Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
1.
Comput Biol Med ; 179: 108864, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991320

RESUMO

Fractional-order (FO) chaotic systems exhibit random sequences of significantly greater complexity when compared to integer-order systems. This feature makes FO chaotic systems more secure against various attacks in image cryptosystems. In this study, the dynamical characteristics of the FO Sprott K chaotic system are thoroughly investigated by phase planes, bifurcation diagrams, and Lyapunov exponential spectrums to be utilized in biometric iris image encryption. It is proven with the numerical studies the Sprott K system demonstrates chaotic behaviour when the order of the system is selected as 0.9. Afterward, the introduced FO Sprott K chaotic system-based biometric iris image encryption design is carried out in the study. According to the results of the statistical and attack analyses of the encryption design, the secure transmission of biometric iris images is successful using the proposed encryption design. Thus, the FO Sprott K chaotic system can be employed effectively in chaos-based encryption applications.

2.
Theor Popul Biol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019333

RESUMO

Multi-type birth-death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A limitation of current phylogenetic birth-death models is that they require restrictive linearity assumptions that yield tractable message-passing likelihoods, but that also preclude interactions between individuals. Many fundamental evolutionary processes-such as environmental carrying capacity or frequency-dependent selection-entail interactions, and may strongly influence the dynamics in some systems. Here, we introduce a multi-type birth-death process in mean-field interaction with an ensemble of replicas of the focal process. We prove that, under quite general conditions, the ensemble's stochastically evolving interaction field converges to a deterministic trajectory in the limit of an infinite ensemble. In this limit, the replicas effectively decouple, and self-consistent interactions appear as nonlinearities in the infinitesimal generator of the focal process. We investigate a special case that is rich enough to model both carrying capacity and frequency-dependent selection while yielding tractable message-passing likelihoods in the context of a phylogenetic birth-death model.

3.
Psicol Reflex Crit ; 37(1): 26, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008155

RESUMO

BACKGROUND: The Confusion, Hubbub, and Order Scale (CHAOS in English Version) was originally developed in the USA by Matheny et al (Bringing order out of chaos: psychometric characteristics of the confusion, hubbub, and order scale. Journal of Applied Developmental Psychology 16(3):429-444, 1995) to measure chaos in the family environment, characterized by confusion, lack of routine, and organization. OBJECTIVE: To present evidence of content validity, internal structure validity, and validity based on relationships with external measures of an adapted version of the CHAOS into Brasilian Portuguese with adolescents sample in São Paulo - Brasil. METHOD: Study 1 involved the translation/back-translation and adaptation of the scale into Brazilian Portuguese [here named "Escala de Confusão, Alvoroço e Ordem no Sistema familiar" (CAOS)], assessed by 5 judges. In Study 2, we conducted an exploratory factor analyses (EFA) to determine the scale's factor structure (N = 180 adults). In Study 3, we carried out confirmatory factor analyses (CFA) to confirm the internal validity of the scale, along with complete structural equation modeling to explore convergent validity in another sample (N = 239 adolescents). RESULTS: The CAOS scale displayed content validity, and the EFA and CFA showed a unifactorial structure (with some scale adjustments) with an acceptable fit. The family chaos latent factor was associated with externalizing symptoms and perceived stress in adolescents. CONCLUSION: Overall, the Brazilian version of the scale presented evidence of construct, internal, and concurrent validity that indicate its usefulness in Brazil.

4.
Heliyon ; 10(12): e32990, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994080

RESUMO

Compression systems based electromechanical actuators require a good understanding of their dynamics for a better performance. This paper deals with the study of the nonlinear dynamics of an electromechanical system with two rotating arms subjected to a sinusoidal excitation for fluid compression purposes. The physical model integrating two balloons to be compressed by the arms alternately is presented and the mathematical equations traducing their dynamics are established. We emphasize on the influence of some control parameters namely the supply voltage, the discontinuity position and the viscoelastic ratio on the behaviour of the angular displacement of the arms. The study is also done by neglecting the inductance in the electrical part of the system. It is obtained that while the arms exhibit periodic motion during regular movement, compression of the balloons induces a shift to multi-periodic or chaotic dynamics, occasionally reverting to periodicity. Experimental and numerical simulation results demonstrate good agreement, with the R-system approximating more experimental outcomes than the RL-system. These findings hold significant implications for various environmental applications utilizing pump technology.

6.
Sci Rep ; 14(1): 16118, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997275

RESUMO

This research paper investigates discrete predator-prey dynamics with two logistic maps. The study extensively examines various aspects of the system's behavior. Firstly, it thoroughly investigates the existence and stability of fixed points within the system. We explores the emergence of transcritical bifurcations, period-doubling bifurcations, and Neimark-Sacker bifurcations that arise from coexisting positive fixed points. By employing central bifurcation theory and bifurcation theory techniques. Chaotic behavior is analyzed using Marotto's approach. The OGY feedback control method is implemented to control chaos. Theoretical findings are validated through numerical simulations.

7.
Comput Biol Med ; 179: 108803, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955125

RESUMO

The RIME optimization algorithm is a newly developed physics-based optimization algorithm used for solving optimization problems. The RIME algorithm proved high-performing in various fields and domains, providing a high-performance solution. Nevertheless, like many swarm-based optimization algorithms, RIME suffers from many limitations, including the exploration-exploitation balance not being well balanced. In addition, the likelihood of falling into local optimal solutions is high, and the convergence speed still needs some work. Hence, there is room for enhancement in the search mechanism so that various search agents can discover new solutions. The authors suggest an adaptive chaotic version of the RIME algorithm named ACRIME, which incorporates four main improvements, including an intelligent population initialization using chaotic maps, a novel adaptive modified Symbiotic Organism Search (SOS) mutualism phase, a novel mixed mutation strategy, and the utilization of restart strategy. The main goal of these improvements is to improve the variety of the population, achieve a better balance between exploration and exploitation, and improve RIME's local and global search abilities. The study assesses the effectiveness of ACRIME by using the standard benchmark functions of the CEC2005 and CEC2019 benchmarks. The proposed ACRIME is also applied as a feature selection to fourteen various datasets to test its applicability to real-world problems. Besides, the ACRIME algorithm is applied to the COVID-19 classification real problem to test its applicability and performance further. The suggested algorithm is compared to other sophisticated classical and advanced metaheuristics, and its performance is assessed using statistical tests such as Wilcoxon rank-sum and Friedman rank tests. The study demonstrates that ACRIME exhibits a high level of competitiveness and often outperforms competing algorithms. It discovers the optimal subset of features, enhancing the accuracy of classification and minimizing the number of features employed. This study primarily focuses on enhancing the equilibrium between exploration and exploitation, extending the scope of local search.

8.
Chemosphere ; 362: 142788, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977250

RESUMO

To optimize the ultraviolet (UV) water disinfection process, it is crucial to determine the ideal geometric dimensions of a corresponding model that enhance performance while minimizing the impact of uncertain photoreactor inputs. As water treatment directly affects people's lives, it is crucial to eliminate the risks associated with the non-ideal performance of disinfection photoreactors. Input uncertainties greatly affect photoreactor performance, making it essential to develop a robust optimization algorithm in advance to mitigate these effects and minimize the physical and financial resources required for constructing the photoreactors. In the suggested algorithm, a two-objective genetic algorithm is integrated with a non-intrusive polynomial chaos expansion (PCE) technique. Additionally, the Sobol sampling method is employed to select the necessary samples for understanding the system's behavior. An artificial neural network surrogate model is trained using sufficient data points derived from computational fluid dynamics (CFD) simulations. A novel type of UV photoreactors working based on exterior reflectors is chosen to optimize the process with three uncertain input parameters, including UV lamp power, UV transmittance of water, and diffusive fraction of the reflective surface. In addition, four geometrical design variables are considered to find the optimal configuration of the photoreactor. The standard deviation (SD) and the reciprocal of log reduction value (LRV) are set as the objective functions, calculated using PCE. The optimal design provides a LRV of 3.95 with SD of 0.2. The coefficient of variation (CoV) of the model significantly declines up to 7%, indicating the decreased sensitivity of the photoreactor to the input uncertainties. Additionally, it is discovered that the robust model exhibits minimal sensitivity to changes in reflectivity in various flow rates, and its output variability aligns with the SD obtained through robust optimization.

9.
Front Netw Physiol ; 4: 1401661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022296

RESUMO

Current treatments of cardiac arrhythmias like ventricular fibrillation involve the application of a high-energy electric shock, that induces significant electrical currents in the myocardium and therefore involves severe side effects like possible tissue damage and post-traumatic stress. Using numerical simulations on four different models of 2D excitable media, this study demonstrates that low energy pulses applied shortly after local minima in the mean value of the transmembrane potential provide high success rates. We evaluate the performance of this approach for ten initial conditions of each model, ten spatially different stimuli, and different shock amplitudes. The investigated models of 2D excitable media cover a broad range of dominant frequencies and number of phase singularities, which demonstrates, that our findings are not limited to a specific kind of model or parameterization of it. Thus, we propose a method that incorporates the dynamics of the underlying system, even during pacing, and solely relies on a scalar observable, which is easily measurable in numerical simulations.

10.
Sci Rep ; 14(1): 16701, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030213

RESUMO

Due to their simplicity of implementation and compliance with the encryption issue, chaotic models are often utilized in picture encryption applications. Despite having many benefits, this approach still has a crucial space issue that makes encryption algorithms based on it susceptible to brute-force assaults. This research's proposed novel picture encryption technique has a vast key space and great key sensitivity. To achieve this goal, the proposed method combines two-way chaotic maps and reversible cellular automata (RCA). First, this approach uses a two-way chaotic model named spatiotemporal chaos for image confusion. This step includes permuting the image pixels using a chaotic map at the byte level. Then, the RCA model is utilized for image diffusion. In this step, the RCA model iterates over image pixels to modify them at the bit level. The method's performance in encrypting grayscale images was evaluated using various analysis methods. According to the results, the proposed method is a compelling image encryption algorithm with high robustness against brute-force, statistical, and differential attacks.

11.
Comput Methods Programs Biomed ; 255: 108311, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39032242

RESUMO

BACKGROUND AND OBJECTIVE: Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further. METHODS: In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion. RESULTS: We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model. CONCLUSIONS: Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology.

12.
J Theor Biol ; 592: 111895, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-38969168

RESUMO

In HIV drug therapy, the high variability of CD4+ T cells and viral loads brings uncertainty to the determination of treatment options and the ultimate treatment efficacy, which may be the result of poor drug adherence. We develop a dynamical HIV model coupled with pharmacokinetics, driven by drug adherence as a random variable, and systematically study the uncertainty quantification, aiming to construct the relationship between drug adherence and therapeutic effect. Using adaptive generalized polynomial chaos, stochastic solutions are approximated as polynomials of input random parameters. Numerical simulations show that results obtained by this method are in good agreement, compared with results obtained through Monte Carlo sampling, which helps to verify the accuracy of approximation. Based on these expansions, we calculate the time-dependent probability density functions of this system theoretically and numerically. To verify the applicability of this model, we fit clinical data of four HIV patients, and the goodness of fit results demonstrate that the proposed random model depicts the dynamics of HIV well. Sensitivity analyses based on the Sobol index indicate that the randomness of drug effect has the greatest impact on both CD4+ T cells and viral loads, compared to random initial values, which further highlights the significance of drug adherence. The proposed models and qualitative analysis results, along with monitoring CD4+ T cells counts and viral loads, evaluate the influence of drug adherence on HIV treatment, which helps to better interpret clinical data with fluctuations and makes several contributions to the design of individual-based optimal antiretroviral strategies.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Adesão à Medicação , Carga Viral , Humanos , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Simulação por Computador , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Modelos Biológicos , Método de Monte Carlo , Processos Estocásticos , Incerteza
13.
J Voice ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38886137

RESUMO

OBJECTIVE: Airway glottic insufficiency, or glottal gap, may lead to a breathy voice quality. It is hypothesized that a glottal gap may be a source of nonlinearity in speech production. This study aims to gain a chaotic and acoustic profile of glottal gap voice provided by phonation of excised larynges subjected to the insertion of a metal shim in the posterior glottis. STUDY DESIGN: Nonrandomized quasi-experimental study. METHODS: Posterior glottal gap varied from 0 to 3.5 mm in 0.5 mm intervals. Each treatment was investigated independently in a sample population of eight excised canine larynges. Phonation of the larynges for each treatment was recorded and analyzed for the cepstral peak prominence (CPP), harmonics-to-noise ratio (HNR), and correlation dimension. RESULTS: Kruskal-Wallis rank-sum tests yielded significant differences across shim groups for all parameters. Dunn-Bonferroni post-hoc tests revealed that the control group differed significantly from the 1.5, 2, 2.5, 3, and 3.5 mm groups for all metrics. Moreover, Kendall correlation tests indicated a moderately positive correlation between glottal gap size and correlation dimension, a moderately negative correlation between glottal gap size and CPP and between glottal gap size and the HNR. CONCLUSIONS: Glottic insufficiency provides a source of nonlinearity in phonation. Nonlinear dynamic analysis provides quantitative insight into glottal gap voice. This study encourages future studies to further evaluate the relationship between glottal gap and correlation dimension.

14.
Entropy (Basel) ; 26(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38920477

RESUMO

The applications of deep learning and artificial intelligence have permeated daily life, with time series prediction emerging as a focal area of research due to its significance in data analysis. The evolution of deep learning methods for time series prediction has progressed from the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN) to the recently popularized Transformer network. However, each of these methods has encountered specific issues. Recent studies have questioned the effectiveness of the self-attention mechanism in Transformers for time series prediction, prompting a reevaluation of approaches to LTSF (Long Time Series Forecasting) problems. To circumvent the limitations present in current models, this paper introduces a novel hybrid network, Temporal Convolutional Network-Linear (TCN-Linear), which leverages the temporal prediction capabilities of the Temporal Convolutional Network (TCN) to enhance the capacity of LSTF-Linear. Time series from three classical chaotic systems (Lorenz, Mackey-Glass, and Rossler) and real-world stock data serve as experimental datasets. Numerical simulation results indicate that, compared to classical networks and novel hybrid models, our model achieves the lowest RMSE, MAE, and MSE with the fewest training parameters, and its R2 value is the closest to 1.

15.
Entropy (Basel) ; 26(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920501

RESUMO

Recent theoretical investigations have revealed unconventional transport mechanisms within high Brillouin zones of two-dimensional superlattices. Electrons can navigate along channels we call superwires, gently guided without brute force confinement. Such dynamical confinement is caused by weak superlattice deflections, markedly different from the static or energetic confinement observed in traditional wave guides or one-dimensional electron wires. The quantum properties of superwires give rise to elastic dynamical tunneling, linking disjoint regions of the corresponding classical phase space, and enabling the emergence of several parallel channels. This paper provides the underlying theory and mechanisms that facilitate dynamical tunneling assisted by chaos in periodic lattices. Moreover, we show that the mechanism of dynamical tunneling can be effectively conceptualized through the lens of a paraxial approximation. Our results further reveal that superwires predominantly exist within flat bands, emerging from eigenstates that represent linear combinations of conventional degenerate Bloch states. Finally, we quantify tunneling rates across various lattice configurations and demonstrate that tunneling can be suppressed in a controlled fashion, illustrating potential implications in future nanodevices.

16.
Magn Reson Imaging Clin N Am ; 32(3): 413-430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944431

RESUMO

Prenatal MRI plays an essential role in the evaluation of the head and neck. This article overviews technical considerations and both isolated and syndromic anomalies of the fetal calvarium, globes and orbits, ears, maxilla, mandible, and neck.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Pescoço , Diagnóstico Pré-Natal , Humanos , Imageamento por Ressonância Magnética/métodos , Cabeça/diagnóstico por imagem , Gravidez , Pescoço/diagnóstico por imagem , Feminino , Diagnóstico Pré-Natal/métodos
17.
JMIR Res Protoc ; 13: e48549, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900565

RESUMO

BACKGROUND: Chronic stress is an important risk factor in the development of obesity. While research suggests chronic stress is linked to excess weight gain in children, the biological or behavioral mechanisms are poorly understood. OBJECTIVE: The objectives of the Family Stress Study are to examine behavioral and biological pathways through which chronic stress exposure (including stress from COVID-19) may be associated with adiposity in young children, and to determine if factors such as child sex, caregiver-child relationship quality, caregiver education, and caregiver self-regulation moderate the association between chronic stress and child adiposity. METHODS: The Family Stress Study is a prospective cohort study of families recruited from 2 Canadian sites: the University of Guelph in Guelph, Ontario, and McMaster University in Hamilton, Ontario. Participants will be observed for 2 years and were eligible to participate if they had at least one child (aged 2-6 years) and no plans to move from the area within the next 3 years. Study questionnaires and measures were completed remotely at baseline and will be assessed using the same methods at 1- and 2-year follow-ups. At each time point, caregivers measure and report their child's height, weight, and waist circumference, collect a hair sample for cortisol analysis, and fit their child with an activity monitor to assess the child's physical activity and sleep. Caregivers also complete a web-based health and behaviors survey with questions about family demographics, family stress, their own weight-related behaviors, and their child's mental health, as well as a 1-day dietary assessment for their child. RESULTS: Enrollment for this study was completed in December 2021. The final second-year follow-up was completed in April 2024. This study's sample includes 359 families (359 children, 359 female caregivers, and 179 male caregivers). The children's mean (SD) age is 3.9 years (1.2 years) and 51% (n=182) are female. Approximately 74% (n=263) of children and 80% (n=431) of caregivers identify as White. Approximately 34% (n=184) of caregivers have a college diploma or less and nearly 93% (n=499) are married or cohabiting with a partner. Nearly half (n=172, 47%) of the families have an annual household income ≥CAD $100,000 (an average exchange rate of 1 CAD=0.737626 USD applies). Data cleaning and analysis are ongoing as of manuscript publication. CONCLUSIONS: Despite public health restrictions from COVID-19, the Family Stress Study was successful in recruiting and using remote data collection to successfully engage families in this study. The results from this study will help identify the direction and relative contributions of the biological and behavioral pathways linking chronic stress and adiposity. These findings will aid in the development of effective interventions designed to modify these pathways and reduce obesity risk in children. TRIAL REGISTRATION: ClinicalTrials.gov NCT05534711; https://clinicaltrials.gov/study/NCT05534711. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48549.


Assuntos
COVID-19 , Estresse Psicológico , Aumento de Peso , Humanos , Estudos Prospectivos , Feminino , Masculino , Pré-Escolar , Estresse Psicológico/epidemiologia , Estresse Psicológico/psicologia , Criança , COVID-19/epidemiologia , COVID-19/psicologia , Obesidade Infantil/epidemiologia , Obesidade Infantil/psicologia , Ontário/epidemiologia , Canadá/epidemiologia , Fatores de Risco
18.
Neural Netw ; 178: 106412, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38838394

RESUMO

Memristors are of great theoretical and practical significance for chaotic dynamics research of brain-like neural networks due to their excellent physical properties such as brain synapse-like memorability and nonlinearity, especially crucial for the promotion of AI big models, cloud computing, and intelligent systems in the artificial intelligence field. In this paper, we introduce memristors as self-connecting synapses into a four-dimensional Hopfield neural network, constructing a central cyclic memristive neural network (CCMNN), and achieving its effective control. The model adopts a central loop topology and exhibits a variety of complex dynamic behaviors such as chaos, bifurcation, and homogeneous and heterogeneous coexisting attractors. The complex dynamic behaviors of the CCMNN are investigated in depth numerically by equilibrium point stability analysis as well as phase trajectory maps, bifurcation maps, time-domain maps, and LEs. It is found that with the variation of the internal parameters of the memristor, asymmetric heterogeneous attractor coexistence phenomena appear under different initial conditions, including the multi-stable coexistence behaviors of periodic-periodic, periodic-stable point, periodic-chaotic, and stable point-chaotic. In addition, by adjusting the structural parameters, a wide range of amplitude control can be realized without changing the chaotic state of the system. Finally, based on the CCMNN model, an adaptive synchronization controller is designed to achieve finite-time synchronization control, and its application prospect in simple secure communication is discussed. A microcontroller-based hardware circuit and NIST test are conducted to verify the correctness of the numerical results and theoretical analysis.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38907716

RESUMO

Modeling the knee is an important factor in increasing the quality of life of both healthy individuals and patients. Nevertheless, the intricate nature of the knee makes this problem complicated. In this study, an extension to an established planar knee joint model with Hertzian contact pairs is proposed with contact mechanics based on polynomial chaos expansion surrogate. Firstly, the finite element (FE) model is made representing a contact pair of sphere-to-plane type with two layers on both bodies, corresponding to the cartilage and the bone. Five variables corresponding to both geometry and material parameters are used to parametrize this model. Then, 128 distinct variants of the FE model are created based on a quasi-Monte Carlo sequence. This dataset is used to train and validate the surrogate. The trained surrogate is proven to have predictive capabilities with an average nRMSE of 0.2% in randomized test/train splits. When included in a model of the knee and tested under parameter uncertainties in Monte Carlo simulations, it results in nRMSE of 58% for angular coordinate compared to the original model with Hertzian pair. This signifies the high influence of contact formulation on the model output and the need for more physically based models in knee contact modeling.

20.
Methods Mol Biol ; 2825: 79-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913304

RESUMO

Cytogenetic analysis has traditionally focused on the clonal chromosome aberrations, or CCAs, and considered the large number of diverse non-clonal chromosome aberrations, or NCCAs, as insignificant noise. Our decade-long karyotype evolutionary studies have unexpectedly demonstrated otherwise. Not only the baseline of NCCAs is associated with fuzzy inheritance, but the frequencies of NCCAs can also be used to reliably measure genome or chromosome instability (CIN). According to the Genome Architecture Theory, CIN is the common driver of cancer evolution that can unify diverse molecular mechanisms, and genome chaos, including chromothripsis, chromoanagenesis, and polypoidal giant nuclear and micronuclear clusters, and various sizes of chromosome fragmentations, including extrachromosomal DNA, represent some extreme forms of NCCAs that play a key role in the macroevolutionary transition. In this chapter, the rationale, definition, brief history, and current status of NCCA research in cancer are discussed in the context of two-phased cancer evolution and karyotype-coded system information. Finally, after briefly describing various types of NCCAs, we call for more research on NCCAs in future cytogenetics.


Assuntos
Aberrações Cromossômicas , Neoplasias , Humanos , Neoplasias/genética , Instabilidade Cromossômica , Análise Citogenética/métodos , Cariotipagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA