Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Photodiagnosis Photodyn Ther ; 49: 104304, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39226754

RESUMO

BACKGROUND: Acne vulgaris is a chronic inflammatory skin disease involving the pilosebaceous unit. OBJECTIVE: To assess the efficacy and safety of a chlorin e6 derivative-mediated photodynamic therapy (STBF-PDT) in the treatment of mild to moderate acne patients. METHODS: In this prospective patient single-blind randomized split-face controlled study, patients diagnosed with mild to moderate acne were treated with four sessions of STBF-PDT on one-half of the face, while the other half were treated with the same dose of red-light treatment without photosensitizer. Follow-up assessment including the skin lesion clearance rate, facial fluorescence scattering spots on VISIA Porphyrins mode, and skin physiological parameters was conducted before and after treatment as well as 2 and 4 weeks after the final treatment. RESULTS: A total of 26 patients were recruited, of which 22 patients completed this study. STBF-PDT is significantly effective in improving lesions in patients with acne. The clearance rate of total lesions was 67.42±8.51 % in the STBF-PDT group and 41.05±11.97 % in the control group 4 weeks after the treatment (P < 0.001). The average clearance rate of inflammatory lesions was 84.41±7.13 % in the STBF-PDT group and 50.10±13.91 % in the control group, with a statistically significance (P < 0.0001). The skin sebum of the STBF-PDT side was significantly lower than that on the control side. There was no obvious adverse reaction especially no pain or reactive acne. CONCLUSION: STBF-PDT may be a safe and effective treatment for mild to moderate acne and can significantly inhibit sebum secretion.

2.
Photodiagnosis Photodyn Ther ; 48: 104300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39097252

RESUMO

OBJECTIVE: Chronic wounds are costly and difficult to treat, resulting in morbidity and even mortality in some cases due to a high methicillin-resistant Staphylococcus aureus (MRSA) burden contributing to chronicity. We aimed to observe the antimicrobial activity and healing-promoting effect of a novel photosensitizer Shengtaibufen (STBF)-mediated antibacterial photodynamic therapy (PDT) on MRSA-infected chronic leg ulcers. PATIENTS AND METHODS: This was a retrospective, comparative, single-center clinical study. A total of 32 patients with chronic lower limb wounds infected with MRSA from January 2022 to December 2023 were finally included in this study by searching the electronic medical records of the dermatology department of Huadong Hospital, including a group of red light combined with iodophor (control+iodophor, n=16, receiving red light once a week for 8 weeks and routine dressing change with iodophor once a day) and a group of STBF-mediated PDT (STBF-PDT) combined with iodophor (STBF-PDT+iodophor, n=16, receiving STBF-PDT and routine dressing change with iodophor once a day). STBF-PDT was performed once a week (1 mg/ml STBF, 1 h incubation, 630 nm red light, 80 J/cm2) for 8 weeks. The primary endpoints included wound clinical signs, wound size, wound-related pain, re-epithelialization score, MRSA load and wound-related quality of life (wound-QoL). Any adverse events were also recorded. RESULTS: We found that STBF-PDT+iodophor could effectively alleviate clinical infection symptoms, accelerate wound closure, reduce average biological burden and improve wound-QoL without severe adverse events in comparison to the control+iodophor group. The STBF-PDT+iodophor group obtained a mean percentage reduction of 65.22% in wound size (from 18.96±11.18 cm2 to 6.59±7.94 cm2) and excellent re-epithelialization scores, as compared with a decrease of 30.17% (from 19.23±9.80 cm2 to 13.43±9.32 cm2) for the control+iodophor group. Significant differences in wound area were observed at week 6 (p=0.028*) and week 8 (p=0.002**). The bacterial load decreased by 99.86% (from 6.45 × 107±2.69 × 107 to 8.94 × 104±1.92 × 105 CFU/cm2, p<0.0001) in the STBF-PDT+iodophor group and 1.82% (from 6.61 × 107±2.13 × 107 to 6.49 × 107±2.01 × 107 CFU/cm2, p=0.029) in the control+iodophor group. The wound-QoL in STBF-PDT+iodophor group had a 51.62% decrease in overall score (from 29.65±9.33 at the initial to 14.34±5.17 at week 8, p<0.0001) compared to those receiving red light and routine wound care (from 30.73±17.16 to 29.32±15.89 at week 8, p=0.003). Moreover, patients undergoing STBF-PDT+iodophor exhibited great improvements in all domains of wound-QoL (physical, psychological and everyday-life), whereas the control+iodophor group ameliorated in only one field (everyday-life). CONCLUSION: Our data confirmed that a novel photosensitizer, STBF-mediated PDT, when combined with iodophor, served as a potential modality for MRSA infection and a possible therapy for other drug-resistant microorganisms, and as a promising alternative for chronic cutaneous infectious diseases.


Assuntos
Iodóforos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fotoquimioterapia/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estudos Retrospectivos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Iodóforos/farmacologia , Úlcera da Perna/tratamento farmacológico , Úlcera da Perna/microbiologia , Cicatrização/efeitos dos fármacos , Doença Crônica , Infecções Estafilocócicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Idoso de 80 Anos ou mais , Porfirinas/farmacologia , Porfirinas/uso terapêutico
3.
ACS Infect Dis ; 10(8): 2978-2990, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38990322

RESUMO

Infectious diabetic wounds present a substantial challenge, characterized by inflammation, infection, and delayed wound healing, leading to elevated morbidity and mortality rates. In this work, we developed a multifunctional lipid nanoemulsion containing quercetin, chlorine e6, and rosemary oil (QCRLNEs) for dual anti-inflammatory and antibacterial photodynamic therapy (APDT) for treating infectious diabetic wounds. The QCRLNEs exhibited spherical morphology with a size of 51 nm with enhanced encapsulation efficiency, skin permeation, and localized delivery at the infected wound site. QCRLNEs with NIR irradiation have shown excellent wound closure and antimicrobial properties in vitro, mitigating the nonselective cytotoxic behavior of PDT. Also, excellent biocompatibility and anti-inflammatory and wound healing responses were observed in zebrafish models. The infected wound healing properties in S. aureus-infected diabetic rat models indicated re-epithelization and collagen deposition with no signs of inflammation. This multifaceted approach using QCRLNEs with NIR irradiation holds great promise for effectively combating oxidative stress and bacterial infections commonly associated with infected diabetic wounds, facilitating enhanced wound healing and improved clinical outcomes.


Assuntos
Antibacterianos , Anti-Inflamatórios , Fotoquimioterapia , Cicatrização , Peixe-Zebra , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Fotoquimioterapia/métodos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Cicatrização/efeitos dos fármacos , Ratos , Infecção dos Ferimentos/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/química , Infecções Estafilocócicas/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Humanos , Complicações do Diabetes/tratamento farmacológico , Masculino
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000219

RESUMO

Chlorin e6 is a well-known photosensitizer used in photodynamic diagnosis and therapy. A method for identifying and purifying a novel process-related impurity during the synthesis of chlorin e6 has been developed. Its structure was elucidated using NMR and HRMS. This new impurity is formed from chlorophyll b rather than chlorophyll a, which is the source of chlorin e6. The intermediates formed during chlorin e6 synthesis were monitored using HPLC-mass spectrometry. This new impurity was identified as rhodin g7 71-ethyl ester, the structure of which remains unknown to date. The cytotoxic effects of this novel compound in both dark and light conditions were studied against five cancer cell lines (HT29, MIA-PaCa-2, PANC-1, AsPC-1, and B16F10) and a normal cell line (RAW264.7) and compared to those of chlorin e6. Upon irradiation using a laser at 0.5 J/cm2, rhodin g7 71-ethyl ester demonstrated higher cytotoxicity (2-fold) compared to chlorin e6 in the majority of the cancer cell lines. Furthermore, this new compound exhibited higher dark cytotoxicity compared to chlorin e6. Studies on singlet oxygen generation, the accumulation in highly vascular liver tissue, and the production of reactive oxygen species in MIA-PaCa-2 cancer cells via rhodin g7 71-ethyl ester correspond to its higher cytotoxicity as a newly developed photosensitizer. Therefore, rhodin g7 71-ethyl ester could be employed as an alternative or complementary agent to chlorin e6 in the photodynamic therapy for treating cancer cells.


Assuntos
Clorofilídeos , Fármacos Fotossensibilizantes , Porfirinas , Porfirinas/química , Porfirinas/farmacologia , Humanos , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Linhagem Celular Tumoral , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fotoquimioterapia/métodos , Oxigênio Singlete/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Biomed Mater ; 19(4)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870927

RESUMO

Recently, cytokine-induced killer (CIK) cells have a broad application prospect in the comprehensive diagnosis and treatment of tumors owing to their unique characteristics of killing and targeting malignant tumors. Herein, we report a facile strategy for synthesis of monodisperse gold nanostars (GNSs) based on PEGylation and co-loaded with the photosensitizer chlorin e6 (Ce6) to form GNSs-PEG@Ce6 NPs. Then employing CIK cells loading the as-prepared GNSs-PEG@Ce6 NPs to fabricate a CIK cells-based drug delivery system (GNSs-PEG@Ce6-CIK) for lung cancer. Among them, GNSs was functioned as transport media, Ce6 acted as the near-infrared (NIR) fluorescence imaging agent and photodynamic therapy (PDT), and CIK cells served as targeting vectors for immunotherapy, which can increase the efficiency of tumor enrichment and treatment effect. The results of cellular experiments demonstrated that GNSs-PEG@Ce6 NPs had good dispersibility, water solubility and low toxicity under physiological conditions, and the cultured CIK cells had strong anti-tumor properties. Subsequently, GNSs-PEG@Ce6-CIK could effectively inhibit the growth of A549 cells under the exposure of 633 nm laser, which showed stronger killing effect than that of GNSs-PEG@Ce6 NPs or CIK cells. In addition, they showed good tumor targeting and tumor synergistic killing activityin vivo. Therefore, GNSs-PEG@Ce6-CIK was constructed for targeted NIR fluorescence imaging, enhanced PDT and immunotherapy of lung cancer.


Assuntos
Clorofilídeos , Células Matadoras Induzidas por Citocinas , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Ouro/química , Fotoquimioterapia/métodos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Animais , Porfirinas/química , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas Metálicas/química , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Células A549 , Imagem Óptica/métodos , Camundongos Nus
6.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38931396

RESUMO

Obesity and its associated hepatic steatosis have become a global concern, posing numerous health hazards. Photodynamic therapy (PDT) is a unique approach that promotes anti-obesity by releasing intracellular fat. Chlorin e6 (Ce6)-PDT was tested for its anti-obesity properties in male ovariectomized (OVX) beagle dogs, as well as male C57BL/6 and Balb/c mice. The 12 OVX beagles were randomly assigned to one of four groups: high-fat diet (HFD) only, Ce6 only, Ce6 + 10 min of light-emitting diode light (LED) treatment, and Ce6 + 15 min of light treatment. We assessed several parameters, such as body weight, adipose tissue morphology, serum biochemistry, and body fat content analysis by computed tomography (CT) scan in HFD-fed beagle dogs. At the end of the study period, dogs that were treated for 35 days with Ce6 and exposed to LED irradiation (660 nm) either for 10 min (Ce6 + 10 min of light) or for 15 min (Ce6 + 15 min of light) had decreased body weight, including visceral and subcutaneous fats, lower aspartate transaminase (AST)/alanine transaminase (ALT) ratios, and a reduction in the area of individual adipocytes with a concomitant increase in the number of adipocytes. Furthermore, C57BL/6 male mice following an HFD diet were effectively treated by Ce6-PDT treatment through a reduction in weight gain and fat accumulation. Meanwhile, Ce6-PDT attenuated hepatocyte steatosis by decreasing the epididymal adipose tissue and balloon degeneration in hepatocytes in HFD-fed Balb/c mice. Taken together, our results support the idea that Ce6-PDT is a promising therapeutic strategy for the recovery of obesity and obesity-related hepatic steatosis.

7.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869558

RESUMO

Photodynamic therapy (PDT) has developed as an efficient strategy for cancer treatment. PDT involves the production of reactive oxygen species (ROS) by light irradiation after activating a photosensitizer (PS) in the presence of O2. PS-coupled nanomaterials offer additional advantages, as they can merge the effects of PDT with conventional enabling-combined photo-chemotherapeutics effects. In this work, mesoporous titania nanorods were surface-immobilized with Chlorin e6 (Ce6) conjugated through 3-(aminopropyl)-trimethoxysilane as a coupling agent. The mesoporous nanorods act as nano vehicles for doxorubicin delivery, and the Ce6 provides a visible light-responsive production of ROS to induce PDT. The nanomaterials were characterized by XRD, DRS, FTIR, TGA, N2 adsorption-desorption isotherms at 77 K, and TEM. The obtained materials were tested for their singlet oxygen and hydroxyl radical generation capacity using fluorescence assays. In vitro cell viability experiments with HeLa cells showed that the prepared materials are not cytotoxic in the dark, and that they exhibit photodynamic activity when irradiated with LED light (150 W m-2). Drug-loading experiments with doxorubicin (DOX) as a model chemotherapeutic drug showed that the nanostructures efficiently encapsulated DOX. The DOX-nanomaterial formulations show chemo-cytotoxic effects on Hela cells. Combined photo-chemotoxicity experiments show enhanced effects on HeLa cell viability, indicating that the conjugated nanorods are promising for use in combined therapy driven by LED light irradiation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38755500

RESUMO

Photodynamic Therapy (PDT) is a promising paradigm for treating cancer, especially superficial cancers, including skin and oral cancers. However, the effectiveness of PDT is hindered by the hydrophobicity of photosensitizers. Here, chlorin e6 (Ce6), a hydrophobic photosensitizer, was loaded into pluronic F127 micelles to enhance solubility and improve tumor-specific targeting efficiency. The resulting Ce6@F127 Ms demonstrated a significant increase in solubility and singlet oxygen generation (SOG) efficiency in aqueous media compared to free Ce6. The confocal imaging and fluorescence-activated cell sorting (FACS) analysis confirmed the enhanced internalization rate of Ce6@F127 Ms in murine melanoma cell lines (B16F10) and human oral carcinoma cell lines (FaDu). Upon laser irradiation (666 nm), the cellular phototoxicity of Ce6@F127 Ms against B16F10 and FaDu was approximately three times higher than the free Ce6 treatment. The in vivo therapeutic investigations conducted on a murine model of skin cancer demonstrated the ability of Ce6@F127 Ms, when combined with laser treatment, to penetrate solid tumors effectively, which resulted in a significant reduction in tumor volume compared to free Ce6. Further, the Ce6@F127 Ms demonstrated upregulation of TUNEL-positive cells, downregulation of proliferation markers in tumor tissues, and prevention of lung metastasis with insignificant levels of proliferating cells and collagenase, as validated through immunohistochemistry. Subsequent analysis of serum and blood components affirmed the safety and efficacy of Ce6@F127 Ms in mice. Consequently, the developed Ce6@F127 Ms exhibits significant potential for concurrently treating solid tumors and preventing metastasis. The photodynamic formulation holds great clinical translation potential for treating superficial tumors.

9.
Photochem Photobiol Sci ; 23(7): 1323-1339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806860

RESUMO

Mucormycosis is an extremely aggressive fungal disease with a high mortality rate, especially in people with compromised immune systems. Most cases of mucormycosis are caused by the fungus Rhizopus oryzae. The treatments used are based on high doses of antifungals, associated with surgical resections, when it is possible. However, even with this aggressive treatment, the estimated attributable mortality rate is high. There is therefore a need to develop adjuvant treatments. Photodynamic Inactivation (PDI) may be an auxiliary therapeutic option for mucormycosis. Due to the lack of reports in the literature on the morphology and photodynamic inactivation of R. oryzae, characterization of the fungus using Confocal Microscopy and Transmission Electron Microscopy, and different protocols using Photodithazine® (PDZ), a chlorin e6 compound, as a photosensitizer, were performed. The fungus growth rate under different concentrations and incubation times of the photosensitizer and its association with the surfactant Sodium Dodecyl Sulphate (SDS) was evaluated. For the hyphae, both in the light and dark phases, in the protocols using only PDZ, no effective photodynamic response was observed. Meanwhile with the combination of SDS 0.05% and PDZ, inhibition growth rates of 98% and 72% were achieved for the white and black phase, respectively. In the conidia phase, only a 1.7 log10 reduction of the infective spores was observed. High concentration of melanin and the complex and resistant structures, especially at the black phase, results in a high limitation of the PDI inactivation response. The combined use of the SDS resulted in an improved response, when compared to the one obtained with the amphotericin B treatment.


Assuntos
Fármacos Fotossensibilizantes , Rhizopus oryzae , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Rhizopus oryzae/efeitos dos fármacos , Porfirinas/farmacologia , Porfirinas/química , Fotoquimioterapia , Antifúngicos/farmacologia , Antifúngicos/química , Dodecilsulfato de Sódio/farmacologia , Dodecilsulfato de Sódio/química , Luz , Testes de Sensibilidade Microbiana
10.
Photodiagnosis Photodyn Ther ; 47: 104096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643893

RESUMO

BACKGROUND: Port wine stains (PWS) are vascular malformations, and photodynamic therapy (PDT) is a promising treatment. Emerging drug delivery methods employ nanoparticles (NPs) to enhance drug permeability and retention in diseased blood vessels and improve drug bioavailability. (-) -epigallocatechin-3-gallate glycine (EGCG) has anti-angiogenetic effects and boosts photodynamic therapy. Chlorin e6 (Ce6) is capable of efficiently producing singlet oxygen, rendering it a very promising photosensitizer for utilization in nanomedicine. MATERIAL AND METHODS: EGCG-Ce6-NPs were synthesized and characterized using various techniques. The photodynamic effects of EGCG-Ce6-NPs on endothelial cells were evaluated. The compatibility and toxicity of the nanoparticle was tested using the CCK-8 assay. The intracellular uptake of the nanoparticle was observed using an inverted fluorescence microscope, and the intracellular fluorescence intensity was detected using flow cytometry. The ROS generation and apoptosis induced by EGCG-Ce6-NPs was observed using confocal laser scanning microscopy and flow cytometry respectively. RESULTS: EGCG-Ce6-NPs exhibited stability, spherical shape of uniform size while reducing the particle diameter, low polydisperse profile and retaining the ability to effectively generate singlet oxygen. These characteristics suggest promising potential for enhancing drug permeability and retention. Additionally, EGCG-Ce6-NPs demonstrated good compatibility with endothelial cells and enhanced intracellular uptake of Ce6. Furthermore, EGCG-Ce6-NPs increased activation efficiency, induced significant toxicity, more reactive oxygen species, and a higher rate of late apoptosis after laser irradiation. CONCLUSION: This in vitro study showed the potentials EGCG-Ce6-NPs for the destruction of endothelial cells in vasculature.


Assuntos
Catequina , Clorofilídeos , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/farmacocinética , Fotoquimioterapia/métodos , Nanopartículas/química , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/farmacocinética , Catequina/química , Humanos , Porfirinas/farmacologia , Porfirinas/farmacocinética , Células Endoteliais/efeitos dos fármacos , Polifenóis/farmacologia , Apoptose/efeitos dos fármacos , Oxigênio Singlete/metabolismo , Sobrevivência Celular/efeitos dos fármacos
11.
Nanotechnology ; 35(29)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38593752

RESUMO

Melanoma is one of the most aggressive and lethal types of cancer owing to its metastatic propensity and chemoresistance property. An alternative therapeutic option is photodynamic and photothermal therapies (PDT/PTT), which employ near-infrared (NIR) light to generate heat and reactive oxygen species (ROS). As per previous reports, Melanin (Mel), and its synthetic analogs (i.e. polydopamine nanoparticles) can induce NIR light-mediated heat energy, thereby selectively targeting and ameliorating cancer cells. Similarly, chlorin e6 (Ce6) also has high ROS generation ability and antitumor activity against various types of cancer. Based on this tenet, In the current study, we have encapsulated Mel-Ce6 in a polydopamine (PDA) nanocarrier (MCP NPs) synthesized by the oxidation polymerization method. The hydrodynamic diameter of the synthesized spherical MCP NPs was 139 ± 10 nm. The MCP NPs, upon irradiation with NIR 690 nm laser for 6 min, showed photothermal efficacy of more than 50 °C. Moreover, the red fluorescence in the MCP NPs due to Ce6 can be leveraged for diagnostic purposes. Further, the MCP NPs exhibited considerable biocompatibility with the L929 cell line and exerted nearly 70% ROS-mediated cytotoxicity on the B16 melanoma cell line after the laser irradiation. Thus, the prepared MCP NPs could be a promising theranostic agent for treating the B16 melanoma cancer.


Assuntos
Clorofilídeos , Indóis , Melaninas , Melanoma Experimental , Nanopartículas , Polímeros , Porfirinas , Indóis/química , Indóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Nanopartículas/química , Animais , Camundongos , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Linhagem Celular Tumoral , Porfirinas/química , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fototerapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Terapia Fototérmica
12.
Biochem Biophys Res Commun ; 710: 149835, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574457

RESUMO

We report application of the fluorescence lifetime imaging microscopy (FLIM) for analysis of distributions of intracellular acidity using a chlorin-e6 based photosensitizer Radachlorin. An almost two-fold increase of the photosensitizer fluorescence lifetime in alkaline microenvironments as compared to acidic ones allowed for clear distinguishing between acidic and alkaline intracellular structures. Clusterization of a phasor plot calculated from fits of the FLIM raw data by two Gaussian distributions provided accurate automatic segmentation of lysosomes featuring acidic contents. The approach was validated in colocalization experiments with LysoTracker fluorescence in living cells of four established lines. The dependence of photosensitizer fluorescence lifetime on microenvironment acidity allowed for estimation of pH inside the cells, except for the nuclei, where photosensitizer does not penetrate. The developed method is promising for combined application of the photosensitizer for both photodynamic treatment and diagnostics.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Lisossomos , Concentração de Íons de Hidrogênio , Combinação de Medicamentos
13.
Eur J Med Chem ; 269: 116283, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461680

RESUMO

In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e6 photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a ß-glucuronidase-responsive linker. Upon activation by ß-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells. This activation was accompanied by the recovery of its fluorescence and the generation of reactive oxygen species. Investigation of photodynamic and dark toxicity in vitro revealed that the novel conjugate had an excellent safety profile and was able to inhibit tumor cells proliferation at submicromolar concentrations. Additionally, combined therapy effects were also observed in 3D models of tumor growth, demonstrating synergistic suppression through the activation of both photodynamic and targeted therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias da Bexiga Urinária , Humanos , Glucuronidase , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Porfirinas/farmacologia , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico
14.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542430

RESUMO

To identify the vascular alteration by photodynamic therapy (PDT), the utilization of high-resolution, high-speed, and wide-field photoacoustic microscopy (PAM) has gained enormous interest. The rapid changes in vasculature during PDT treatment and monitoring of tumor tissue activation in the orthotopic pancreatic cancer model have received limited attention in previous studies. Here, a fully two-axes waterproof galvanometer scanner-based photoacoustic microscopy (WGS-PAM) system was developed for in vivo monitoring of dynamic variations in micro blood vessels due to PDT in an orthotopic pancreatic cancer mouse model. The photosensitizer (PS), Chlorin e6 (Ce6), was utilized to activate antitumor reactions in response to the irradiation of a 660 nm light source. Microvasculatures of angiogenesis tissue were visualized on a 40 mm2 area using the WGS-PAM system at 30 min intervals for 3 h after the PDT treatment. The decline in vascular intensity was observed at 24.5% along with a 32.4% reduction of the vascular density at 3 h post-PDT by the analysis of PAM images. The anti-vascularization effect was also identified with fluorescent imaging. Moreover, Ce6-PDT increased apoptotic and necrotic markers while decreasing vascular endothelial growth factor (VEGF) expression in MIA PaCa-2 and BxPC-3 pancreatic cancer cell lines. The approach of the WGS-PAM system shows the potential to investigate PDT effects on the mechanism of angiographic dynamics with high-resolution wide-field imaging modalities.


Assuntos
Clorofilídeos , Neoplasias Pancreáticas , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Fotoquimioterapia/métodos , Microscopia , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Porfirinas/farmacologia , Porfirinas/uso terapêutico
15.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474527

RESUMO

The high toxicity of arsenic (As) can cause irreversible harm to the environment and human health. In this study, the chlorin e6 (Ce6), which emits fluorescence in the infrared region, was introduced as the luminescence center, and the addition of copper ion (Cu2+) and As(V) provoked a regular change in fluorescence at 652 nm, whereas that of As(III) was 665 nm, which was used to optionally detect Cu2+, arsenic (As(III), and As(V)). The limit of detection (LOD) values were 0.212 µM, 0.089 ppm, and 1.375 ppb for Cu2+, As(III), and As(V), respectively. The developed method can be used to determine Cu2+ and arsenic in water and soil with good sensitivity and selectivity. The 1:1 stoichiometry of Ce6 with Cu2+ was obtained from the Job plot that was developed from UV-visible spectra. The binding constants for Cu2+ and As(V) were established to be 1.248 × 105 M-1 and 2.35 × 1012 M-2, respectively, using B-H (Benesi-Hildebrand) plots. Fluorescence lifetimes, B-H plots, FT-IR, and 1H-NMR were used to postulate the mechanism of Cu2+ fluorescence quenching and As(V) fluorescence restoration and the interactions of the two ions with the Ce6 molecule.


Assuntos
Arsênio , Clorofilídeos , Porfirinas , Humanos , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Íons , Espectrometria de Fluorescência , Corantes Fluorescentes/química
16.
Food Chem ; 447: 138960, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461727

RESUMO

Iron Chlorin e6 (ICE6), a star plant growth regulator (PGR) with independent intellectual property rights in China, has demonstrated its efficacy through numerous field experiments. We innovatively employed salting-out assisted liquid-liquid extraction (SALLE) with HPLC-UV/Vis to detect ICE6 residues in water, soil, garlic seeds, and sprouts. Using methanol and a C18 column with acetonitrile: 0.1% phosphoric acid mobile phase (55:45, v:v), we achieved a low LOQ of 0.43 to 0.77 µg kg-1. Calibration curves showed strong linearity (R2 > 0.992) within 0.01 to 5.00 mg kg-1. Inter-day and intra-day recoveries (0.05 to 0.50 mg kg-1) demonstrated high sensitivity and accuracy (recoveries: 75.36% to 107.86%; RSD: 1.03% to 8.78%). Additionally, density functional theory (DFT) analysis aligned UV/Vis spectra and indicated ICE6's first-order degradation (2.03 to 4.94 days) under various environmental conditions, mainly driven by abiotic degradation. This study enhances understanding of ICE6's environmental behavior, aids in risk assessment, and guides responsible use in agroecosystems.


Assuntos
Alho , Metaloporfirinas , Cromatografia Líquida de Alta Pressão/métodos , Hidrólise , Solo , Extração Líquido-Líquido/métodos
17.
Biomedicines ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397893

RESUMO

In this paper, we report on a study regarding the efficiency of the post-operational phototherapy of the tumor bed after resection with both a cold knife and a laser scalpel in laboratory mice with CT-26 tumors. Post-operational processing included photodynamic therapy (PDT) with a topically applied chlorin-based photosensitizer (PS), performed at wavelengths of 405 or 660 nm, with a total dose of 150 J/cm2. The selected design of the tumor model yielded zero recurrence in the laser scalpel group and 92% recurrence in the cold knife group without post-processing, confirming the efficiency of the laser scalpel in oncology against the cold knife. The application of PDT after the cold knife resection decreased the recurrence rate to 70% and 42% for the 405 nm and 660 nm procedures, respectively. On the other hand, the application of PDT after the laser scalpel resection induced recurrence rates of 18% and 30%, respectively, for the considered PDT performance wavelengths. The control of the penetration of PS into the tumor bed by fluorescence confocal microscopy indicated the deeper penetration of PS in the case of the cold knife, which presumably provided deeper PDT action, while the low-dose light exposure of deeper tissues without PS, presumably, stimulated tumor recurrence, which was also confirmed by the differences in the recurrence rate in the 405 and 660 nm groups. Irradiation-only light exposures, in all cases, demonstrated higher recurrence rates compared to the corresponding PDT cases. Thus, the PDT processing of the tumor bed after resection could only be recommended for the cold knife treatment and not for the laser scalpel resection, where it could induce tumor recurrence.

18.
Photodiagnosis Photodyn Ther ; 46: 104022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401820

RESUMO

Photodynamic therapy (PDT) is proved effective for treating low-grade squamous intraepithelial lesions (LSIL) and condylomata acuminata (CA). 5-Aminolevulinicacid (5-ALA) is the most common applied photosensitizer, but high rate of unbearable pain and relative long incubation time were reported. Here, we report a 27-year-old woman suffering from cervical and vaginal giant CA with LSIL involving the whole right vaginal fornix, cervical surface, and vaginal wall. Holmium yttrium aluminum garnet (Ho: YAG) laser was first applied to remove the giant CA lesions. STBF, a derivative of chlorin e6 (Ce6) was then applied on suspicious lesions as a new photosensitizer for 1 h. Lesions were exposed to LED illumination with a wavelength of 630 nm and light dose of 200-284 J/cm2 for cervical canal and the vaginal surfaces, 100-150 J/cm2 for cervix surface. Vaginal giant CA and LSIL lesions got complete remission at 6-month follow-up. Mild tolerable adverse reactions were observed after STBF-PDT and relieved in 24 h. Thus, the combination of Ho: YAG laser and STBF-PDT may be a novel option for cervical and vaginal giant CA and LSIL, especially for special vaginal fornix areas.


Assuntos
Clorofilídeos , Lasers de Estado Sólido , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Humanos , Feminino , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Adulto , Lasers de Estado Sólido/uso terapêutico , Porfirinas/uso terapêutico , Porfirinas/farmacologia , Condiloma Acuminado/tratamento farmacológico , Condiloma Acuminado/terapia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/terapia , Neoplasias Vaginais/tratamento farmacológico , Neoplasias Vaginais/terapia
19.
Int J Pharm ; 654: 123951, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38423154

RESUMO

Previous studies have demonstrated the effects of theranostic agents on atherosclerotic plaques. However, there is limited information on targeted theranostics for photodynamic treatment of atherosclerosis. This study aimed to develop a macrophage-mannose-receptor-targeted photoactivatable nanoagent that regulates atherosclerosis and to evaluate its efficacy as well as safety in atherosclerotic mice. We synthesised and characterised D-mannosamine (MAN)-polyethylene glycol (PEG)-chlorin e6 (Ce6) for phototheranostic treatment of atherosclerosis. The diagnostic and therapeutic effects of MAN-PEG-Ce6 were investigated using the atherosclerotic mouse model. The hydrophobic Ce6 photosensitiser was surrounded by the hydrophilic MAN-PEG outer shell of the self-assembled nanostructure under aqueous conditions. The MAN-PEG-Ce6 was specifically internalised in macrophage-derived foam cells through receptor-mediated endocytosis. After laser irradiation, the MAN-PEG-Ce6 markedly increased singlet oxygen generation. Intravital imaging and immunohistochemistry analyses verified MAN-PEG-Ce6's specificity to plaque macrophages and its notable anti-inflammatory impact by effectively reducing mannose-receptor-positive macrophages. The toxicity assay showed that MAN-PEG-Ce6 had negligible effects on the biochemical profile and structural damage in the skin and organs. Targeted photoactivation with MAN-PEG-Ce6 thus has the potential to rapidly reduce macrophage-derived inflammatory responses in atheroma and present favourable toxicity profiles, making it a promising approach for both imaging and treatment of atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Animais , Camundongos , Fotoquimioterapia/métodos , Manose , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Polietilenoglicóis/química , Macrófagos , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Porfirinas/química , Linhagem Celular Tumoral
20.
Photochem Photobiol Sci ; 23(3): 409-420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319518

RESUMO

In this work, screening studies of the cytotoxic effect of chlorins with fragments of di-, tri-, and pentaethylene glycol at the macrocycle periphery in relation to HeLa, A549, and HT29 cells were performed. It is shown that, despite different hydrophobicity, all the compounds studied have a comparable photodynamic effect. The conjugate of chlorin e6 with pentaethylene glycol, which has the lowest tendency to association among the studied compounds with tropism for low density lipoproteins and the best characteristics of the formation of molecular complexes with Tween 80, has a significant difference in dark and photoinduced toxicity (ratio IC50(dark)/IC50(photo) approximately 2 orders of magnitude for all cell lines), which allows to hope for a sufficiently large "therapeutic window". A study of the interaction of this compound with HeLa cells shows that the substance penetrates the cell and, after red light irradiation induces ROS appearance inside the cell, associated, apparently, with the photogeneration of singlet oxygen. These data indicate that photoinduced toxic effects are caused by damage to intracellular structures as a result of oxidative stress. Programmed type of cell death characterized with caspase-3 induction is prevailing. So, the conjugate of chlorin e6 with pentaethylene glycol is a promising antitumor PS that can be successfully solubilized with Tween 80, which makes it suitable for further in vivo studies.


Assuntos
Fotoquimioterapia , Polietilenoglicóis , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Clorofila A , Células HeLa , Polissorbatos , Porfirinas/farmacologia , Porfirinas/química , Interações Hidrofóbicas e Hidrofílicas , Clorofila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA