Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.877
Filtrar
1.
Turk J Phys Med Rehabil ; 70(2): 259-268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948650

RESUMO

Objectives: This study aimed to evaluate the effects of the combined hydrolyzed type 2 collagen, methylsulfonylmethane (MSM), glucosamine sulfate (GS), and chondroitin sulfate (CS) supplement on knee pain intensity in patients with knee osteoarthritis (OA). Patients and methods: This multicenter, observational, noninterventional study included 98 patients (78 females, 20 males; mean age: 52.8±6.5 years; range, 40 to 64 years) who had Grade 1-3 knee OA between May 2022 and November 2022. The patients were prescribed the combination of hydrolyzed type 2 collagen, MSM, GS, and CS as a supplement for knee OA. The sachet form of the combined supplement containing 1250 mg hydrolyzed type 2 collagen, 750 mg MSM, 750 mg GS, and 400 mg CS was used once daily for two consecutive months. Patients were evaluated according to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS)-pain, and Health Assessment Questionnaire (HAQ). Patients were scheduled to visit for follow-up four weeks (Visit 2) and eight weeks (Visit 3) after Visit 1 (baseline; day 0 of the study). Results: For the VAS-pain, WOMAC, WOMAC-subscale, and HAQ scores, the differences in improvement between the three visits were significant (p<0.001 for all). The patient compliance with the supplement was a median of 96.77%, both for Visit 2 and Visit 3. Conclusion: The combination of hydrolyzed type 2 collagen, MSM, GS, and CS for eight weeks in knee OA was considered an effective and safe nutritional supplement.

2.
Chem Phys Lipids ; 263: 105417, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950675

RESUMO

Chondroitin sulfates (CSs) are important components of the extracellular matrix and side chains of membrane proteoglycans. These polysaccharides are, therefore, likely to interact with plasma membranes and play a significant role in modulating cellular functions. So far, the details of the processes occurring at the interface between the extracellular matrix and cellular membranes are not fully understood. In this study, we used experimental methods and atomic-scale molecular dynamics (MD) simulations to reveal the molecular picture of the interactions between CS and phosphocholine (PC) membranes, used as a simplified model of cell membranes. MD simulations reveal that the polysaccharide associates to the PC bilayer as a result of electrostatic interactions between the positively charged quaternary ammonium groups of choline and the negatively charged sulfate groups of CS. Compared to an aqueous medium, the adsorbed polysaccharide chains adopt more elongated conformations, which facilitates the electrostatic interactions with the membrane, and have a high degree of freedom to change their conformations and to adhere to and detach from the membrane surface. Penetrating slightly between the polar groups of the bilayer, they form a loosely anchored layer, but do not intrude into the hydrophobic region of the PC bilayer. The CS adsorption spread the PC headgroups apart, which is manifested by an increase in the value of the area pre lipid. The expansion of the lipid polar groups weakens the dispersion interactions between the lipid acyl chains. As a result, the lipid membrane in the membrane-polysaccharide contact areas becomes more fluid. Our outcomes may help to understand in detail the interaction of chondroitin sulfate with zwitterionic membranes at the molecular level, which is of biological interest since many biological processes depend on lipid-CS interactions.

3.
Mater Today Bio ; 27: 101127, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38979128

RESUMO

Osteoarthritis (OA) is a degenerative disease potentially exacerbated due to inflammation, cartilage degeneration, and increased friction. Both mesenchymal stem cells (MSCs) and pro-inflammatory macrophages play important roles in OA. A promising approach to treating OA is to modify multi-functional hydrogel microspheres to target the OA microenvironment and structure. Arginyl-glycyl-aspartic acid (RGD) is a peptide widely used in bioengineering owing to its cell adhesion properties, which can recruit BMSCs and macrophages. We developed TLC-R, a microsphere loaded with TGF-ß1-containing liposomes. The recruitment effect of TLC-R on macrophages and BMSCs was verified by in vitro experiments, along with its function of promoting chondrogenic differentiation of BMSCs. And we evaluated the effect of TLC-R in balancing OA metabolism in vitro and in vivo. When TLC-R was co-cultured with BMSCs and lipopolysaccharide (LPS)-treated macrophages, it showed the ability to recruit both cells in substantial numbers. As the microspheres degraded, TGF-ß1 and chondroitin sulfate (ChS) were released to promote chondrogenic differentiation of the recruited BMSCs, modulate chondrocyte metabolism and inhibit inflammation induced by the macrophages. Furthermore, in vivo analysis showed that TLC-R restored the narrowed space, reduced osteophyte volume, and improved cartilage metabolic homeostasis in OA rats. Altogether, TLC-R provides a comprehensive and novel solution for OA treatment by dual-modulating inflammatory and chondrocyte metabolism.

4.
Microb Cell ; 11: 221-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975022

RESUMO

Human breastmilk is composed of many well researched bioactive components crucial for infant nutrition and priming of the neonatal microbiome and immune system. Understanding these components gives us crucial insight to the health and wellbeing of infants. Research surrounding glycosaminoglycans (GAGs) previously focused on those produced endogenously; however, recent efforts have shifted to understanding GAGs in human breastmilk. The structural complexity of GAGs makes detection and analysis complicated therefore, research is time consuming and limited to highly specialised teams experienced in carbohydrate analysis. In breastmilk, GAGs are present in varying quantities in four forms; chondroitin sulphate, heparin/heparan sulphate, dermatan sulphate and hyaluronic acid, and are hypothesised to behave similar to other bioactive components with suspected roles in pathogen defense and proliferation of beneficial gut bacteria. Chondroitin sulphate and heparin, being the most abundant, are expected to have the most impact on infant health. Their decreasing concentration over lactation further indicates their role and potential importance during early life.

5.
Front Bioeng Biotechnol ; 12: 1409203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994127

RESUMO

Both cell surface and soluble extracellular glycosaminoglycans have been shown to interfere with the exogenous nucleic acid delivery efficiency of non-viral gene delivery, including lipoplex and polyplex-mediated transfection. Most gene therapy viral vectors used commercially and in clinical trials are currently manufactured using transient transfection-based bioprocesses. The growing demand for viral vector products, coupled with a global shortage in production capability, requires improved transfection technologies and processes to maximise process efficiency and productivity. Soluble extracellular glycosaminoglycans were found to accumulate in the conditioned cell culture medium of suspension adapted HEK293T cell cultures, compromising transfection performance and lentiviral vector production. The enzymatic degradation of specific, chondroitin sulphate-based, glycosaminoglycans with chondroitinase ABC was found to significantly enhance transfection performance. Additionally, we report significant improvements in functional lentiviral vector titre when cultivating cells at higher cell densities than those utilised in a control lentiviral vector bioprocess; an improvement that was further enhanced when cultures were supplemented with chondroitinase ABC prior to transfection. A 71.2% increase in functional lentiviral vector titre was calculated when doubling the cell density prior to transfection compared to the existing process and treatment of the high-density cell cultures with 0.1 U/mL chondroitinase ABC resulted in a further 18.6% increase in titre, presenting a method that can effectively enhance transfection performance.

6.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000302

RESUMO

Dupuytren's disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM's content, structure and organization can impact both normal physiological functions and pathological conditions. This study explored the content and organization of glycosaminoglycans, proteoglycans, and collagen in the ECM of patients at various stages of DD, assessing their potential as prognostic indicators. This research reveals, for the first time, relevant changes in the complexity of chondroitin/dermatan sulfate structures, specifically an increase of disaccharides containing iduronic acid residues covalently linked to either N-acetylgalactosamine 6-O-sulfated or N-acetylgalactosamine 4-O-sulfated, correlating with the disease's severity. Additionally, we noted an increase in versican expression, a high molecular weight proteoglycan, across stages I to IV, while decorin, a small leucine-rich proteoglycan, significantly diminishes as DD progresses, both confirmed by mRNA analysis and protein detection via confocal microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy further demonstrated that collagen fibril architecture in DD varies importantly with disease stages. Moreover, the urinary excretion of both hyaluronic and sulfated glycosaminoglycans markedly decreased among DD patients.Our findings indicate that specific proteoglycans with galactosaminoglycan chains and collagen arrangements could serve as biomarkers for DD progression. The reduction in glycosaminoglycan excretion suggests a systemic manifestation of the disease.


Assuntos
Colágeno , Decorina , Contratura de Dupuytren , Proteoglicanas , Humanos , Contratura de Dupuytren/metabolismo , Contratura de Dupuytren/patologia , Colágeno/metabolismo , Proteoglicanas/metabolismo , Decorina/metabolismo , Matriz Extracelular/metabolismo , Masculino , Progressão da Doença , Feminino , Dermatan Sulfato/metabolismo , Pessoa de Meia-Idade , Idoso , Versicanas/metabolismo , Versicanas/genética , Glicosaminoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Polissacarídeos
7.
ACS Appl Bio Mater ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007280

RESUMO

Osteochondral damage, affecting the articular cartilage and the underlying subchondral bone, presents significant challenges in clinical treatment. Such defects, commonly seen in knee and ankle joints, vary from small localized lesions to larger defects. Current medical therapies encounter several challenges, such as donor shortages, drug side effects, high costs, and rejection problems, often resulting in only temporary relief. Highly porous emulsion-templated polymers (polyHIPEs) offer numerous potential benefits in the fabrication of scaffolds for tissue engineering and regenerative medicine. Polymeric scaffolds synthesized using a high internal phase emulsion (HIPE) technique, called PolyHIPEs, involve polymerizing a continuous phase surrounding a dispersed internal phase to form a solid, foam-like structure. A dense, porous design encourages cell ingrowth, nutrient delivery, and waste disposal from the scaffold, mimicking the cells' natural microenvironment. This study used hydroxyethyl methacrylate (HEMA) and acrylamide (AAM) polyHIPE scaffolds combined with extracellular matrix (ECM) components of the tissue, such as methacrylated hyaluronic acid (MHA) and methacrylated chondroitin sulfate (MCS), to prepare polyHIPE scaffolds. The mouse preosteoblast MC3T3-E1 cells and primary rat chondrocytes (harvested from male Wistar rats) were seeded on the scaffolds and cultured for 21 days to assess the osteogenesis and chondrogenesis in vitro. When compared to the AAM-MHA and AAM-MCS groups at day 21, scaffold groups HEMA-MHA and HEMA-MCS showed a significant rise in alkaline phosphatase (ALP) and calcium content. Chondrogenic markers such as glycosaminoglycan (GAG) and hydroxyproline were also assessed over a 21-day time point. On day 21, it was found that GAG and hydroxyproline production were considerably higher in the HEMA-MHA and HEMA-MCS scaffolds than in the AAM-MHA and AAM-MCS scaffolds. The overall studies showed that polyHIPE monolith scaffolds could favor cell adherence, survival ability, proliferation, differentiation, and ECM formation over 21 days. Thus, incorporating ECM components enhanced osteogenesis and chondrogenesis in vitro and can be further used as tissue repair models.

8.
Acta Biomater ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969077

RESUMO

Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1ß, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD. Thus, these were chosen and integrated into functionalized microspheres to achieve their synergistic effects. First, CS-functionalized microspheres (GelMA-CS) with porous microstructure, good monodispersion, and about 200 µm diameter were efficiently and productively fabricated using microfluidic technology. After lyophilization, the microspheres with good local injection and tissue retention served as the loading platform for IL-1ra and achieved sustained release. In in vitro experiments, the IL-1ra-loaded microspheres exhibited good cytocompatibility and efficacy in inhibiting the inflammatory response of NP cells induced by lipopolysaccharide (LPS) and promoting the secretion of ECM. In in vivo experiments, the microspheres showed good histocompatibility, and local, minimally invasive injection of the IL-1ra-loaded microspheres could reduce inflammation, maintain the height of the intervertebral disc (IVD) and the water content of NP close to about 70 % in the sham group, and retain the integrated IVD structure. In summary, the GelMA-CS microspheres served as an effective loading platform for IL-1ra, eliminated inflammation through the controlled release of IL-1ra, and promoted ECM synthesis via CS to delay IVDD, thereby providing a promising intervention strategy for IVDD. STATEMENT OF SIGNIFICANCE: The strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in nucleus pulposus (NP) has shown great potential prospects for alleviating intervertebral disc degeneration (IVDD). From the perspective of clinical translation, this study developed chondroitin sulfate functionalized microspheres to act as the effective delivery platform of IL-1ra, a natural antagonist of interleukin-1ß. The IL-1ra loading microspheres (GelMA-CS-IL-1ra) showed good biocompatibility, good injection with tissue retention, and synergistic effects of inhibiting the inflammatory response induced by lipopolysaccharide and promoting the secretion of ECM in NPCs. In vivo, they also showed the beneficial effect of reducing the inflammatory response, maintaining the height of the intervertebral disc and the water content of the NP, and preserving the integrity of the intervertebral disc structure after only one injection. All demonstrated that the GelMA-CS-IL-1ra microspheres would have great promise for the minimally invasive treatment of IVDD.

9.
Sci Rep ; 14(1): 16396, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013921

RESUMO

Most of the conditions involving cartilaginous tissues are irreversible and involve degenerative processes. The aim of the present study was to fabricate a biocompatible fibrous and film scaffolds using electrospinning and casting techniques to induce chondrogenic differentiation for possible application in cartilaginous tissue regeneration. Polycaprolactone (PCL) electrospun nanofibrous scaffolds and PCL film were fabricated and incorporated with multi-walled carbon nanotubes (MWCNTs). Thereafter, coating of chondroitin sulfate (CS) on the fibrous and film structures was applied to promote chondrogenic differentiation of human dental pulp stem cells (hDPSCs). First, the morphology, hydrophilicity and mechanical properties of the scaffolds were characterized by scanning electron microscopy (SEM), spectroscopic characterization, water contact angle measurements and tensile strength testing. Subsequently, the effects of the fabricated scaffolds on stimulating the proliferation of human dental pulp stem cells (hDPSCs) and inducing their chondrogenic differentiation were evaluated via electron microscopy, flow cytometry and RT‒PCR. The results of the study demonstrated that the different forms of the fabricated PCL-MWCNTs scaffolds analyzed demonstrated biocompatibility. The nanofilm structures demonstrated a higher rate of cellular proliferation, while the nanofibrous architecture of the scaffolds supported the cellular attachment and differentiation capacity of hDPSCs and was further enhanced with CS addition. In conclusion, the results of the present investigation highlighted the significance of this combination of parameters on the viability, proliferation and chondrogenic differentiation capacity of hDPSCs seeded on PCL-MWCNT scaffolds. This approach may be applied when designing PCL-based scaffolds for future cell-based therapeutic approaches developed for chondrogenic diseases.


Assuntos
Diferenciação Celular , Condrogênese , Sulfatos de Condroitina , Polpa Dentária , Nanofibras , Nanotubos de Carbono , Poliésteres , Células-Tronco , Alicerces Teciduais , Humanos , Polpa Dentária/citologia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Nanofibras/química , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Alicerces Teciduais/química , Nanotubos de Carbono/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Engenharia Tecidual/métodos
10.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948769

RESUMO

Perineuronal nets (PNNs) are a condensed subtype of extracellular matrix that form a net-like coverings around certain neurons in the brain. PNNs are primarily composed of chondroitin sulfate (CS) proteoglycans from the lectican family that consist of CS-glycosaminoglycan (CS-GAG) side chains attached to a core protein. CS disaccharides can exist in various isoforms with different sulfation patterns. Literature suggests that CS disaccharide sulfation patterns can influence the function of PNNs as well as their labeling. This study was conducted to characterize such interregional CS disaccharide sulfation pattern differences in adult human (N = 81) and mouse (N = 19) brains. Liquid chromatography tandem mass spectrometry was used to quantify five different CS disaccharide sulfation patterns, which were then compared to immunolabeling of PNNs using Wisteria Floribunda Lectin (WFL) to identify CS-GAGs and anti-aggrecan to identify CS proteoglycans. In healthy brains, significant regional and species-specific differences in CS disaccharide sulfation and single versus double-labeling pattern were identified. A secondary analysis to investigate how early-life stress (ELS) impacts these PNN features discovered that although ELS increases WFL+ PNN density, the CS-GAG sulfation code and single versus double PNN-labeling distributions remained unaffected in both species. These results underscore PNN complexity in traditional research, emphasizing the need to consider their heterogeneity in future experiments.

11.
ACS Appl Mater Interfaces ; 16(28): 35936-35948, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958205

RESUMO

Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.


Assuntos
Sulfatos de Condroitina , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Ratos , Próteses Valvulares Cardíacas , Engenharia Tecidual , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/química , Ratos Sprague-Dawley , Alicerces Teciduais/química , Teste de Materiais , Humanos , Reagentes de Ligações Cruzadas/química , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Suínos
12.
Polymers (Basel) ; 16(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000793

RESUMO

Cryogels represent a valid strategy as scaffolds for tissue engineering. In order to adequately support adhesion and proliferation of anchorage-dependent cells, different polymers need to be combined within the same scaffold trying to mimic the complex features of a natural extracellular matrix (ECM). For this reason, in this work, gelatin (Gel) and chondroitin sulfate (CS), both functionalized with methacrylic groups to produce CSMA and GelMA derivatives, were selected to prepare cryogel networks. Both homopolymer and heteropolymer cryogels were produced, via radical crosslinking reactions carried out at -12 °C for 2 h. All the scaffolds were characterized for their mechanical, swelling and morphological properties, before and after autoclave sterilization. Moreover, they were evaluated for their biocompatibility and ability to support the adhesion of human gingival fibroblasts and tenocytes. GelMA-based homopolymer networks better withstood the autoclave sterilization process, compared to CSMA cryogels. Indeed, GelMA cryogels showed a decrease in stiffness of approximately 30%, whereas CSMA cryogels of approximately 80%. When GelMA and CSMA were blended in the same network, an intermediate outcome was observed. However, the hybrid scaffolds showed a general worsening of the biological performance. Indeed, despite their ability to withstand autoclave sterilization with limited modification of the mechanical and morphological properties, the hybrid cryogels exhibited poor cell adhesion and high LDH leakage. Therefore, not only do network components need to be properly selected, but also their combination and ability to withstand effective sterilization process should be carefully evaluated for the development of efficient scaffolds designed for tissue engineering purposes.

13.
Schizophr Res ; 271: 100-109, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018984

RESUMO

BACKGROUND: The onset of schizophrenia is concurrent with multiple key processes of brain development, such as the maturation of inhibitory networks. Some of these processes are proposed to depend on the development of perineuronal nets (PNNs), a specialized extracellular matrix structure that surrounds preferentially parvalbumin-containing GABAergic interneurons (PVIs). PNNs are fundamental to the postnatal experience-dependent maturation of inhibitory brain circuits. PNN abnormalities have been proposed as a core pathophysiological finding in SCZ, being linked to widespread consequences on circuit disruptions underlying SCZ symptoms. OBJECTIVE: Here, we systematically evaluate PNN density in postmortem brain studies of subjects with SCZ. METHODS: A systematic search in 3 online databases (PubMed, Embase, and Scopus) and qualitative review analysis of case-control studies reporting on PNN density in the postmortem brain of subjects with SCZ were performed. RESULTS: Results consisted of 7 studies that were included in the final analysis. The specific brain regions investigated in the studies varied, with most attention given to the dorsolateral prefrontal cortex (DLPFC; 3 studies) and amygdala (2 studies). Findings were mostly positive for reduced PNN density in SCZ, with 6 of the 7 studies reporting significant reductions and one reporting a tendency towards reduced PNN density. Overall, tissue processing methodologies were heterogeneous. CONCLUSIONS: Despite few studies, PNN density was consistently reduced in SCZ across different brain regions. These findings support evidence that implicates deficits in PNN density in the pathophysiology of SCZ. However, more studies, preferably using similar methodological approaches as well as replication of findings, are needed.

14.
Glycobiology ; 34(8)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38995945

RESUMO

Perineuronal nets (PNNs) are a condensed subtype of extracellular matrix that form a net-like coverings around certain neurons in the brain. PNNs are primarily composed of chondroitin sulfate (CS) proteoglycans from the lectican family that consist of CS-glycosaminoglycan side chains attached to a core protein. CS disaccharides can exist in various isoforms with different sulfation patterns. Literature suggests that CS disaccharide sulfation patterns can influence the function of PNNs as well as their labeling. This study was conducted to characterize such interregional CS disaccharide sulfation pattern differences in adult human (n = 81) and mouse (n = 19) brains. Liquid chromatography tandem mass spectrometry was used to quantify five different CS disaccharide sulfation patterns, which were then compared to immunolabeling of PNNs using Wisteria Floribunda Lectin (WFL) to identify CS-glycosaminoglycans and anti-aggrecan to identify CS proteoglycans. In healthy brains, significant regional and species-specific differences in CS disaccharide sulfation and single versus double-labeling pattern were identified. A secondary analysis to investigate how early-life stress impacts these PNN features discovered that although early-life stress increases WFL+ PNN density, the CS-glycosaminoglycan sulfation code and single versus double PNN-labeling distributions remained unaffected in both species. These results underscore PNN complexity in traditional research, emphasizing the need to consider their heterogeneity in future experiments.


Assuntos
Encéfalo , Sulfatos de Condroitina , Humanos , Animais , Camundongos , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/química , Encéfalo/metabolismo , Masculino , Feminino , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Adulto , Pessoa de Meia-Idade , Receptores de N-Acetilglucosamina , Lectinas de Plantas
15.
Artif Organs ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031117

RESUMO

BACKGROUND: Cartilage is an avascular and alymphatic tissue that lacks the intrinsic ability to undergo spontaneous repair and regeneration in the event of significant injury. The efficacy of conventional therapies for invasive cartilage injuries is limited, thereby prompting the emergence of cartilage tissue engineering as a possible alternative. In this study, we fabricated three-dimensional hydrogel films utilizing sodium alginate (SA), gelatin (Gel), and chondroitin sulfate (CS). These films were included with Wharton's jelly mesenchymal stem cells (WJ-MSCs) and intended for cartilage tissue regeneration. METHODS: The hydrogel film that were prepared underwent evaluation using various techniques including scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, assessment of the degree of swelling, degradation analysis, determination of water vapor transmission rate (WVTR), measurement of water contact angle (WCA), evaluation of mechanical strength, and assessment of biocompatibility. The rabbit ear cartilage regeneration by hydrogel films with and without of WJ-MSCs was studied by histopathological investigations during 15, 30, and 60 days. RESULTS: The hydrogel films containing CS exhibited superior metrics compared to other nanocomposites such as better mechanical strength (12.87 MPa in SA/Gel compared to 15.56 in SA/Gel/CS), stability, hydrophilicity, WVTR (3103.33 g/m2/day in SA/Gel compared to 2646.67 in nanocomposites containing CS), and swelling ratio (6.97 to 12.11% in SA/Gel composite compared to 5.03 to 10.90% in SA/Gel/CS). Histopathological studies showed the presence of chondrocyte cells in the lacunae on the 30th day and the complete restoration of the cartilage tissue on the 60th day following the injury in the group of SA/Gel/CS hydrogel containing WJ-MSCs. CONCLUSIONS: We successfully fabricated a scaffold composed of alginate, gelatin, and chondroitin sulfate. This scaffold was further enhanced by the incorporation of Wharton's jelly mesenchymal stem cells. Our findings demonstrate that this composite scaffold has remarkable biocompatibility and mechanical characteristics. The present study successfully demonstrated the therapeutic potential of the SA-Gel-CS hydrogel containing WJ-MSCs for cartilage regeneration in rabbits.

16.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892083

RESUMO

Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core-shell NCs have typical diameters in the range of 30-250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds.


Assuntos
Sulfatos de Condroitina , Portadores de Fármacos , Nanocápsulas , Nanocápsulas/química , Humanos , Sulfatos de Condroitina/química , Portadores de Fármacos/química , Suplementos Nutricionais , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Emulsões/química , Tamanho da Partícula , Vitamina E/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Células HaCaT
17.
Nano Lett ; 24(26): 8055-8062, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904262

RESUMO

The unstable solid electrolyte interface (SEI) formed by uncontrollable electrolyte degradation, which leads to dendrite growth and Coulombic efficiency decay, hinders the development of Li metal anodes. A controllable desolvation process is essential for the formation of stable SEI and improved lithium metal deposition behavior. Here, we show a functional artificial interface protective layer comprised of chondroitin sulfate-reduced graphene oxide (CrG), on which polar functional groups are distributed to effectively reduce the energy barrier for desolvation of Li+ and effectively alienate solvent molecules to avoid solvent involvement in SEI formation, thus promoting the formation of a LiF-rich SEI. Consequently, stable Coulombic efficiencies of 98.4% were achieved after 500 cycles in a Li//Cu cell. Moreover, the LiFePO4 full cells achieve steady circulation (470 cycles at 80%, 1 C) with a negative/positive electrode capacity ratio of 2.87. Our multifunctional artificial interface protective layer provides a new way to advance Li metal batteries.

18.
Int J Biol Macromol ; 272(Pt 1): 132624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838594

RESUMO

In this work, the interaction of chondroitin sulfate (CS) and dermatan sulfate (DS) with plant lectins was studied by affinity capillary electrophoresis (ACE), surface plasmon resonance (SPR) technology, molecular docking simulation, and circular dichroism spectroscopy. The ACE method was used for the first time to study the interaction of Ricinus Communis Agglutinin I (RCA I), Wisteria Floribunda Lectin (WFA), and Soybean Agglutinin (SBA) with CS and DS, and the results were in good agreement with those of the SPR method. The results of experiments indicate that RCA I has a strong binding affinity with CS, and the sulfated position does not affect the relationship, but the degree of sulfation can affect the combination of RCA I with CS to some extent. However, the binding affinity with DS is very weak. This study lays the foundation for developing more specialized analysis methods for CS and DS based on RCA I.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Simulação de Acoplamento Molecular , Lectinas de Plantas , Ligação Proteica , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Ressonância de Plasmônio de Superfície , Aglutininas/química , Aglutininas/metabolismo , Dicroísmo Circular , Eletroforese Capilar
19.
Infect Immun ; 92(7): e0019924, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842305

RESUMO

Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.


Assuntos
Bacteriemia , Infecções Relacionadas a Cateter , Enterococcus faecalis , Glicosaminoglicanos , Infecções por Bactérias Gram-Positivas , Infecções Urinárias , Enterococcus faecalis/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Infecções Urinárias/microbiologia , Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Glicosaminoglicanos/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Feminino , Humanos , Ácido Hialurônico/metabolismo
20.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892038

RESUMO

The effects of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B, ARSB), which removes the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate, on the expression of PD-L1 were determined, and the underlying mechanism of PD-L1 expression was elucidated. Initial experiments in human melanoma cells (A375) showed that PD-L1 expression increased from 357 ± 31 to 796 ± 50 pg/mg protein (p < 10-11) when ARSB was silenced in A375 cells. In subcutaneous B16F10 murine melanomas, PD-L1 declined from 1227 ± 189 to 583 ± 110 pg/mg protein (p = 1.67 × 10-7), a decline of 52%, following treatment with exogenous, bioactive recombinant ARSB. This decline occurred in association with reduced tumor growth and prolongation of survival, as previously reported. The mechanism of regulation of PD-L1 expression by ARSB is attributed to ARSB-mediated alteration in chondroitin 4-sulfation, leading to changes in free galectin-3, c-Jun nuclear localization, HDAC3 expression, and effects of acetyl-H3 on the PD-L1 promoter. These findings indicate that changes in ARSB contribute to the expression of PD-L1 in melanoma and can thereby affect the immune checkpoint response. Exogenous ARSB acted on melanoma cells and normal melanocytes through the IGF2 receptor. The decline in PD-L1 expression by exogenous ARSB may contribute to the impact of ARSB on melanoma progression.


Assuntos
Antígeno B7-H1 , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases , Melanoma Experimental , Melanoma , N-Acetilgalactosamina-4-Sulfatase , Animais , Humanos , Camundongos , N-Acetilgalactosamina-4-Sulfatase/metabolismo , N-Acetilgalactosamina-4-Sulfatase/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Galectina 3/metabolismo , Galectina 3/genética , Regiões Promotoras Genéticas , Proteínas Sanguíneas , Galectinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA