Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373197

RESUMO

Molecular dynamics simulations of protein folding typically consider the polypeptide chain at equilibrium and in isolation from the cellular components. We argue that in order to understand protein folding as it occurs in vivo, it should be modeled as an active, energy-dependent process, in which the cellular protein-folding machine directly manipulates the polypeptide. We conducted all-atom molecular dynamics simulations of four protein domains, whose folding from the extended state was augmented by the application of rotational force to the C-terminal amino acid, while the movement of the N-terminal amino acid was restrained. We have shown earlier that such a simple manipulation of peptide backbone facilitated the formation of native structures in diverse α-helical peptides. In this study, the simulation protocol was modified, to apply the backbone rotation and movement restriction only for a short time at the start of simulation. This transient application of a mechanical force to the peptide is sufficient to accelerate, by at least an order of magnitude, the folding of four protein domains from different structural classes to their native or native-like conformations. Our in silico experiments show that a compact stable fold may be attained more readily when the motions of the polypeptide are biased by external forces and constraints.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Domínios Proteicos , Rotação , Peptídeos/química , Dobramento de Proteína , Aminoácidos
2.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008947

RESUMO

The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.


Assuntos
Conformação Proteica , Dobramento de Proteína , Proteínas/química , Termodinâmica , Algoritmos , Cinética , Modelos Moleculares , Modelos Teóricos , Redobramento de Proteína , Estabilidade Proteica , Proteínas/síntese química , Proteoma , Proteômica/métodos , Proteínas Recombinantes/química , Solubilidade , Especificidade da Espécie
3.
Protein Sci ; 31(1): 221-231, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738275

RESUMO

There is a growing appreciation that synonymous codon usage, although historically regarded as phenotypically silent, can instead alter a wide range of mechanisms related to functional protein production, a term we use here to describe the net effect of transcription (mRNA synthesis), mRNA half-life, translation (protein synthesis) and the probability of a protein folding correctly to its active, functional structure. In particular, recent discoveries have highlighted the important role that sub-optimal codons can play in modifying co-translational protein folding. These results have drawn increased attention to the patterns of synonymous codon usage within coding sequences, particularly in light of the discovery that these patterns can be conserved across evolution for homologous proteins. Because synonymous codon usage differs between organisms, for heterologous gene expression it can be desirable to make synonymous codon substitutions to match the codon usage pattern from the original organism in the heterologous expression host. Here we present CHARMING (for Codon HARMonizING), a robust and versatile algorithm to design mRNA sequences for heterologous gene expression and other related codon harmonization tasks. CHARMING can be run as a downloadable Python script or via a web portal at http://www.codons.org.


Assuntos
Uso do Códon , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas , RNA Mensageiro/genética , Software , Proteínas/genética , Proteínas/metabolismo
4.
Biochemistry (Mosc) ; 86(8): 976-991, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488574

RESUMO

The genetic code sets the correspondence between the sequence of a given nucleotide triplet in an mRNA molecule, called a codon, and the amino acid that is added to the growing polypeptide chain during protein synthesis. With four bases (A, G, U, and C), there are 64 possible triplet codons: 61 sense codons (encoding amino acids) and 3 nonsense codons (so-called, stop codons that define termination of translation). In most organisms, there are 20 common/standard amino acids used in protein synthesis; thus, the genetic code is redundant with most amino acids (with the exception of Met and Trp) are being encoded by more than one (synonymous) codon. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in mRNA suggested that the specific codon choice might have functional implications beyond coding for amino acid. Observation of nonequivalent use of codons in mRNAs implied a possibility of the existence of auxiliary information in the genetic code. Indeed, it has been found that genetic code contains several layers of such additional information and that synonymous codons are strategically placed within mRNAs to ensure a particular translation kinetics facilitating and fine-tuning co-translational protein folding in the cell via step-wise/sequential structuring of distinct regions of the polypeptide chain emerging from the ribosome at different points in time. This review summarizes key findings in the field that have identified the role of synonymous codons and their usage in protein folding in the cell.


Assuntos
Códon/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Animais , Escherichia coli , Código Genético , Humanos , Camundongos , Peptídeos/metabolismo , Fosfoglicerato Quinase/química , Proteínas/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae
5.
Mol Cell ; 81(14): 2914-2928.e7, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107307

RESUMO

Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas/fisiologia , Aminoácidos/metabolismo , Sobrevivência Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteômica/métodos , Proteostase/fisiologia , Ribossomos/metabolismo
6.
Bioessays ; 43(7): e2100042, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33987870

RESUMO

The coupling of protein synthesis and folding is a crucial yet poorly understood aspect of cellular protein folding. Over the past few years, it has become possible to experimentally follow and define protein folding on the ribosome, revealing principles that shape co-translational folding and distinguish it from refolding in solution. Here, we highlight some of these recent findings from biochemical and biophysical studies and their potential significance for cellular protein biogenesis. In particular, we focus on nascent chain interactions with the ribosome, interactions within the nascent protein, modulation of translation elongation rates, and the role of mechanical force that accompanies nascent protein folding. The ability to obtain mechanistic insight in molecular detail has set the stage for exploring the intricate process of nascent protein folding. We believe that the aspects discussed here will be generally important for understanding how protein synthesis and folding are coupled and regulated.


Assuntos
Dobramento de Proteína , Ribossomos , Peptídeos/genética , Biossíntese de Proteínas , Proteínas/metabolismo , Ribossomos/metabolismo
7.
F1000Res ; 10: 3, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633838

RESUMO

Background: Proteins fold robustly and reproducibly in vivo, but many cannot fold in vitro in isolation from cellular components. Despite the remarkable progress that has been achieved by the artificial intelligence approaches in predicting the protein native conformations, the pathways that lead to such conformations, either in vitro or in vivo, remain largely unknown. The slow progress in recapitulating protein folding pathways in silico may be an indication of the fundamental deficiencies in our understanding of folding as it occurs in nature. Here we consider the possibility that protein folding in living cells may not be driven solely by the decrease in Gibbs free energy and propose that protein folding in vivo should be modeled as an active energy-dependent process. The mechanism of action of such a protein folding machine might include direct manipulation of the peptide backbone. Methods: To show the feasibility of a protein folding machine, we conducted molecular dynamics simulations that were augmented by the application of mechanical force to rotate the C-terminal amino acid while simultaneously limiting the N-terminal amino acid movements. Results: Remarkably, the addition of this simple manipulation of peptide backbones to the standard molecular dynamics simulation indeed facilitated the formation of native structures in five diverse alpha-helical peptides. Steric clashes that arise in the peptides due to the forced directional rotation resulted in the behavior of the peptide backbone no longer resembling a freely jointed chain. Conclusions: These simulations show the feasibility of a protein folding machine operating under the conditions when the movements of the polypeptide backbone are restricted by applying external forces and constraints. Further investigation is needed to see whether such an effect may play a role during co-translational protein folding in vivo and how it can be utilized to facilitate folding of proteins in artificial environments.


Assuntos
Inteligência Artificial , Dobramento de Proteína , Peptídeos , Conformação Proteica , Proteínas
8.
Cell Commun Signal ; 18(1): 145, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907610

RESUMO

The genetic code is degenerate, and most amino acids are encoded by two to six synonymous codons. Codon usage bias, the preference for certain synonymous codons, is a universal feature of all genomes examined. Synonymous codon mutations were previously thought to be silent; however, a growing body evidence now shows that codon usage regulates protein structure and gene expression through effects on co-translational protein folding, translation efficiency and accuracy, mRNA stability, and transcription. Codon usage regulates the speed of translation elongation, resulting in non-uniform ribosome decoding rates on mRNAs during translation that is adapted to co-translational protein folding process. Biochemical and genetic evidence demonstrate that codon usage plays an important role in regulating protein folding and function in both prokaryotic and eukaryotic organisms. Certain protein structural types are more sensitive than others to the effects of codon usage on protein folding, and predicted intrinsically disordered domains are more prone to misfolding caused by codon usage changes than other domain types. Bioinformatic analyses revealed that gene codon usage correlates with different protein structures in diverse organisms, indicating the existence of a codon usage code for co-translational protein folding. This review focuses on recent literature on the role and mechanism of codon usage in regulating translation kinetics and co-translational protein folding. Video abstract.


Assuntos
Uso do Códon , Biossíntese de Proteínas , Dobramento de Proteína , Animais , Código Genético , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Conformação Proteica , Proteínas/química , Proteínas/genética , RNA Mensageiro/química , RNA Mensageiro/genética
9.
Yi Chuan ; 42(7): 613-631, 2020 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-32694102

RESUMO

Proteins are biological macromolecules essential for cells to maintain their metabolic activities. Proteins are synthesized during translation elongation, a synergistic process in which ribosomes decode the genetic information transmitted in mRNA, using tRNA. Numerous human diseases, such as neurodegenerative diseases and cancers, are known to be related to abnormal translation elongation. Translation elongation, as one of the two critical steps for the central dogma, used to be the focus of research in molecular biology. However, limitations in methodology had hindered further investigations on the dynamic process of translation elongation and its regulation. Recently, breakthroughs in methodology have revived this research field. Studies in the past decade or so have revealed that, beyond simple decoding of genetic information in mRNA, translation elongation entails sophisticated regulatory mechanisms and multifaceted biological consequences; such insights have provided a novel theoretical framework for understanding the maintenance of protein homeostasis and the development of diseases. In this review, we summarize the most updated methods that can be used to investigate the processes of translation elongation and highlight the mechanisms by which mRNA and protein sequences modulate the local rate of translation elongation. We further enumerate the consequences of dysregulation in translation elongation, from various aspects such as mRNA stability, protein synthesis and degradation, protein subcellular localization, and co-translational protein folding. We anticipate that this review will serve to draw the attention of scholars in various research fields to participate in the study of translation elongation.


Assuntos
Elongação Traducional da Cadeia Peptídica , Ribossomos , Humanos , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
10.
Mol Biol (Mosk) ; 53(6): 883-898, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31876270

RESUMO

In the cell, protein folding begins during protein synthesis/translation and thus is a co-translational process. Co-translational protein folding is tightly linked to translation elongation, which is not a uniform process. While there are many reasons for translation non-uniformity, it is generally believed that non-uniform synonymous codon usage is one of the key factors modulating translation elongation rates. Frequent/optimal codons as a rule are translated more rapidly than infrequently used ones and vice versa. Over 30 years ago, it was hypothesized that changes in synonymous codon usage affecting translation elongation rates could impinge on co-translation protein folding and that many synonymous codons are strategically placed within mRNA to ensure a particular translation kinetics facilitating productive step-by-step co-translational folding of proteins. It was suggested that this particular translation kinetics (and, specifically, translation pause sites) may define the window of opportunity for the protein parts to fold locally, particularly at the critical points where folding is far from equilibrium. It was thus hypothesized that synonymous codons may provide a secondary code for protein folding in the cell. Although, mostly accepted now, this hypothesis appeared to be difficult to prove and many convincing results were obtained only relatively recently. Here, I review the progress in the field and explain, why this simple idea appeared to be so challenging to prove.


Assuntos
Uso do Códon , Códon/genética , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas/genética , Proteínas/metabolismo , Biossíntese de Proteínas/genética , Proteínas/química
11.
Biol Direct ; 13(1): 13, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980221

RESUMO

A half century of studying protein folding in vitro and modeling it in silico has not provided us with a reliable computational method to predict the native conformations of proteins de novo, let alone identify the intermediates on their folding pathways. In this Opinion article, we suggest that the reason for this impasse is the over-reliance on current physical models of protein folding that are based on the assumption that proteins are able to fold spontaneously without assistance. These models arose from studies conducted in vitro on a biased sample of smaller, easier-to-isolate proteins, whose native structures appear to be thermodynamically stable. Meanwhile, the vast empirical data on the majority of larger proteins suggests that once these proteins are completely denatured in vitro, they cannot fold into native conformations without assistance. Moreover, they tend to lose their native conformations spontaneously and irreversibly in vitro, and therefore such conformations must be metastable. We propose a model of protein folding that is based on the notion that the folding of all proteins in the cell is mediated by the actions of the "protein folding machine" that includes the ribosome, various chaperones, and other components involved in co-translational or post-translational formation, maintenance and repair of protein native conformations in vivo. The most important and universal component of the protein folding machine consists of the ribosome in complex with the welcoming committee chaperones. The concerted actions of molecular machinery in the ribosome peptidyl transferase center, in the exit tunnel, and at the surface of the ribosome result in the application of mechanical and other forces to the nascent peptide, reducing its conformational entropy and possibly creating strain in the peptide backbone. The resulting high-energy conformation of the nascent peptide allows it to fold very fast and to overcome high kinetic barriers along the folding pathway. The early folding intermediates in vivo are stabilized by interactions with the ribosome and welcoming committee chaperones and would not be able to exist in vitro in the absence of such cellular components. In vitro experiments that unfold proteins by heat or chemical treatment produce denaturation ensembles that are very different from folding intermediates in vivo and therefore have very limited use in reconstructing the in vivo folding pathways. We conclude that computational modeling of protein folding should deemphasize the notion of unassisted thermodynamically controlled folding, and should focus instead on the step-by-step reverse engineering of the folding process as it actually occurs in vivo. REVIEWERS: This article was reviewed by Eugene Koonin and Frank Eisenhaber.


Assuntos
Proteínas/química , Animais , Humanos , Peptidil Transferases/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Dobramento de Proteína , Proteínas/metabolismo , Ribossomos/metabolismo
12.
Methods ; 137: 71-81, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29221924

RESUMO

Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.


Assuntos
Microscopia Crioeletrônica/métodos , Dobramento de Proteína , Modificação Traducional de Proteínas/genética , Proteínas/ultraestrutura , Sistema Livre de Células , Biossíntese de Proteínas/genética , Proteínas/genética , Ribossomos/genética , Ribossomos/ultraestrutura
13.
Methods Mol Biol ; 1647: 237-243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28809007

RESUMO

Due to the redundancy of the protein genetic code, mutational changes in the second or third nucleotide of an existing codon may not change the amino acid specification of the resulting modified codon. When peptide primary sequence is unchanged by mutation, that mutation is assumed to have no functional consequences. However, for one key gene involved in drug transport, MDR-1, several silent, synonymous mutations have been shown to alter protein structure and substrate affinity (Kimchi-Sarfaty et al., Science 315:525-528, 2007). The mechanism of these changes, in the absence of primary amino acid sequence changes, appears to be the change in abundance of the transfer RNA molecules complementary to the mutated, although synonymous, new codon. Transfer RNA abundance is proportional to the frequency of each codon as found in human protein coding DNA (Sharp et al., Nucleic Acids Res 14(13):5125-5143, 1986). These frequencies have been mapped for many thousands of human proteins (Nakamura et al., Nucleic Acids Res 28:292, 2000). This method analyzes silent codon mutations in whole genome data. Where there are large changes in codon frequency resulting from codon sequence mutation, the affected proteins are mapped to potential disease pathways, in the context of clinical phenotypes associated with the patient genome data.


Assuntos
Códon/genética , Análise Mutacional de DNA/métodos , Elongação Traducional da Cadeia Peptídica , Dobramento de Proteína , Proteínas/genética , Mutação Silenciosa , Computadores Moleculares , Bases de Dados Genéticas , Humanos , Cinética , Modificação Traducional de Proteínas , Sequenciamento do Exoma
14.
Biol Direct ; 12(1): 14, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569180

RESUMO

BACKGROUND: A basic tenet of protein science is that all information about the spatial structure of proteins is present in their sequences. Nonetheless, many proteins fail to attain native structure upon experimental denaturation and refolding in vitro, raising the question of the specific role of cellular machinery in protein folding in vivo. Recently, we hypothesized that energy-dependent twisting of the protein backbone is an unappreciated essential factor guiding the protein folding process in vivo. Torque force may be applied by the ribosome co-translationally, and when accompanied by simultaneous restriction of the rotational mobility of the distal part of the growing chain, the resulting tension in the protein backbone would facilitate the formation of local secondary structure and direct the folding process. RESULTS: Our model of the early stages of protein folding in vivo postulates that the free motion of both terminal regions of the protein during its synthesis and maturation is restricted. The long-known but unexplained phenomenon of statistical overrepresentation of protein termini on the surfaces of the protein structures may be an indication of the backbone twist-based folding mechanism; sustained maintenance of a twist requires that both ends of the protein chain are anchored in space, and if the ends are released only after the majority of folding is complete, they are much more likely to remain on the surface of the molecule. We identified the molecular components that are likely to play a role in the twisting of the nascent protein chain and in the anchoring of its N-terminus. The twist may be induced at the C-terminus of the nascent polypeptide by the peptidyltransferase center of the ribosome. Several ribosome-associated proteins, including the trigger factor in bacteria and the nascent polypeptide-associated complex in archaea and eukaryotes, may restrict the rotational mobility of the N-proximal regions of the peptides. CONCLUSIONS: Many experimental observations are consistent with the hypothesis of co-translational twisting of the protein backbone. Several molecular players in this hypothetical mechanism of protein folding can be suggested. In addition, the new view of protein folding in vivo opens the possibility of novel potential drug targets to combat human protein folding diseases. REVIEWERS: This article was reviewed by Lakshminarayan Iyer and István Simon.


Assuntos
Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Proteínas/metabolismo , Ribossomos
15.
Chem Rec ; 17(9): 817-832, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28513996

RESUMO

Gene expression involves concurrent and consecutive events of unidirectional nature, such as transcription occurring from 5' to 3' end and translation from N to C terminus. Recent functional studies have shown the importance of kinetically coupled nucleic acid folding events that influence gene expression processes. For example, mRNA conformational dynamics during transcription and translation regulate gene expression and subsequent protein functionalization. The structure, stability, and kinetic properties of nucleic acids are sensitive to the intracellular molecular environment and can be regulated by using artificially developed molecules. Here, we review our current understanding of how mRNA conformational dynamics affect the consecutive and concurrent processes involved in gene expression and discuss how novel pharmaceutical agents designed to influence RNA conformational dynamics, could be developed to treat various diseases.


Assuntos
Preparações Farmacêuticas/química , RNA Mensageiro/química , Animais , Descoberta de Drogas , Quadruplex G , Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Preparações Farmacêuticas/metabolismo , Proteínas/metabolismo , Dobramento de RNA , RNA Mensageiro/metabolismo , Ribossomos/química , Ribossomos/metabolismo
16.
J Mol Biol ; 429(11): 1733-1745, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28385637

RESUMO

Protein biogenesis is poorly understood due to the ribosome that perturbs measurement attempted on the ribosome-bound nascent chain (RNC). Investigating nascent chain dynamics may provide invaluable insight into the co-translational processes such as structure formation or interaction with a chaperone [e.g., the bacterial trigger factor (TF)]. In this study, we aim to establish a platform for studying nascent chain dynamics by exploring the local environment near the fluorescent dye on site-specifically labeled RNCs with time-resolved fluorescence anisotropy. To prepare a quantitative model of fluorescence depolarization, we utilized intrinsically disordered protein bound to ribosome, which helped us couple the sub-nanosecond depolarization with the motion of the nascent chain backbone. This was consistent with zinc-finger-domain-containing RNCs, where the extent of sub-nanosecond motion decreased upon the addition of zinc when the fluorophore was in close proximity of the domain. After the characterization of disordered nascent chain dynamics, we investigated the synthesis of a model cytosolic protein, Entner-Doudoroff aldolase, labeled at different sites during various stages of translation. Depending on the stage of translation, the addition of the TF to the nascent chain led to two different responses in the nascent chain dynamics serendipitously, suggesting steric hindrance between the nascent chain and the chaperone as a mechanism for TF dissociation from the ribosome during translation. Overall, our study demonstrates the possible use of site-specific labeling and time-resolved anisotropy to gain insight on chaperone binding event at various stages of translation and hints on TF co-translational mechanism.


Assuntos
Proteínas de Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/metabolismo , Peptidilprolil Isomerase/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína
17.
Biochim Biophys Acta ; 1854(10 Pt A): 1317-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26073784

RESUMO

Correct folding of proteins is crucial for cellular homeostasis. More than thirty percent of proteins contain one or more cofactors, but the impact of these cofactors on co-translational folding remains largely unknown. Here, we address the binding of flavin mononucleotide (FMN) to nascent flavodoxin, by generating ribosome-arrested nascent chains that expose either the entire protein or C-terminally truncated segments thereof. The native α/ß parallel fold of flavodoxin is among the most ancestral and widely distributed folds in nature and exploring its co-translational folding is thus highly relevant. In Escherichia coli (strain BL21(DE3) Δtig::kan) FMN turns out to be limiting for saturation of this flavoprotein on time-scales vastly exceeding those of flavodoxin synthesis. Because the ribosome affects protein folding, apoflavodoxin cannot bind FMN during its translation. As a result, binding of cofactor to released protein is the last step in production of this flavoprotein in the cell. We show that once apoflavodoxin is entirely synthesized and exposed outside the ribosome to which it is stalled by an artificial linker containing the SecM sequence, the protein is natively folded and capable of binding FMN.


Assuntos
Apoproteínas/química , Azotobacter vinelandii/química , Proteínas de Bactérias/química , Mononucleotídeo de Flavina/química , Flavodoxina/química , Ribossomos/química , Apoproteínas/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Flavodoxina/genética , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA