Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.466
Filtrar
1.
Exp Hematol Oncol ; 13(1): 96, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350256

RESUMO

Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.

3.
Front Immunol ; 15: 1463971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351219

RESUMO

Introduction: In this study, we report a novel therapeutic approach redirecting antigen-specific CD4+ T cells recognizing a hybrid insulin peptide (BDC2.5 T cell receptor (TCR) transgenic CD4+ T cells) to attract and suppress islet-specific CD8+ T cells T cells in the non-obese diabetic (NOD) mouse model, and prevent the development of autoimmune diabetes. Methods: Purified BDC2.5 CD4+ T cells were induced to differentiate into regulatory T cells (Tregs). The Tregs were then electroporated with mRNA encoding chimeric human ß2 microglobulin (hß2m) covalently linked to insulin B chain amino acids 15-23 (designated INS-eTreg) or islet-specific glucose-6-phosphatase related protein (IGRP) peptide 206-214 (designated IGRP-eTreg). Immunoregulatory functions of these engineered regulatory T cells (eTregs) were tested by in vitro assays and in vivo co-transfer experiments with ß-cell-antigen-specific CD8+ T cells in NOD.Scid mice or by adoptive transfer into young, pre-diabetic NOD mice. Results: These eTregs were phenotyped by flow cytometry, and shown to have high expression of FoxP3, as well as other markers of Treg function, including IL-10. They suppressed polyclonal CD4+ T cells and antigen-specific CD8+ T cells (recognizing insulin or IGRP), decreasing proliferation and increasing exhaustion and regulatory markers in vitro. In vivo, eTregs reduced diabetes development in co-transfer experiments with pathogenic antigen-specific CD8+ T cells (INS-CD8+ or IGRP-CD8+ cells) into NOD.Scid mice. Finally, when the eTreg were injected into young NOD mice, they reduced insulitis and prevented spontaneous diabetes in the recipient mice. Conclusion: Our results suggest a novel therapeutic strategy to protect NOD mice by targeting antigen-specific cytotoxic CD8+ T cells, using redirected antigen-specific CD4+ Treg cells, to suppress autoimmune diabetes. This may suggest an innovative therapy for protection of people at risk of development of type 1 diabetes.


Assuntos
Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1 , Camundongos Endogâmicos NOD , Linfócitos T Reguladores , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Linfócitos T Reguladores/imunologia , Camundongos , Humanos , Feminino , Camundongos SCID , Insulina/imunologia , Transferência Adotiva , Camundongos Transgênicos , Glucose-6-Fosfatase/imunologia , Glucose-6-Fosfatase/genética , Microglobulina beta-2/genética , Microglobulina beta-2/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-39350554

RESUMO

Immunotherapy, as a novel treatment approach for various disorders, including cancers, is designed to either stimulate or suppress the immune system with high speci-ficity. The recent achievements of this therapy in clinical trials are set to transform tradi-tional treatment methods. Furthermore, it holds promise for enhancing the survival rates of patients suffering from both metastatic cancers and primary stages. Gastrointestinal Cancers (GI) account for 26% of global incidence and 35% of worldwide deaths. Treat-ment can be carried out using targeted immunotherapy in these cancers. If the tiers are superior, improvement could require more enterprise. On account that the function of immunotherapy in GI has been so promising, solely in sufferers with severe metastatic levels, within the literature, the immune checkpoint inhibitors in cancer immunotherapy of GI cancers, chimeric antigen receptor T-cell (vehicle-T), modulators of the tumor mi-croenvironment, and drug resistance mechanisms in immunotherapy as an effective treatment approach to GI cancers along with colon, pancreas, gastric, and esophageal cancers have been addressed. This review provides an overview of FDA-approved im-munotherapy drugs and ongoing preclinical developments. Additionally, we offer in-sights into the future of immunotherapy for GI cancer patients, addressing the associated challenges.

6.
Curr Res Transl Med ; 72(4): 103471, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39305562

RESUMO

Relapsed/refractory (r/r) acute myeloid leukemia (AML) is associated with poor prognosis. CD19 is a B-cell marker, is aberrantly expressed in AML, mostly with t(8; 21)(q22; q22.1). Here we report the results of a phase 2 study giving point of care produced CD19 CAR T- cells for r/r AML with aberrant expression of CD19 (NCT04257175). Lymphodepletion included fludarabine and cyclophosphamide The response was evaluated by bone marrow (BM) aspiration on day 28. Six patients (5 adults and 1 child) were included. Median number of previous chemotherapy lines was 4 (range, 3-8) and four patients received CAR T-cells 8-18 months post allogeneic hematopoietic stem cell transplantation (allo-HSCT). Cytokine release syndrome (CRS) of any grade occurred in all patients, and 1 patient had grade 3 CRS. Immune effector cell-associated neurotoxicity syndrome (ICANS) occurred in 2 patients at low grades. Tocilizumab was administered to 2 patients and corticosteroids to 3 patients. Four patients achieved a complete remission (CR), while 2/6 progressed (PD). Three patients (2 with CR and 1 with PD) underwent allo-HSCT (it was the second transplant in 2) 2-5 months post CAR T-cells infusion. The median duration of response in patients achieving CR was 8.5 (range; 3-14) months. However, all patients eventually died within 5 (1-18) months. In conclusion, CD19 CAR T- cell treatment for AML is feasible and safe. However, the response is short and should be followed by allo-HSCT. Hopefully, future long term results will be improved by combining the CAR T- cell therapy with the emerging novel effective anti-leukemic compounds.

7.
Stem Cell Rev Rep ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312080

RESUMO

BACKGROUND: For decades cancer remained the center of attention in the scientific community as its survival rates are low. Researchers from all around the world wanted to know the core of the problem as to what initiates cancer in a patient and helps with its progression. Many postulations came to light, but Cancer Stem Cells (CSC) was the most appealing and convincing. MAIN BODY: In this review, we shed light on a potential solution to the problem by reviewing CAR-T cells (Chimeric antigen receptor T cells). These specialized T cells are designed to detect specific antigens on cancer cells. We analyse the steps of their formation from the collection of T cells from the patient's bloodstream and modifying it to exhibit specific CAR structures on their surfaces, to reinjecting them back and evaluating their efficacy. We thoroughly investigate the structure of the CAR design with improvements across different generations. The focus extends to the unique properties of CSCs as in how targeting specific markers on them can enhance the precision of cancer therapy. CONCLUSION: Despite the successes, the review discusses the existing limitations and toxicities associated with CAR-derived therapies, highlighting the ongoing need for research and refinement. Looking ahead, we explore proposed strategies aimed at optimizing CAR-T cell therapy to mitigate adverse effects for improved cancer treatments.

8.
Cytotherapy ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39283287

RESUMO

BACKGROUND: Many studies have demonstrated the effectiveness of chimeric antigen receptor-T (CAR-T) cell therapy for relapsed or refractory multiple myeloma (RRMM), but the hematologic toxicity has not been well characterized. METHODS: A total of 111 adults with RRMM who received BCMA CAR-T cells, BCMA + CD19 CAR-T cells or tandem BCMA/CD19 dual-target (BC19) CAR-T cells infusion were enrolled. We characterized cytopenia and hematologic recovery at different time points after CAR-T-cell therapy, analyzed the effect of cytopenia on prognosis and identified the risk factors. RESULTS: Patients had a high probability of cytopenia, with anemia, neutropenia and thrombocytopenia occurring in 92%, 95% and 73%, respectively. There were 60 (54%) patients had prolonged hematologic toxicity (PHT) after D28. The median hemoglobin and platelet count were significantly lower at D28 post-CAR-T cell therapy than at baseline. Hemoglobin increased to above baseline at D90. The median absolute neutrophil count was lower than baseline at D0 and D28, and it recovered to baseline at D180. The baseline level of lactate dehydrogenase was associated with thrombocytopenia. Extramedullary involvement was associated with hemoglobin recovery, while the baseline level of albumin and types of CAR-T were related to platelet recovery. Patients with anemia at baseline and at D0, D180 and D360 had shorter progression-free survival (PFS), while anemia at D0, D60, D180 and D360 was associated with shorter overall survival (OS). Neutropenia at D0 was associated with shorter PFS and patients with neutropenia at D90 or D180 had shorter OS. Patients with thrombocytopenia at any time had shorter PFS and OS. Compared to patients without PHT, patients with PHT had shorter PFS and OS. CONCLUSIONS: The majority of RRMM patients treated with CAR-T cells experienced cytopenia. Cytopenia occurred at specific time points was associated with a poorer prognosis.

9.
Front Immunol ; 15: 1441404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290703

RESUMO

Background: High-risk double-expressor diffuse large B-cell lymphoma has an inferior prognosis following standard first-line therapy. After failure of second-line therapy, treatment options are limited if accompanied by localized compressive symptoms. Chimeric Antigen Receptor T cell (CAR-T) therapy preceded by bridging radiotherapy may be an effective emerging therapy. Case presentation: We report a 66-year-old female patient diagnosed with stage IV double-expressor diffuse large B-cell lymphoma. The patient achieved progressive disease after two cycles of rituximab, cyclophosphamide, liposomal doxorubicin, vincristine, and prednisone and continued to develop cervical lymph node recurrence after second-line therapy. The patient was infused with CAR-T cells after receiving focal bridging radiotherapy and remained in complete response more than 9 months after treatment. In addition, the patients did not experience serious adverse reactions related to radiotherapy as well as CAR-T cell therapy. Conclusions: In this article, we describe a patient with double-expressor diffuse large B-cell lymphoma with localized compression symptoms after second-line treatment failure who benefited from CAR-T combined with focal bridging radiotherapy.


Assuntos
Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/terapia , Feminino , Idoso , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Indução de Remissão , Recidiva Local de Neoplasia , Resultado do Tratamento
10.
Front Immunol ; 15: 1433075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290710

RESUMO

Background: On April 18, 2024, the U.S. Food and Drug Administration officially required updating of the "boxed warning" for T cell malignancies for all chimeric antigen receptor T cell (CAR-T) therapies. Given the clinical significance of these therapies, a rigorous safety assessment is paramount. However, comprehensive real-world safety studies have been lacking for the newly marketed CAR-T products idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel), which target B cell maturation antigen, especially regarding the risk of secondary malignancies. Therefore, we aimed to thoroughly analyze the adverse events (AEs) information in the FDA Adverse Event Reporting System (FAERS) database to comprehensively understand the safety risks of ide-cel and cilta-cel. Methods: We extracted AE reports related to ide-cel and cilta-cel from the FAERS database (https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html.) from January 1, 2019 to December 31, 2023. Disproportionality analysis and Bayesian analysis were used to identify risk signals across subgroups and specific cases (including for death and secondary malignancies). Weibull distribution analysis was employed to determine the time to AE onset. Results: A total of 695 AE reports for ide-cel and 848 for cilta-cel were included in the FAERS database. This analysis identified 81 positive signals for ide-cel and 74 for cilta-cel. Notably, comparisons with the drug labels revealed "unexpected signals," including febrile bone marrow aplasia (reporting odds ratio=69.10; confidence interval 39.12-122.03) and plasma cell myeloma (12.45; 8.18-18.95) for ide-cel, and increased serum ferritin (24.98; 8.0-77.58) and large intestine perforation (18.57; 5.98-57.69) for cilta-cel. Both drugs showed a higher AE incidence among male recipients and patients aged ≥65 years, although female recipients faced a greater risk. Most AEs occurred at the early stage of administration. However, secondary malignancies were detected for both drugs, primarily occurring one-year post-administration. Conclusion: This study provides a foundation for understanding the safety profile of CAR-T cell therapy, particularly in relation to the emergence of secondary malignancies. Such insights are helpful for clinical decision-making and the safe and effective utilization of these therapeutic agents.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , United States Food and Drug Administration , Humanos , Estados Unidos/epidemiologia , Imunoterapia Adotiva/efeitos adversos , Masculino , Feminino , Receptores de Antígenos Quiméricos/imunologia , Idoso , Pessoa de Meia-Idade , Adulto , Bases de Dados Factuais , Antígeno de Maturação de Linfócitos B/imunologia , Adulto Jovem , Adolescente , Receptores de Antígenos de Linfócitos T/imunologia , Produtos Biológicos/efeitos adversos
11.
Transplant Cell Ther ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277113

RESUMO

The Third Annual Workshop of the American Society for Transplantation and Cellular Therapy (ASTCT) and National Marrow Donor Program (NMDP) ACCESS Initiative occurred on July 23 and 24, 2024. Content from the workshop is provided to inform the hematopoietic cell transplantation (HCT) and cellular therapy (CT) ecosystem about progress and direction of the collaborative. Highlights from the meeting are reviewed, including the inaugural Corporate Roundtable and Advocacy Day, new partnerships with non-profit organizations, and updates on projects from the Awareness, Poverty and Race and Ethnicity Inequity Committees. In addition, the Junior Faculty and Trainee Immersion Program-sponsored efforts in workforce diversity and physician advocacy are also presented. Lastly, continued education was provided on patient and caregiver participation as well as community engagement. As it enters its third year, the ASTCT-NMDP ACCESS Initiative will transition from foundation-building as a grass roots collaborative to intentional impact in reducing barriers and improving outcome disparities for all patients in need of HCT/CT. Enthusiasm for and participation in the ACCESS Initiative remain high and both are needed to sustain progress in achieving its goal in enabling all patients in need to receive HCT/CT.

12.
J Immunother Cancer ; 12(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266215

RESUMO

BACKGROUND: Pediatric patients with recurrent/metastatic Ewing sarcoma (ES) have a dismal 5-year survival. Novel therapeutic approaches are desperately needed. Natural killer (NK) cell number and function are low in ES patient tumors, in large part due to the immunosuppressive tumor microenvironment (TME). Melanoma cell adhesion molecule (MCAM) is highly expressed on ES and associated with ES metastasis. NKTR-255 is a polymer-conjugated recombinant human interleukin-15 (IL-15) agonist improving NK cell activity and persistence. Magrolimab (MAG) is a CD47 blockade that reactivates the phagocytic activity of macrophages. METHODS: Transcriptome profiling coupled with CIBERSORT analyses in both ES mouse xenografts and human patient tumors were performed to identify mechanisms of NK resistance in ES TME. A chimeric antigen receptor (CAR) NK cell targeting MCAM was engineered by CAR mRNA electroporation into ex vivo expanded NK cells. In vitro cytotoxicity assays were performed to investigate the efficacy of anti-MCAM-CAR-NK cell alone or combined with NKTR-255 against ES cells. Interferon-γ and perforin levels were measured by ELISA. The effect of MAG on macrophage phagocytosis of ES cells was evaluated by in vitro phagocytosis assays. Cell-based and patient-derived xenograft (PDX)-based xenograft mouse models of ES were used to investigate the antitumor efficacy of CAR-NK alone and combined with NKTR-255 and MAG in vivo. RESULTS: We found that NK cell infiltration and activity were negatively regulated by tumor-associated macrophages (TAM) in ES TME. Expression of anti-MCAM CAR significantly and specifically enhanced NK cytotoxic activity against MCAMhigh but not MCAM-knockout ES cells in vitro, and significantly reduced lung metastasis and extended animal survival in vivo. NKTR-255 and MAG significantly enhanced in vitro CAR-NK cytotoxicity and macrophage phagocytic activity against ES cells, respectively. By combining with NKTR-255 and MAG, the anti-MCAM-CAR-NK cell significantly decreased primary tumor growth and prolonged animal survival in both cell- and PDX-based ES xenograft mouse models. CONCLUSIONS: Our preclinical studies demonstrate that immunotherapy via the innate immune system by combining tumor-targeting CAR-NK cells with an IL-15 agonist and a CD47 blockade is a promising novel therapeutic approach to targeting MCAMhigh malignant metastatic ES.


Assuntos
Imunoterapia , Sarcoma de Ewing , Microambiente Tumoral , Humanos , Sarcoma de Ewing/imunologia , Sarcoma de Ewing/terapia , Animais , Camundongos , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Imunidade Inata , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Immunol ; 15: 1424269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286245

RESUMO

Background: Chimeric antigen receptor (CAR) T-cell therapy has attracted considerable attention since its recent endorsement by the Food and Drug Administration, as it has emerged as a promising immunotherapeutic modality within the landscape of oncology. This study explores the prognostic utility of [18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG PET) in lymphoma patients undergoing CAR T-cell therapy. Through meta-analysis, pooled hazard ratio (HR) values were calculated for specific PET metrics in this context. Methods: PubMed, Scopus, and Ovid databases were explored to search for relevant topics. Dataset retrieval from inception until March 12, 2024, was carried out. The primary endpoints were impact of specific PET metrics on overall survival (OS) and progression-free survival (PFS) before and after treatment. Data from the studies were extracted for a meta-analysis using Stata 17.0. Results: Out of 27 studies identified for systematic review, 15 met the criteria for meta-analysis. Baseline OS analysis showed that total metabolic tumor volume (TMTV) had the highest HR of 2.66 (95% CI: 1.52-4.66), followed by Total-body total lesion glycolysis (TTLG) at 2.45 (95% CI: 0.98-6.08), and maximum standardized uptake values (SUVmax) at 1.30 (95% CI: 0.77-2.19). TMTV and TTLG were statistically significant (p < 0.0001), whereas SUVmax was not (p = 0.33). For PFS, TMTV again showed the highest HR at 2.65 (95% CI: 1.63-4.30), with TTLG at 2.35 (95% CI: 1.40-3.93), and SUVmax at 1.48 (95% CI: 1.08-2.04), all statistically significant (p ≤ 0.01). The ΔSUVmax was a significant predictor for PFS with an HR of 2.05 (95% CI: 1.13-3.69, p = 0.015). Conclusion: [18F]FDG PET parameters are valuable prognostic tools for predicting outcome of lymphoma patients undergoing CAR T-cell therapy.


Assuntos
Fluordesoxiglucose F18 , Imunoterapia Adotiva , Linfoma , Tomografia por Emissão de Pósitrons , Humanos , Imunoterapia Adotiva/métodos , Linfoma/terapia , Linfoma/diagnóstico por imagem , Linfoma/imunologia , Linfoma/mortalidade , Prognóstico , Compostos Radiofarmacêuticos
14.
Respir Med Case Rep ; 51: 102104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286407

RESUMO

A 56-year-old woman who received CD19 chimeric antigen receptor-T cell therapy for refractory diffuse large B-cell lymphoma developed severe coronavirus disease 2019 (COVID-19) and was treated with nirmatrelvir/ritonavir in April 2022. However, she experienced persistent fatigue and cough and fever in June. Computed tomography revealed bilateral ground-glass opacities (GGO), and the patient was treated with corticosteroids for organizing pneumonia after COVID-19. Partial improvement was observed, but new GGO appeared despite corticosteroid therapy. Genome analysis of severe acute respiratory syndrome coronavirus 2 detected Omicron variant BA.1.1.2, which was prevalent at the time of initial infection. The patient was diagnosed with protracted COVID-19 and was treated with remdesivir, molnupiravir, nirmatrelvir/ritonavir, and tixagevimab/cilgavimab. These treatments appeared to contribute to the improvement of protracted COVID-19.

16.
Theranostics ; 14(14): 5725-5742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310093

RESUMO

Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.


Assuntos
Neoplasias Encefálicas , Imunoterapia Adotiva , Macrófagos , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Microambiente Tumoral/imunologia , Imunoterapia Adotiva/métodos , Macrófagos/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linfócitos T/imunologia , Imunoterapia/métodos
17.
Asia Pac J Oncol Nurs ; 11(10): 100579, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39315365

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy represents a significant advancement in cancer treatment, particularly for hematologic malignancies. Various cancer immunotherapy strategies are presently being explored, including cytokines, cancer vaccines, immune checkpoint inhibitors, immunomodulators monoclonal antibodies, etc. The therapy has shown impressive efficacy in treating conditions such as acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), and multiple myeloma, often leading to complete remission in refractory cases. However, the clinical application of CAR T-cell therapy is accompanied by challenges, notably severe side effects. Effective management of these adverse effects requires meticulous monitoring and prompt intervention, highlighting the critical role of nursing in this therapeutic process. Nurses play a crucial role in patient education, monitoring, symptom management, care coordination, and psychosocial support, ensuring safe and effective treatment. As research advances and new CAR T-cell therapies are developed, the role of nursing professionals remains pivotal in optimizing patient outcomes. The continued evolution of CAR T-cell therapy promises improved outcomes, with nursing professionals integral to its success.

18.
Transplant Cell Ther ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306278

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has transformed survival outcomes in patients with relapsed and refractory large B-cell lymphoma, but it is associated with a variety of side effects OBJECTIVE: : This study examined changes in patient-reported quality of life (QoL) and toxicities, as well as risk factors for worse QoL and toxicities, in the first year after treatment STUDY DESIGN: : Patients with large B-cell lymphoma completed questionnaires assessing QoL and toxicity severity before infusion, and 90, 180, and 360 days after infusion. Mixed models were used to examine changes in QoL and toxicities over time, and clinical moderators of change in QoL and toxicities RESULTS: : Patients reported improvements in physical functioning and fatigue in the year after treatment (p-values<0.01), but there were no changes in pain, anxiety, or depression over time. Patients with active disease at day 90 reported more physical dysfunction at all post-infusion timepoints (ps≤0.01) compared to patients who responded to treatment. Similarly, patients with active disease at day 90 reported worsening depression over time, such that at day 360, depressive symptoms were worse for patients with active disease than patients without active disease (p=0.02). Patients treated with 4+ lines of prior therapy reported worsening pain and anxiety over time, such that at day 360, both pain and anxiety were significantly worse for patients previously treated with 4 of more lines of therapy than patients treated with fewer lines of therapy (ps≤0.01). Regarding toxicities, patients reported decreasing overall toxicity burden up to day 180, with subsequent worsening at day 360 (p=0.02). Most patients reported at least one or two grade 2 toxicities at each time point CONCLUSIONS: : Patients demonstrated unchanging or improved QoL after treatment with CAR T-cell therapy, but active disease and greater prior lines of therapy were associated with worse QoL outcomes over time. Toxicity severity also improved during the first 6 months post-treatment, but worsened thereafter, particularly among patients with active disease after treatment.

19.
Antibodies (Basel) ; 13(3)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39311376

RESUMO

Strategies to increase the anti-tumor efficacy of cytokine-induced killer cells (CIKs) include genetic modification with chimeric antigen receptors (CARs) or the addition of soluble T-cell engaging bispecific antibodies (BsAbs). Here, CIKs were modified using a transposon system integrating two distinct anti-CD19 CARs (CAR-MNZ and CAR-BG2) or combined with soluble CD3xCD19 BsAb blinatumomab (CIK + Blina). CAR-MNZ bearing the CD28-OX40-CD3ζ signaling modules, and CAR-BG2, designed on the Tisagenlecleucel CAR sequence (Kymriah®), carrying the 4-1BB and CD3ζ signaling elements, were employed. After transfection and CIK expansion, cells expressed CAR-CD19 to a similar extent (35.9% CAR-MNZ and 17.7% CAR-BG2). In vitro evaluations demonstrated robust proliferation and cytotoxicity (~50% cytotoxicity) of CARCIK-MNZ, CARCIK-BG2, and CIK + Blina against CD19+ target cells, suggesting similar efficacy. All effectors formed an increased number of synapses, activated NFAT and NFkB, and secreted IL-2 and IFN-É£ upon encountering targets. CIK + Blina displayed strongest NFAT and IFN-É£ induction, whereas CARCIK-BG2 demonstrated superior synapse formation. All the effectors have shown therapeutic activity in vivo against the CD19+ Daudi tumor model, with CARCIK cells showing a more durable response compared to CIK + Blina, likely due to the short half-life of Blina in this model.

20.
J Immunother Cancer ; 12(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313307

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cell has revolutionary efficacy against relapsed/refractory multiple myeloma (R/R MM). However, current CAR-T cell therapy has several limitations including long vein-to-vein time and limited viability. METHODS: A 4-1BB-costimulated B-cell maturation antigen (BCMA) CAR-T integrating an independently-expressed OX40 (BCMA-BBZ-OX40) was designed and generated by a traditional manufacturing process (TraditionCART) or instant manufacturing platform (named InstanCART). The tumor-killing efficiency, differentiation, exhaustion, and expansion level were investigated in vitro and in tumor-bearing mice. An investigator-initiated clinical trial was performed in patients with R/R MM to evaluate the outcomes of both TraditionCART and InstanCART. The primary objective was safety within 1 month after CAR-T cell infusion. The secondary objective was the best overall response rate. RESULTS: Preclinical studies revealed that integrated OX40 conferred BCMA CAR-T cells with superior cytotoxicity and reduced exhaustion levels. InstanCART process further enhanced the proliferation and T-cell stemness of BCMA-BBZ-OX40 CAR-T cells. BCMA-BBZ-OX40 CAR-T cells were successfully administered in 22 patients with R/R MM, including 15 patients with TraditionCART and 7 patients with InstanCART. Up to 50% (11/22) patients had a high-risk cytogenetic profile and 36% (8/22) had extramedullary disease. CAR-T therapy caused grade 1-2 cytokine release syndrome in 19/22 (80%) patients, grade 1 neurotoxicity in 2/22 (9%) patients and led to ≥grade 3 adverse events including neutropenia (20/22, 91%), thrombocytopenia (15/22, 68%), anemia (12/22, 55%), creatinine increased (1/22, 5%), hepatic enzymes increased (5/22, 23%), and sepsis (1/22, 5%). The best overall response rate was 100%, and 64% (14/22) of the patients had a complete response or better. The median manufacturing time was shorter for InstanCART therapy (3 days) than for TraditionCART therapy (10 days). Expansion and duration were dramatically higher for InstanCART cells than for TraditionCART cells. CONCLUSIONS: BCMA-BBZ-OX40 CAR-T cells were well tolerated and exhibited potent responses in patients with R/R MM. InstanCART shortened the manufacturing period compared to TraditionCART, and improved the cellular kinetics. Our results demonstrated the potency and feasibility of OX40-modified BCMA CAR-T cells using InstanCART technology for R/R MM therapy. TRIAL REGISTRATION NUMBER: This trial was registered at www. CLINICALTRIALS: gov as #NCT04537442.


Assuntos
Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Antígeno de Maturação de Linfócitos B/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Masculino , Animais , Camundongos , Feminino , Pessoa de Meia-Idade , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Idoso , Adulto , Receptores OX40/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA