Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.226
Filtrar
1.
Mucosal Immunol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39097147

RESUMO

Period circadian clock 2 (PER2) is involved in the pathogenesis of various inflammatory and autoimmune diseases. However, there are gaps in our understanding of the role of PER2 in regulating CD4+ T cells beyond its time-keeping function in ulcerative colitis (UC) pathogenesis. Our findings revealed PER2 was predominantly expressed in CD4+ T cells, while it was significantly decreased in the inflamed mucosa and peripheral blood CD4+ T cells of UC patients compared with that in Crohn's disease (CD) patients and healthy controls (HC). Notably, PER2 expression was significantly recovered in UC patients in remission (R-UC) compared to that in active UC patients (A-UC) but not in CD patients. It was negatively correlated with the Ulcerative Colitis Endoscopic Index of Severity (UCEIS), Crohn's Disease Activity Index (CDAI), Simple Endoscopic Score for Crohn's disease (SES-CD), and C-reactive protein (CRP), respectively. Overexpression of PER2 markedly inhibited IFN-γ production in UC CD4+ T cells. RNA-seq analysis showed that overexpression of PER2 could repress the expression of a disintegrin and metalloproteinase 12 (ADAM12), a costimulatory molecule that determines Th1 cell fate. Mechanistically, cleavage under targets and tagmentation (CUT&Tag) analysis revealed that PER2 down-regulated ADAM12 expression by reducing its binding activity, thereby suppressing IFN-γ production in UC CD4+ T cells. Additionally, our data further demonstrated that ADAM12 was upregulated in CD4+ T cells and inflamed mucosa of A-UC patients compared to HC. Our study reveals a critical role of PER2 in regulating CD4+ T cell differentiation and highlights its potential as a therapeutic target for UC treatment.

2.
J Exp Bot ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115876

RESUMO

In the dynamic environment of plants, the interplay between light-dependent growth and iron nutrition is a recurring challenge. Plants respond to low iron levels by adjusting growth and physiology through enhanced iron acquisition from the rhizosphere and internal iron pool reallocation. Iron deficiency response assays and gene co-expression networks aid in documenting physiological reactions and unraveling gene regulatory cascades, offering insight into the interplay between hormonal and external signaling pathways. However, research directly exploring the significance of light in iron nutrition remains limited. This review provides an overview on iron deficiency regulation and its cross-connection with distinct light signals, focusing on transcription factor cascades and long-distance signaling. The circadian clock and retrograde signaling influence iron uptake and allocation. The light-activated shoot-to-root mobile transcription factor ELONGATED HYPOCOTYL5 (HY5) affects iron homeostasis responses in roots. Blue light triggers the formation of biomolecular condensates containing iron deficiency-induced protein complexes. The potential of exploiting the connection between light and iron signaling remains underutilized. With climate change and soil alkalinity on the rise, there is a need to develop crops with improved nutrient use efficiency and modified light dependencies. More research is needed to understand and leverage the interplay between light signaling and iron nutrition.

3.
Sci Rep ; 14(1): 15479, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969743

RESUMO

Most organisms possess three biological oscillators, circadian clock, cell cycle, and redox rhythm, which are autonomous but interact each other. However, whether their interactions and autonomy are beneficial for organisms remains unclear. Here, we modeled a coupled oscillator system where each oscillator affected the phase of the other oscillators. We found that multiple types of coupling prevent a high H2O2 level in cells at M phase. Consequently, we hypothesized a high H2O2 sensitivity at the M phase and found that moderate coupling reduced cell damage due to oxidative stress by generating appropriate phase relationships between three rhythms, whereas strong coupling resulted in an elevated cell damage by increasing the average H2O2 level and disrupted the cell cycle. Furthermore, the multicellularity model revealed that phase variations among cells confer flexibility in synchronization with environments at the expense of adaptability to the optimal environment. Thus, both autonomy and synchrony among the oscillators are important for coordinating their phase relationships to minimize oxidative stress, and couplings balance them depending on environments.


Assuntos
Ciclo Celular , Ritmo Circadiano , Peróxido de Hidrogênio , Modelos Biológicos , Oxirredução , Estresse Oxidativo , Peróxido de Hidrogênio/metabolismo , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Animais
5.
Insect Mol Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989821

RESUMO

Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.

6.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38979283

RESUMO

Arabidopsis PSEUDO RESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its transcriptional repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 protein activity is unknown. We used double mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR (CBF) and COLD REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. We establish that HOS15 mediates PRR7 protein turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoter regions of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated regulation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways leading to freezing tolerance through upregulation of CBF1 and COR15A.

7.
J Neurochem ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970299

RESUMO

Circadian rhythm (CR) disturbances are among the most commonly observed symptoms during major depressive disorder, mostly in the form of disrupted sleeping patterns. However, several other measurable parameters, such as plasma hormone rhythms and differential expression of circadian clock genes (ccgs), are also present, often referred to as circadian phase markers. In the recent years, CR disturbances have been recognized as an essential aspect of depression; however, most of the known animal models of depression have yet to be evaluated for their eligibility to model CR disturbances. In this study, we investigate the potential of adrenocorticotropic hormone (ACTH)-treated animals as a disease model for research in CR disturbances in treatment-resistant depression. For this purpose, we evaluate the changes in several circadian phase markers, including plasma concentrations of corticosterone, ACTH, and melatonin, as well as gene expression patterns of 13 selected ccgs at 3 different time points, in both peripheral and central tissues. We observed no impact on plasma corticosterone and melatonin concentrations in the ACTH rats compared to vehicle. However, the expression pattern of several ccgs was affected in the ACTH rats compared to vehicle. In the hippocampus, 10 ccgs were affected by ACTH treatment, whereas in the adrenal glands, 5 ccgs were affected and in the prefrontal cortex, hypothalamus and liver 4 ccgs were regulated. In the blood, only 1 gene was affected. Individual tissues showed changes in different ccgs, but the expression of Bmal1, Per1, and Per2 were most generally affected. Collectively, the results presented here indicate that the ACTH animal model displays dysregulation of a number of phase markers suggesting the model may be appropriate for future studies into CR disturbances.

8.
Eur J Neurosci ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053917

RESUMO

The circadian system regulates 24-h time-of-day patterns of cardiovascular physiology, with circadian misalignment resulting in adverse cardiovascular risk. Although many proteins in the coagulation-fibrinolysis axis show 24-h time-of-day patterns, it is not understood if these temporal patterns are regulated by circadian or behavioral (e.g., sleep and food intake) cycles, or how circadian misalignment influences these patterns. Thus, we utilized a night shiftwork protocol to analyze circadian versus behavioral cycle regulation of 238 plasma proteins linked to cardiovascular physiology. Six healthy men aged 26.2 ± 5.6 years (mean ± SD) completed the protocol involving two baseline days with 8-h nighttime sleep opportunities (circadian alignment), a transition to shiftwork day, followed by 2 days of simulated night shiftwork with 8-h daytime sleep opportunities (circadian misalignment). Plasma was collected for proteomics every 4 h across 24 h during baseline and during daytime sleep and the second night shift. Cosinor analyses identified proteins with circadian or behavioral cycle-regulated 24-h time-of-day patterns. Five proteins were circadian regulated (plasminogen activator inhibitor-1, angiopoietin-2, insulin-like growth factor binding protein-4, follistatin-related protein-3, and endoplasmic reticulum resident protein-29). No cardiovascular-related proteins showed regulation by behavioral cycles. Within the coagulation pathway, circadian misalignment decreased tissue factor pathway inhibitor, increased tissue factor, and induced a 24-h time-of-day pattern in coagulation factor VII (all FDR < 0.10). Such changes in protein abundance are consistent with changes observed in hypercoagulable states. Our analyses identify circadian regulation of proteins involved in cardiovascular physiology and indicate that acute circadian misalignment could promote a hypercoagulable state, possibly contributing to elevated cardiovascular disease risk among shift workers.

9.
Chronobiol Int ; : 1-14, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046293

RESUMO

First, significantly higher mate-finding success was found under light condition than under constant darkness condition in Phauda flammans, a typical diurnal moth. We speculate that mate-finding behavior in P. flammans may be influenced by the light-sensitive opsin genes Long wavelength opsin (PfLW), Ultraviolet opsin (PfUV) and Blue opsin (PfBL), which are potentially regulated by both light-cues and endogenous circadian rhythms. Second, the circadian clock genes Period (PfPer), Timeless (PfTim), Cryptochrome1 (PfCry1), Cryptochrome2 (PfCRY2), Cryptochrome3 (PfCry-like), Clock (PfClk), Cycle (PfCyc), Vrille (PfVri), and Slimb (PfSli) were identified in P. flammans. Third, circadian rhythms in the relative expression levels of opsin and circadian clock genes were demonstrated via quantitative real-time PCR analysis, with peak expression coinciding with the mate-finding peak. Notably, the relative expression of PfLW in males P. flammans was significantly higher than that in females P. flammans at the mate-finding peaks Zeitgeber time (ZT) 8 and ZT 10 under light, while the expression of the opsin gene PfBL showed a similar pattern at ZT 10 under light. Additionally, the expression of the clock gene PfCry-like was significantly higher in males than in females at ZT 8 and ZT 10 under light, while PfPer, PfTim, PfClk and PfCyc exhibited similar male-biased expression patterns at ZT 10 under light. Conversely, PfCry1 and PfVri expression was significantly higher in females than in male at ZT 8 under light. In conclusion, sex differences were detected in the expression of opsin and circadian clock genes, which indicated that light-mediated regulation of these genes may contribute to the daytime mate-finding behavior of P. flammans.

10.
Int Immunopharmacol ; 139: 112589, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032468

RESUMO

Circadian rhythms play a crucial role in regulating various physiological processes, including specific immune functions that enhance the body's ability to anticipate and respond to threats effectively. However, research on the impact of circadian rhythms on osteoimmunology remains limited. Our study uncovered that circadian disruption leads to bone mass loss by reducing the population of Treg cells in the bone marrow. Furthermore, we observed a significant decrease in serum IL-10 cytokine levels in jet lagged mice. In our current investigation, we explored the anti-osteoclastogenic effects of IL-10 and found that IL-10 inhibits RANKL-induced osteoclastogenesis in a dose-dependent manner. Our findings suggest that the diminished anti-osteoclastogenic properties of Tregs under circadian disruption are mediated by IL-10 cytokine production. Moreover, our discoveries propose that administration of IL-10 or butyrate could potentially reverse bone mass loss in individuals experiencing jet lag.

11.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000414

RESUMO

Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Metabolismo Secundário , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Plantas/metabolismo , Plantas/genética , Terpenos/metabolismo , Fotoperíodo , Estresse Fisiológico
12.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000480

RESUMO

The regulation of the circadian clock plays an important role in influencing physiological conditions. While it is reported that the timing and quantity of energy intake impact circadian regulation, the underlying mechanisms remain unclear. This study investigated the impact of dietary protein intake on peripheral clocks. Firstly, transcriptomic analysis was conducted to investigate molecular targets of low-protein intake. Secondly, mPer2::Luc knock-in mice, fed with either a low-protein, normal, or high-protein diet for 6 weeks, were analyzed for the oscillation of PER2 expression in peripheral tissues and for the expression profiles of circadian and metabolic genes. Lastly, the candidate pathway identified by the in vivo analysis was validated using AML12 cells. As a result, using transcriptomic analysis, we found that the low-protein diet hardly altered the circadian rhythm in the central clock. In animal experiments, expression levels and period lengths of PER2 were different in peripheral tissues depending on dietary protein intake; moreover, mRNA levels of clock-controlled genes and endoplasmic reticulum (ER) stress genes were affected by dietary protein intake. Induction of ER stress in AML12 cells caused an increased amplitude of Clock and Bmal1 and an advanced peak phase of Per2. This result shows that the intake of different dietary protein ratios causes an alteration of the circadian rhythm, especially in the peripheral clock of mice. Dietary protein intake modifies the oscillation of ER stress genes, which may play key roles in the regulation of the circadian clock.


Assuntos
Ritmo Circadiano , Proteínas Alimentares , Proteínas Circadianas Period , Animais , Camundongos , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Alimentares/administração & dosagem , Estresse do Retículo Endoplasmático , Relógios Circadianos/genética , Masculino , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Perfilação da Expressão Gênica , Linhagem Celular , Transcriptoma
13.
Open Biol ; 14(7): 240089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981514

RESUMO

Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.


Assuntos
Fatores de Transcrição ARNTL , Artrite Experimental , Ritmo Circadiano , Fibroblastos , Sinoviócitos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Relógios Circadianos/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Camundongos Knockout , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino
14.
Sci Rep ; 14(1): 16796, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039133

RESUMO

Robust circadian rhythms are essential for optimal health. The central circadian clock controls temperature rhythms, which are known to organize the timing of peripheral circadian rhythms in rodents. In humans, however, it is unknown whether temperature rhythms relate to the organization of circadian rhythms throughout the body. We assessed core body temperature amplitude and the rhythmicity of 929 blood plasma metabolites across a 40-h constant routine protocol, controlling for behavioral and environmental factors that mask endogenous temperature rhythms, in 23 healthy individuals (mean [± SD] age = 25.4 ± 5.7 years, 5 women). Valid core body temperature data were available in 17/23 (mean [± SD] age = 25.6 ± 6.3 years, 1 woman). Individuals with higher core body temperature amplitude had a greater number of metabolites exhibiting circadian rhythms (R2 = 0.37, p = .009). Higher core body temperature amplitude was also associated with less variability in the free-fitted periods of metabolite rhythms within an individual (R2 = 0.47, p = .002). These findings indicate that a more robust central circadian clock is associated with greater organization of circadian metabolite rhythms in humans. Metabolite rhythms may therefore provide a window into the strength of the central circadian clock.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Humanos , Feminino , Ritmo Circadiano/fisiologia , Masculino , Adulto , Adulto Jovem , Relógios Circadianos/fisiologia , Temperatura , Metaboloma
15.
Front Cell Dev Biol ; 12: 1421204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011396

RESUMO

Circadian rhythm disruption is closely related to increased incidence of prostate cancer. Incorporating circadian rhythms into the study of prostate cancer pathogenesis can provide a more comprehensive understanding of the causes of cancer and offer new options for precise treatment. Therefore, this article comprehensively summarizes the epidemiology of prostate cancer, expounds the contradictory relationship between circadian rhythm disorders and prostate cancer risk, and elucidates the relationship between circadian rhythm regulators and the incidence of prostate cancer. Importantly, this article also focuses on the correlation between circadian rhythms and androgen receptor signaling pathways, as well as the applicability of time therapy in prostate cancer. This may prove significant in enhancing the clinical treatment of prostate cancer.

16.
Cell Transplant ; 33: 9636897241261234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068549

RESUMO

Circadian dysregulation involved in the pathophysiology of spinal cord injury (SCI). Modulation of circadian rhythms hold promise for the SCI treatment. Here, we aim to investigated the mechanism of olfactory ensheathing cells (OEC) in alleviating neuroinflammation via modulating clock gene expression in microglia. In this study, SCI rats were randomly divided into OEC group and vehicle group. At 1 day after the surgery, OECs were intravenously transplanted into OEC group SCI rat, while the rats in vehicle group received culture medium. After 7 days post of OEC transplantation, tissues were collected from the brain (prefrontal cortex, hypothalamus, spinal cord) for PCR, western blotting and immunohistochemistry (IHC) assay at zeitgeber time (ZT) 6, ZT 12, ZT 18, and ZT 24. The roles of OEC in modulating REV-ERBα in microglia were studied by experimental inhibition of gene expression and the co-culture experiment. In the vehicle group, IHC showed a significant increase of Iba-1 expression in the cerebral white matter and spinal cord compared with control group (P < 0.0001 for all comparisons). The expression of Iba-1 was significantly decreased (P < 0.0001 for all comparisons). In the OEC group, the expression of PER 1, PER 2, CLOCK, and REV-ERBα was in a rhythmical manner in both spinal cord and brain regions. SCI disrupted their typical rhythms. And OECs transplantation could modulate those dysregulations by upregulating REV-ERBα. In vitro study showed that OECs couldn't reduce the activation of REV-ERBα inhibited microglia. The intravenous transplantation of OECs can mediate cerebral and spinal microglia activation through upregulation REV-ERBα after SCI.


Assuntos
Microglia , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Regulação para Cima , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Microglia/metabolismo , Ratos , Doenças Neuroinflamatórias/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Masculino , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo
17.
Lipids Health Dis ; 23(1): 216, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003477

RESUMO

BACKGROUND: The regulation of the circadian clock genes, which coordinate the activity of the immune system, is disturbed in inflammatory bowel disease (IBD). Emerging evidence suggests that butyrate, a short-chain fatty acid produced by the gut microbiota is involved in the regulation of inflammatory responses as well as circadian-clock genes. This study was conducted to investigate the effects of sodium-butyrate supplementation on the expression of circadian-clock genes, inflammation, sleep and life quality in active ulcerative colitis (UC) patients. METHODS: In the current randomized placebo-controlled trial, 36 active UC patients were randomly divided to receive sodium-butyrate (600 mg/kg) or placebo for 12-weeks. In this study the expression of circadian clock genes (CRY1, CRY2, PER1, PER2, BMAl1 and CLOCK) were assessed by real time polymerase chain reaction (qPCR) in whole blood. Gene expression changes were presented as fold changes in expression (2^-ΔΔCT) relative to the baseline. The faecal calprotectin and serum level of high-sensitivity C-reactive protein (hs-CRP) were assessed by enzyme-linked immunosorbent assay method (ELIZA). Moreover, the sleep quality and IBD quality of life (QoL) were assessed by Pittsburgh sleep quality index (PSQI) and inflammatory bowel disease questionnaire-9 (IBDQ-9) respectively before and after the intervention. RESULTS: The results showed that sodium-butyrate supplementation in comparison with placebo significantly decreased the level of calprotectin (-133.82 ± 155.62 vs. 51.58 ± 95.57, P-value < 0.001) and hs-CRP (-0.36 (-1.57, -0.05) vs. 0.48 (-0.09-4.77), P-value < 0.001) and upregulated the fold change expression of CRY1 (2.22 ± 1.59 vs. 0.63 ± 0.49, P-value < 0.001), CRY2 (2.15 ± 1.26 vs. 0.93 ± 0.80, P-value = 0.001), PER1 (1.86 ± 1.77 vs. 0.65 ± 0.48, P-value = 0.005), BMAL1 (1.85 ± 0.97 vs. 0.86 ± 0.63, P-value = 0.003). Also, sodium-butyrate caused an improvement in the sleep quality (PSQI score: -2.94 ± 3.50 vs. 1.16 ± 3.61, P-value < 0.001) and QoL (IBDQ-9: 17.00 ± 11.36 vs. -3.50 ± 6.87, P-value < 0.001). CONCLUSION: Butyrate may be an effective adjunct treatment for active UC patients by reducing biomarkers of inflammation, upregulation of circadian-clock genes and improving sleep quality and QoL.


Assuntos
Colite Ulcerativa , Suplementos Nutricionais , Qualidade do Sono , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Masculino , Feminino , Adulto , Método Duplo-Cego , Pessoa de Meia-Idade , Inflamação/genética , Inflamação/tratamento farmacológico , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Qualidade de Vida , Relógios Circadianos/genética , Relógios Circadianos/efeitos dos fármacos , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Butiratos , Ácido Butírico
18.
Artigo em Inglês | MEDLINE | ID: mdl-38964366

RESUMO

The circadian clock (CC) has biological and clinical implications in gliomas. Most studies focused on CC effects on the tumor microenvironment and the application of chronotherapy. The present study focused on CC gene expression patterns and intracellular oncogenic activities. Glioma gene expression data were collected from The Human Cancer Genome Atlas (TCGA) project. After applying inclusion and exclusion criteria, we selected 666 patients from TCGA-GBM and TCGA-LGG projects and included important clinicopathological variables. The entire cohort was subjected to clustering analysis and divided into CC1 and CC2 subtypes based on statistical, biological, and clinical criteria. CC2 gliomas showed higher expression of BMAL1 and CRY1 and lower expression of CRY2 and PER2 (adjusted P < .001). CC2 gliomas had q higher activity of cell proliferation, metabolic reprogramming, angiogenesis, hypoxia, and many oncogenic signals (P < .001). The CC2 subtype contained a higher proportion of glioblastomas (P < .001) and had a worse prognosis (P < .001). Stratified Kaplan-Meier and multivariable Cox analyses illustrated that the CC subtype is an independent prognostic factor to clinicopathological characteristics (P < .001), genetic aberrations (P = .006), and biological processes (P < .001). Thus, this study shows statistical evidence of CC subtypes and their biological, and clinicopathological significance in adult gliomas.

19.
Proc Natl Acad Sci U S A ; 121(32): e2403770121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074282

RESUMO

Time-restricted feeding (RF) is known to shift the phasing of gene expression in most primary metabolic tissues, whereas a time misalignment between the suprachiasmatic nucleus circadian clock (SCNCC) and its peripheral CCs (PCC's) is known to induce various pathophysiological conditions, including a metabolic syndrome. We now report that a unique "light therapy," involving different light intensities (TZT0-ZT12150-TZT0-ZT12700 lx, TZT0-ZT1275-TZT0-ZT12150 lx, and TZT0-ZT12350-TZT0-ZT12700 lx), realigns the RF-generated misalignment between the SCNCC and the PCC's. Using such high-light regime, we show that through shifting the SCNCC and its activity, it is possible in a RF and "night-shifted mouse model" to prevent/correct pathophysiologies (e.g., a metabolic syndrome, a loss of memory, cardiovascular abnormalities). Our data indicate that such a "high-light regime" could be used as a unique chronotherapy, for those working on night shifts or suffering from jet-lag, in order to realign their SCNCC and PCC's, thereby preventing the generation of pathophysiological conditions.


Assuntos
Relógios Circadianos , Núcleo Supraquiasmático , Animais , Relógios Circadianos/fisiologia , Camundongos , Núcleo Supraquiasmático/metabolismo , Síndrome Metabólica/terapia , Síndrome Metabólica/metabolismo , Fototerapia/métodos , Masculino , Camundongos Endogâmicos C57BL , Ritmo Circadiano/fisiologia , Luz
20.
Cell Metab ; 36(6): 1320-1334.e9, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838643

RESUMO

Circadian homeostasis in mammals is a key intrinsic mechanism for responding to the external environment. However, the interplay between circadian rhythms and the tumor microenvironment (TME) and its influence on metastasis are still unclear. Here, in patients with colorectal cancer (CRC), disturbances of circadian rhythm and the accumulation of monocytes and granulocytes were closely related to metastasis. Moreover, dysregulation of circadian rhythm promoted lung metastasis of CRC by inducing the accumulation of myeloid-derived suppressor cells (MDSCs) and dysfunctional CD8+ T cells in the lungs of mice. Also, gut microbiota and its derived metabolite taurocholic acid (TCA) contributed to lung metastasis of CRC by triggering the accumulation of MDSCs in mice. Mechanistically, TCA promoted glycolysis of MDSCs epigenetically by enhancing mono-methylation of H3K4 of target genes and inhibited CHIP-mediated ubiquitination of PDL1. Our study links the biological clock with MDSCs in the TME through gut microbiota/metabolites in controlling the metastatic spread of CRC, uncovering a systemic mechanism for cancer metastasis.


Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Células Supressoras Mieloides , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Humanos , Metástase Neoplásica , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Camundongos Endogâmicos C57BL , Masculino , Microambiente Tumoral , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA