diagnóstico , Feminino , Humanos , Contagem de Leucócitos , Leucócitos , Masculino , Urinálise , Infecções Urinárias/diagnóstico
5.
BMC Cancer ; 20(1): 843, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883229

RESUMO

BACKGROUND: Cell-in-cell structures (caused by cell cannibalistic activity) have been related to prognosis of many cancers. This is the first multi-institutional study to assess the prognostic impact of cell-in-cell structures in a large cohort of early oral tongue squamous cell carcinomas (OTSCC). METHODS: A total of 308 cases from five Finnish University Hospitals and from the A.C. Camargo Cancer Center, São Paulo, Brazil, were included in this study. Cell-in-cell structures were evaluated on surgical postoperative sections that stained with hematoxylin and eosin staining. RESULTS: We found that cell-in-cell structures associated with cancer-related mortality in univariable analysis with a hazard ratio (HR) of 2.99 (95%CI 1.52-5.88; P = 0.001). This association was confirmed in multivariable analysis (HR 2.22, 95%CI 1.12-4.44; P = 0.024). In addition, statistically significant associations were observed between the cell-in-cell structures and other adverse histopathologic characteristics including deep invasion (P <  0.001), high index of tumor budding (P = 0.007), worst pattern of invasion (P <  0.001), perineural invasion (P = 0.01), and stroma-rich pattern (P = 0.001). CONCLUSIONS: Our findings demonstrate a significant relationship between cell-in-cell formation and aggressive characteristics of early OTSCC. Cell-in-cell structures have a distinct impact as a novel prognostic indicator in early OTSCC and they can be easily assessed during routine pathology practice.


Assuntos
Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Formação de Célula em Célula , Neoplasias da Língua/mortalidade , Neoplasias da Língua/patologia , Idoso , Biomarcadores Tumorais , Brasil/epidemiologia , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/cirurgia , Feminino , Finlândia/epidemiologia , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias da Língua/epidemiologia , Neoplasias da Língua/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA