Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-39320316

RESUMO

Living in the intertidal environment, littorinid snails are excellent models for understanding genetic mechanisms underlying adaptation to harsh fluctuating environments. Furthermore, the karyotypes of littorinid snails, with the same chromosome number as the presumed bilaterian ancestor, make them valuable for investigating karyotype evolution from the bilaterian ancestor to mollusks. Here, we generated high-quality, chromosome-scale genome assemblies for 2 littorinid marine snails, Littorina brevicula (927.94 Mb) and Littoraria sinensis (882.51 Mb), with contig N50 of 3.43 Mb and 2.31 Mb, respectively. Comparative genomic analyses identified 92 expanded gene families and 85 positively selected genes as potential candidates possibly associated with intertidal adaptation in the littorinid lineage, which were functionally enriched in stimulus responses, innate immunity, and apoptosis process regulation and might be involved in cellular homeostasis maintenance in stressful intertidal environments. Genome macrosynteny analyses indicated that 4 fissions and 4 fusions led to the evolution from the 17 presumed bilaterian ancestral chromosomes to the 17 littorinid chromosomes, implying that the littorinid snails have a highly conserved karyotype with the bilaterian ancestor. Based on the most parsimonious reconstruction of the common ancestral karyotype of scallops and littorinid snails, 3 chromosomal fissions and 1 chromosomal fusion from the bilaterian ancient linkage groups were shared by the bivalve scallop and gastropoda littorinid snails, indicating that the chromosome-scale ancient gene linkages were generally preserved in the mollusk genomes for over 500 million years. The highly conserved karyotype makes the littorinid snail genomes valuable resources for understanding early bilaterian evolution and biology.


Assuntos
Cromossomos , Evolução Molecular , Cariótipo , Caramujos , Animais , Caramujos/genética , Caramujos/classificação , Cromossomos/genética , Adaptação Fisiológica/genética , Genoma , Filogenia , Genômica/métodos , Evolução Biológica
2.
Genes (Basel) ; 14(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37372448

RESUMO

Savalani hairtail Lepturacanthus savala is a widely distributed fish along the Indo-Western Pacific coast, and contributes substantially to trichiurid fishery resources worldwide. In this study, the first chromosome-level genome assembly of L. savala was obtained by PacBio SMRT-Seq, Illumina HiSeq, and Hi-C technologies. The final assembled L. savala genome was 790.02 Mb with contig N50 and scaffold N50 values of 19.01 Mb and 32.77 Mb, respectively. The assembled sequences were anchored to 24 chromosomes by using Hi-C data. Combined with RNA sequencing data, 23,625 protein-coding genes were predicted, of which 96.0% were successfully annotated. In total, 67 gene family expansions and 93 gene family contractions were detected in the L. savala genome. Additionally, 1825 positively selected genes were identified. Based on a comparative genomic analysis, we screened a number of candidate genes associated with the specific morphology, behaviour-related immune system, and DNA repair mechanisms in L. savala. Our results preliminarily revealed mechanisms underlying the special morphological and behavioural characteristics of L. savala from a genomic perspective. Furthermore, this study provides valuable reference data for subsequent molecular ecology studies of L. savala and whole-genome analyses of other trichiurid fishes.


Assuntos
Cromossomos , Genoma , Perciformes , Animais , Perciformes/genética , Cromossomos/genética , Genômica , Evolução Molecular , Família Multigênica , Filogenia
3.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370138

RESUMO

The New World Screwworm, Cochliomyia hominivorax (Calliphoridae), is the most important myiasis-causing species in America. Screwworm myiasis is a zoonosis that can cause severe lesions in livestock, domesticated and wild animals, and occasionally in people. Beyond the sanitary problems associated with this species, these infestations negatively impact economic sectors, such as the cattle industry. Here, we present a chromosome-scale assembly of C. hominivorax's genome, organized in 6 chromosome-length and 515 unplaced scaffolds spanning 534 Mb. There was a clear correspondence between the D. melanogaster linkage groups A-E and the chromosomal-scale scaffolds. Chromosome quotient (CQ) analysis identified a single scaffold from the X chromosome that contains most of the orthologs of genes that are on the D. melanogaster fourth chromosome (linkage group F or dot chromosome). CQ analysis also identified potential X and Y unplaced scaffolds and genes. Y-linkage for selected regions was confirmed by PCR with male and female DNA. Some of the long chromosome-scale scaffolds include Y-linked sequences, suggesting misassembly of these regions. These resources will provide a basis for future studies aiming at understanding the biology and evolution of this devastating obligate parasite.


Assuntos
Miíase , Infecção por Mosca da Bicheira , Animais , Masculino , Feminino , Bovinos , Calliphoridae , Drosophila melanogaster , Miíase/veterinária , Infecção por Mosca da Bicheira/veterinária , Cromossomos
4.
Biology (Basel) ; 11(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552321

RESUMO

Epinephelus cyanopodus is a coral reef-dwelling grouper with important economic and ecological value and is widely distributed in the western Pacific Ocean. The lack of genomic resources for E. cyanopodus hinders its adaptive evolution and phylogeny research. We constructed the first high-quality genome of E. cyanopodus based on DNBSEQ, PacBio, and Hic sequencing technologies, with a genome size of 998.82 Mb, contig N50 of 5.855 Mb, and scaffold N50 of 41.98 Mb. More than 99.7% of contigs were anchored to 24 pseudochromosomes, and 94.2% of BUSCO genes were found in the E. cyanopodus genome, indicating a high genome assembly completeness. A total of 26,337 protein-coding genes were predicted, of which 98.77% were functionally annotated. Phylogenetic analysis showed that E. cyanopodus separated from its closely related species Epinephelus akaara about 11.5-26.5 million years ago, and the uplift of the Indo-Australian archipelago may have provided an opportunity for its rapid radiation. Moreover, several gene families associated with innate and adaptive immunity were significantly expanded in speckled blue grouper compared to other teleost genomes. Additionally, we identified several genes associated with immunity, growth and reproduction that are under positive selection in E. cyanopodus compared to other groupers, suggesting that E. cyanopodus has evolved broad adaptability in response to complex survival environment, which may provide the genetic basis for its rapid radiation. In brief, the high-quality reference genome of the speckled blue grouper provides a foundation for research on its biological traits and adaptive evolution and will be an important genetic tool to guide aquaculture and resolve its taxonomic controversies in future studies.

5.
Front Genet ; 13: 1050192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452160

RESUMO

Pelteobagrus vachelli is a freshwater fish with high economic value, but the lack of genome resources has severely restricted its industrial development and population conservation. Here, we constructed the first chromosome-level genome assembly of P. vachelli with a total length of approximately 662.13 Mb and a contig N50 was 14.02 Mb, and scaffolds covering 99.79% of the assembly were anchored to 26 chromosomes. Combining the comparative genome results and transcriptome data under environmental stress (high temperature, hypoxia and Edwardsiella. ictaluri infection), the MAPK signaling pathway, PI3K-Akt signaling pathway and apelin signaling pathway play an important role in environmental adaptation of P. vachelli, and these pathways were interconnected by the ErbB family and involved in cell proliferation, differentiation and apoptosis. Population evolution analysis showed that artificial interventions have affected wild populations of P. vachelli. This study provides a useful genomic information for the genetic breeding of P. vachelli, as well as references for further studies on fish biology and evolution.

6.
Front Genet ; 13: 873711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147512

RESUMO

Fragaria pentaphylla, a wild diploid quinquefoliolate species of Fragaria, is native to Southwest China. It has two morphs of red and white fruit color in nature and has characteristics of unique fragrance and resistance, which made it not only a valuable breeding material but also a potential model plant for molecular function researches. Here, we generate a high-quality chromosome-level genome assembly of a F. pentaphylla accession, BAAFS-FP039 employing a combination of PacBio Long-Read Sequencing, Illumina Short-Read Sequencing, and Hi-C Sequencing. The assembled genome contained 256.74 Mb and a contig N50 length of 32.38 Mb, accounting for 99.9% of the estimated genome (256.77 Mb). Based on Hi-C data, seven pseudo-chromosomes of F. pentaphylla-FP039 genome were assembled, covering 99.39% of the genome assembly. The genome was composed of 44.61% repetitive sequences and 29,623 protein-coding genes, 97.62% of protein-coding genes could be functionally annotated. Phylogenetic and chromosome syntenic analysis revealed that F. pentaphylla-FP039 was closely related to F. nubicola. This high-quality genome could provides fundamental molecular resources for evolutionary studies, breeding efforts, and exploring the unique biological characteristics of F. pentaphylla.

7.
Gigascience ; 112022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809049

RESUMO

BACKGROUND: The blue catfish is of great value in aquaculture and recreational fisheries. The F1 hybrids of female channel catfish (Ictalurus punctatus) × male blue catfish (Ictalurusfurcatus) have been the primary driver of US catfish production in recent years because of superior growth, survival, and carcass yield. The channel-blue hybrid also provides an excellent model to investigate molecular mechanisms of environment-dependent heterosis. However, transcriptome and methylome studies suffered from low alignment rates to the channel catfish genome due to divergence, and the genome resources for blue catfish are not publicly available. RESULTS: The blue catfish genome assembly is 841.86 Mbp in length with excellent continuity (8.6 Mbp contig N50, 28.2 Mbp scaffold N50) and completeness (98.6% Eukaryota and 97.0% Actinopterygii BUSCO). A total of 30,971 protein-coding genes were predicted, of which 21,781 were supported by RNA sequencing evidence. Phylogenomic analyses revealed that it diverged from channel catfish approximately 9 million years ago with 15.7 million fixed nucleotide differences. The within-species single-nucleotide polymorphism (SNP) density is 0.32% between the most aquaculturally important blue catfish strains (D&B and Rio Grande). Gene family analysis discovered significant expansion of immune-related families in the blue catfish lineage, which may contribute to disease resistance in blue catfish. CONCLUSIONS: We reported the first high-quality, chromosome-level assembly of the blue catfish genome, which provides the necessary genomic tool kit for transcriptome and methylome analysis, SNP discovery and marker-assisted selection, gene editing and genome engineering, and reproductive enhancement of the blue catfish and hybrid catfish.


Assuntos
Peixes-Gato , Ictaluridae , Animais , Feminino , Masculino , Aquicultura , Peixes-Gato/genética , Cromossomos , Epigênese Genética , Vigor Híbrido , Ictaluridae/genética , Reprodução , Polimorfismo de Nucleotídeo Único
8.
Genome Biol Evol ; 14(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482027

RESUMO

The hemiparasitic Taxillus chinensis (DC.) Danser is a root-parasitizing medicinal plant with photosynthetic ability, which is lost in other parasitic plants. However, the cultivation and medical application of the species are limited by the recalcitrant seeds of the species, and even though the molecular mechanisms underlying this recalcitrance have been investigated using transcriptomic and proteomic methods, genome resources for T. chinensis have yet to be reported. Accordingly, the aim of the present study was to use nanopore, short-read, and high-throughput chromosome conformation capture sequencing to construct a chromosome-level assembly of the T. chinensis genome. The final genome assembly was 521.90 Mb in length, and 496.43 Mb (95.12%) could be grouped into nine chromosomes with contig and scaffold N50 values of 3.80 and 56.90 Mb, respectively. In addition, a total of 33,894 protein-coding genes were predicted, and gene family clustering identified 11 photosystem-related gene families, thereby indicating photosynthetic ability, which is a characteristic of hemiparasitic plants. This chromosome-level genome assembly of T. chinensis provides a valuable genomic resource for elucidating the genetic basis underlying the recalcitrant characteristics of T. chinensis seeds and the evolution of photosynthesis loss in parasitic plants.


Assuntos
Loranthaceae , Cromossomos , Genoma , Loranthaceae/genética , Filogenia , Proteômica
9.
Mol Ecol Resour ; 22(5): 1892-1905, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35007382

RESUMO

The cottids (Cottidae) are a taxonomically diverse and ecologically important component of many marine and freshwater ecosystems. Despite recent breakthroughs in long-read sequencing, high quality genomic resources are still limited for studies of ecological and evolutionary processes in cottids. Here, we generated a high-quality, chromosome-scale genome assembly (521.26 Mb) of the catadromous roughskin sculpin (Trachidermus fasciatus Heckel) with a contig N50 of 2.93 Mb and a scaffold N50 of 24.06 Mb. Approximately 21.97% of the genome was composed of repetitive elements. A total of 21,872 protein-coding genes were predicted, of which 19,900 genes (90.98%) were functionally annotated. Phylogenetic analysis supported the validity of Scorpaenoidei and Cottioidei as two suborders of the Perciformes. Chromosome-scale collinearity analyses identified four chromosome fusions leading to the reduction of chromosome number in T. fasciatus. Gene families related to cell apoptosis and cell death were expanded and those related to immune system were contracted, suggesting that these gene families might be relevant to a host of phenotypic differences between T. fasciatus and other teleosts. Gene families associated with osmoregulation were also expanded, which might be associated with its catadromous life history. A total of 50 aging-associated genes were found to be under positive selection, which might be associated with the short lifespan of T. fasciatus. The high-quality genome assembly and annotation will promote researches into the evolution of catadromous life history and short lifespan for T. fasciatus and facilitate comparative genomic studies of cottids in the near future.


Assuntos
Ecossistema , Perciformes , Animais , Cromossomos/genética , Genoma/genética , Perciformes/genética , Filogenia
10.
Mol Ecol Resour ; 22(1): 295-306, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34214251

RESUMO

Ark shells are commercially important clam species that inhabit in muddy sediments of shallow coasts in East Asia. For a long time, the lack of genome resources has hindered scientific research of ark shells. Here, we report a high-quality chromosome-level genome assembly of Scapharca kagoshimensis, with an aim to unravel the molecular basis of heme biosynthesis, and develop genomic resources for genetic breeding and population genetics in ark shells. Nineteen scaffolds corresponding to 19 chromosomes were constructed from 938 contigs (contig N50 = 2.01 Mb) to produce a final high-quality assembly with a total length of 1.11 Gb and scaffold N50 around 60.64 Mb. The genome assembly represents 93.4% completeness via matching 303 eukaryota core conserved genes. A total of 24,908 protein-coding genes were predicted and 24,551 genes (98.56%) of which were functionally annotated. The enrichment analyses suggested that genes in heme biosynthesis pathways were expanded and positive selection of the haemoglobin genes was also found in the genome of S. kagoshimensis, which gives important insights into the molecular mechanisms and evolution of the heme biosynthesis in mollusca. The valuable genome assembly of S. kagoshimensis would provide a solid foundation for investigating the molecular mechanisms that underlie the diverse biological functions and evolutionary adaptations of S. kagoshimensis.


Assuntos
Arcidae , Scapharca , Animais , Cromossomos , Genômica , Heme , Scapharca/genética
12.
Front Genet ; 12: 728177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552623

RESUMO

Cyprinidae is one of the largest family in freshwater fishes, and it is most intensively cultured fish taxon of the world. However, studies about sex determination in this large family is still rear, and one of the reasons is lack of high quality and complete genome. Here, we used nanopore to sequence the genome of a male bighead carp, obtaining contig N50 = 24.25 Mb, which is one of the best assemblies in Cyprinidae. Five males and five females were re-sequenced, and a male-specific region on LG19 was confirmed. We find this region holds many male-specific markers in other Cyprinidae fishes, such as grass carp and silver carp. Transcriptome analyses of hypothalamus and pituitary tissues showed that several sex-specific differentially expressed genes were associated with steroid biosynthesis. The UCH64E gene, located in the male-specific region on LG19, showed higher expression levels in male than female tissues of bighead carp. The methyl-RAD of hypothalamus tissues between males and females indicated that the sexual methylation differences are significant in bighead carp. We also compared the methylation sites recognized using methyl-RAD and nanopore raw reads and found that approximately 73% of the methylation sites identified using methyl-RAD were within nanopore CpG sites.

13.
Genomics ; 113(5): 3072-3082, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246693

RESUMO

Rubiaceae is the fourth largest and a taxonomically complex family of angiosperms. Many species in this family harbor low reproductive isolation and frequently exhibit inconsistent phenotypic characteristics. Therefore, taxonomic classification and their phylogenetic relationships in the Rubiaceae family is challenging, especially in the genus Leptodermis. Considering the low taxonomic confusion and wide distribution, Leptodermis oblonga is selected as a representative Leptodermis for genome sequencing. The assemblies resulted in 497 Mbp nuclear and 155,100 bp chloroplast genomes, respectively. Using the nuclear genome as a reference, SNPs were called from 37 Leptodermis species or varieties. The phylogenetic tree based on SNPs exhibited high resolution for species delimitation of the complex and well-resolved phylogenetic relationships in the genus. Moreover, 28,987 genes were predicted in the nuclear genome and used for comparative genomics study. As the first chromosomal-level genome of the subfamily Rubioideae in Rubiaceae, it will provide fruitfully evolutionary understanding in the family.


Assuntos
Genoma de Cloroplastos , Rubiaceae , Genômica/métodos , Filogenia , Rubiaceae/genética
14.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146395

RESUMO

The spotted scat, Scatophagus argus is a member of the family Scatophagidae found in Indo-Pacific coastal waters. It is an emerging commercial aquaculture species, particularly in East and Southeast Asia. In this study, the first chromosome-level genome of S. argus was constructed using PacBio and Hi-C sequencing technologies. The genome is 572.42 Mb, with a scaffold N50 of 24.67 Mb. Using Hi-C data, 563.28 Mb (98.67% of the genome) sequences were anchored and oriented in 24 chromosomes, ranging from 12.57 Mb to 30.38 Mb. The assembly is of high integrity, containing 94.26% conserved single-copy orthologues, based on BUSCO analysis. A total of 24,256 protein-coding genes were predicted in the genome, and 96.30% of the predicted genes were functionally annotated. Evolutionary analysis showed that S. argus diverged from the common ancestor of Japanese puffer (Takifugu rubripes) approximately 114.8 Ma. The chromosomes of S. argus showed significant correlation to T. rubripes chromosomes. A comparative genomic analysis identified 49 unique and 90 expanded gene families. These genomic resources provide a solid foundation for functional genomics studies to decipher the economic traits of this species.


Assuntos
Cromossomos , Genoma , Perciformes/genética , Animais , Aquicultura , Evolução Biológica , Feminino , Família Multigênica
15.
Genomics ; 113(4): 1617-1627, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839268

RESUMO

The yellowfin seabream Acanthopagrus latus is the economically most important Sparidae fish in the northern South China Sea. As euryhaline fish, they are perfect model for investigating osmoregulatory mechanisms in teleosts. Moreover, the reproductive biology of hermaphrodites has long been intriguing; however, little information is known about the molecular pathways underlying their sex change. Here, we report a chromosome level reference genome of A. latus generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The draft genome of yellowfin seabream was 806 Mb, with 732 Mb scaffolds anchored on 24 chromosomes. The contig N50 and scaffold N50 were 2.6 Mb and 30.17 Mb, respectively. The assembly is of high integrity and includes 92.23% universal single-copy orthologues based on benchmarking universal single-copy orthologs (BUSCO) analysis. A total of 19,631 protein-coding genes were functionally annotated in the reference genome. Moreover, ARRDC3 and GSTA gene families which related to osmoregulation underwent an extensive expansion in two euryhaline sparids fish genomes compared to other teleost genomes. Moreover, integrating sex-specific transcriptome analyses, several genes related to the transforming growth factor beta (TGF-ß) signalling pathway involved in sex differentiation and development. This genomic resource will not only be valuable for studying the osmoregulatory mechanisms in estuarine fish and sex determination in hermaphrodite vertebrate species, but also provide useful genomic tools for facilitating breeding of the yellowfin seabream.


Assuntos
Perciformes , Dourada , Animais , Cromossomos , Feminino , Genoma , Masculino , Osmorregulação/genética , Perciformes/genética , Filogenia , Dourada/genética
16.
Mol Ecol Resour ; 21(6): 2022-2033, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33730415

RESUMO

The burbot (Lota lota) is the only member of the order Gadiformes adapted solely to freshwater. This species has the widest longitudinal range among freshwater fish worldwide. Burbot serves as a good model for studies on adaptive genome evolution from marine to freshwater environments. However, a high-quality reference genome of burbot has not yet been released. Here, the first chromosome-level genome of burbot was constructed using PacBio long sequencing and Hi-C technology. A total of 95.24 Gb polished PacBio sequences were generated, and the preliminary genome assembly was 575.83 Mb in size with a contig N50 size of 2.15 Mb. The assembled sequences were anchored to 22 pseudochromosomes by using Hi-C data. The final assembled genome after Hi-C correction was 575.92 Mb, with a contig N50 of 2.01 Mb and a scaffold N50 of 22.10 Mb. A total of 22,067 protein-coding genes were predicted, 94.82% of which were functionally annotated. Phylogenetic analyses indicated that burbot diverged with the Atlantic cod approximately 43.8 million years ago. In addition, 377 putative genes that appear to be under positive selection in burbot were identified. These positively selected genes might be involved in the adaptation to the freshwater environment. These genome data provide an invaluable resource for the ecological and evolutionary study of the order Gadiformes.


Assuntos
Adaptação Biológica/genética , Gadiformes , Genoma , Animais , Cromossomos , Água Doce , Gadiformes/genética , Filogenia
17.
J Integr Plant Biol ; 63(7): 1309-1323, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33634943

RESUMO

Salvia bowleyana is a traditional Chinese medicinal plant that is a source of nutritional supplements rich in salvianolic acid B and a potential experimental system for the exploration of salvianolic acid B biosynthesis in the Labiatae. Here, we report a high-quality chromosome-scale genome assembly of S. bowleyana covering 462.44 Mb, with a scaffold N50 value of 57.96 Mb and 44,044 annotated protein-coding genes. Evolutionary analysis revealed an estimated divergence time between S. bowleyana and its close relative S. miltiorrhiza of ~3.94 million years. We also observed evidence of a whole-genome duplication in the S. bowleyana genome. Transcriptome analysis showed that SbPAL1 (PHENYLALANINE AMMONIA-LYASE1) is highly expressed in roots relative to stem and leaves, paralleling the location of salvianolic acid B accumulation. The laccase gene family in S. bowleyana outnumbered their counterparts in both S. miltiorrhiza and Arabidopsis thaliana, suggesting that the gene family has undergone expansion in S. bowleyana. Several laccase genes were also highly expressed in roots, where their encoded proteins may catalyze the oxidative reaction from rosmarinic acid to salvianolic acid B. These findings provide an invaluable genomic resource for understanding salvianolic acid B biosynthesis and its regulation, and will be useful for exploring the evolution of the Labiatae.


Assuntos
Benzofuranos/metabolismo , Raízes de Plantas/metabolismo , Salvia/metabolismo , Cinamatos/metabolismo , Depsídeos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácido Rosmarínico
18.
Mol Ecol Resour ; 21(5): 1575-1592, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33503304

RESUMO

The Southern catfish (Silurus meridionalis) is a nocturnal and benthic freshwater fish endemic to the Yangtze River and its tributaries. In this study, we constructed a chromosome-level draft genome of S. meridionalis using 69.7-Gb Nanopore long reads and 49.5-Gb Illumina short reads. The genome assembly was 741.2 Mb in size with a contig N50 of 13.19 Mb. An additional 116.4 Gb of Bionano and 77.4 Gb of Hi-C data were applied to assemble contigs into scaffolds and further into 29 chromosomes, resulting in a 738.9-Mb genome with a scaffold N50 of 28.04 Mb. A total of 22,965 protein-coding genes were predicted from the genome with 22,519 (98.06%) genes functionally annotated. Comparative genomic and transcriptomic analyses revealed a rod-dominated visual system which was responsible for scotopic vision. The absence of cone opsins SWS1 and SWS2 resulted in the lack of ultraviolet and blue violet sensitivity. Mutations at key amino acid sites of RH1.1, RH1.2 and RH2 resulted in spectral tuning good for dim light vision and narrow colour vision. A higher expression level of rod phototransduction genes than that of cone genes and higher rod-to-cone ratio led to higher optical sensitivity under dim light conditions. In addition, analysis of the genes involved in eye morphogenesis and development revealed the loss of some conserved noncoding elements, which might be associated with the small eyes in catfish. Together, our study provides important clues for the adaptation of the catfish visual system to the nocturnal and benthic lifestyles. The draft genome of S. meridionalis represents a valuable resource for studies of the molecular mechanisms of ecological adaptation.


Assuntos
Adaptação Biológica , Peixes-Gato , Visão de Cores/genética , Animais , Peixes-Gato/genética , Peixes-Gato/fisiologia , Cromossomos , Genoma , Anotação de Sequência Molecular , Células Fotorreceptoras de Vertebrados , Filogenia
19.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33367716

RESUMO

Silver sillago, Sillago sihama is a member of the family Sillaginidae and found in all Chinese inshore waters. It is an emerging commercial marine aquaculture species in China. In this study, high-quality chromosome-level reference genome of S. sihama was first constructed using PacBio Sequel sequencing and high-throughput chromosome conformation capture (Hi-C) technique. A total of 66.16 Gb clean reads were generated by PacBio sequencing platforms. The genome-scale was 521.63 Mb with 556 contigs, and 13.54 Mb of contig N50 length. Additionally, Hi-C scaffolding of the genome resulted in 24 chromosomes containing 96.93% of the total assembled sequences. A total of 23,959 protein-coding genes were predicted in the genome, and 96.51% of the genes were functionally annotated in public databases. A total of 71.86 Mb repetitive elements were detected, accounting for 13.78% of the genome. The phylogenetic relationships of silver sillago with other teleosts showed that silver sillago was separated from the common ancestor of Sillago sinica ∼7.92 Ma. Comparative genomic analysis of silver sillago with other teleosts showed that 45 unique and 100 expansion gene families were identified in silver sillago. In this study, the genomic resources provide valuable reference genomes for functional genomics research of silver sillago.


Assuntos
Cromossomos , Peixes/genética , Genoma , Animais , Genômica , Anotação de Sequência Molecular
20.
Mol Ecol Resour ; 20(5): 1403-1413, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32521104

RESUMO

The leopard coral grouper, Plectropomus leopardus, belonging to the family Epinephelinae, is a carnivorous coral reef fish widely distributed in tropical and subtropical waters of the Indo-Pacific. Due to its appealing body appearance and delicious taste, P. leopardus has become a popular commercial fish for aquaculture in many countries. However, the lack of genomic and molecular resources for P. leopardus has hindered study of its biology and genomic breeding programmes. Here we report the de novo sequencing and assembly of the P. leopardus genome using a combination of 10 × Genomics, high-throughput chromosome conformation capture (Hi-C) and PacBio long-read sequencing technologies. The genome assembly has a total length of 881.55 Mb with a scaffold N50 of 34.15 Mb, consisting of 24 pseudochromosome scaffolds. busco analysis showed that 97.2% of the conserved single-copy genes were retrieved, indicating the assembly was almost entire. We predicted 25,248 protein-coding genes, among which 96.5% were functionally annotated. Comparative genomic analyses revealed that gene family expansions in P. leopardus were associated with immune-related pathways. In addition, we identified 5,178,453 single nucleotide polymorphisms based on genome resequencing of 54 individuals. The P. leopardus genome and genomic variation data provide valuable genomic resources for studies of its genetics, evolution and biology. In particular, it is expected to benefit the development of genomic breeding programmes in the farming industry.


Assuntos
Bass , Genoma , Animais , Bass/genética , Cromossomos , Hibridização Genômica Comparativa , Recifes de Corais , Oceano Índico , Anotação de Sequência Molecular , Família Multigênica , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA