Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
1.
Plants (Basel) ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124173

RESUMO

Tomato fruit (Solanum lycopersicum L.) has a very brief storability, displaying chilling injury (CI) when stored in cold conditions used to delay ripening. For this reason, in this study, different concentrations (10, 50, and 100 mg L-1) of chlorogenic acid (ChA) were assayed to evaluate its effectiveness in maintaining fruit quality traits and mitigating CI symptoms in tomatoes. Our results showed that ChA treatments effectively delayed weight loss and maintained fruit firmness, with optimal results observed at 50 mg L-1. In general, higher concentrations did not result in significant quality improvements. Additionally, ChA-treated tomatoes exhibited reduced values in malondialdehyde (MDA) content and electrolyte leakage (EL), indicating improved membrane integrity and reduced oxidative damage. ChA treatments also maintained a higher total phenolic content (TPC) during storage, with significant levels of individual polyphenols such as rutin, neochlorogenic acid, and p-coumaric acid, suggesting enhanced antioxidant capacity and better preservation of fruit quality. This is the first time the potential of ChA to reduce CI has been evaluated in any fruit species, and its impact in tomato ripening is shown to uphold fruit quality during cold storage, prolonging the storability of tomatoes. In particular, we highlight its natural origin and effectiveness as a postharvest treatment.

2.
Sci Total Environ ; 949: 175184, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089386

RESUMO

Artificial regulation of plant rhizosphere microbial communities through the synthesis of microbial communities is one of the effective ways to improve plant stress resistance. However, the process of synthesizing stress resistant microbial communities with excellent performance is complex, time-consuming, and costly. To address this issue, we proposed a novel strategy for preparing functional microbial communities. We isolated a cultivable cold tolerant bacterial community (PRCBC) from the rhizosphere of peas, and studied its effectiveness in assisting rice to resist stress. The results indicate that PRCBC can not only improve the ability of rice to resist cold stress, but also promote the increase of rice yield after cold stress relieved. This is partly because PRCBC increases the nitrogen content in the rhizosphere soil, and promotes rice's absorption of nitrogen elements, thereby promoting rice growth and enhancing its ability to resist osmotic stress. More importantly, the application of PRCBC drives the succession of rice rhizosphere microbial communities, and promotes the succession of rice rhizosphere microbial communities towards stress resistance. Surprisingly, PRCBC drives the succession of rice rhizosphere microbial communities towards a composition similar to PRCBC. This provides a feasible novel method for artificially and directionally driving microbial succession. In summary, we not only proposed a novel and efficient strategy for preparing stress resistant microbial communities to promote plant stress resistance, but also unexpectedly discovered a possible directionally driving method for soil microbial community succession.


Assuntos
Microbiota , Oryza , Rizosfera , Microbiologia do Solo , Microbiota/fisiologia , Oryza/fisiologia , Oryza/microbiologia , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Bactérias/metabolismo
3.
Mol Plant ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39095994

RESUMO

Understanding how maize (Zea mays L.) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite the extensive utilization of the genome-wide association study (GWAS) approach in exploring favorable natural alleles associated with maize cold tolerance, there are few reports that have successfully identified the candidate genes contributing to maize cold tolerance. In this study, by employing a diverse panel of maize inbred lines collected from different germplasm sources, we conducted a GWAS on the variation of the relative injured area of maize true leaves during cold stress-a trait most closely correlated with maize cold tolerance-and identified HSF21, encoding a B-class heat shock transcription factor, which positively regulates cold tolerance at both seedling and germination stages. The natural variations within the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting the binding of bZIP68 transcription factor, a negative regulator of cold tolerance. Through integrated transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we unveiled the function of HSF21 in regulating lipid metabolism homeostasis for modulating cold tolerance in maize. Additionally, HSF21 confers maize cold tolerance without incurring yield penalties. This study thereby establishes HSF21 as a key regulator that enhances cold tolerance in maize, thus providing valuable genetic resources for the breeding of cold-tolerant maize varieties.

4.
J Therm Biol ; 123: 103939, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39116623

RESUMO

Due to climate change, many regions are experiencing progressively milder winters. Consequently, pest insects from warm regions, particularly those with some tolerance to low temperatures, could expand their geographic range into these traditionally colder regions. The palm borer moth (Paysandisia archon) is a Neotropical insect that in recent decades has reached Europe and Asia as one of the worst pests of palm trees. Little is known about its ability to tolerate moderately cold winters and, therefore, to colonize new areas. In this work, we characterized the cold tolerance of Paysandisia archon by measuring its thermal limits: median lethal-temperature, LT50, chill-coma onset temperature, CTmin, supercooling point, SCP, freezing time and freezing survival. We found that this species was able to survive short periods of complete freezing, with survival rates of 87% after a 30-min freezing exposure, and 33% for a 1 h-exposure. It is then a moderately freeze-tolerant species, in contrast to all other lepidopterans native to warm areas, which are freeze-intolerant. Additionally, we investigated whether this insect improved its cold tolerance after either short or long pre-exposure to sub-lethal low temperatures. To that end, we studied potential changes in the main thermo-tolerance parameters and, using X-ray Computed Tomography, also in the morphological components of pretreated animals. We found that short pre-exposures did not imply significant changes in the SCP and CTmin values. In contrast, larvae with long pretreatments improved their survival to both freezing and low temperatures, and required longer times for complete freezing than the other groups. These long-term pre-exposed larvae also presented several morphological changes, including a reduction in water content that probably explained, at least in part, their longer freezing time and higher freezing survival. Our results represent the first cold tolerance characterization of this pest insect, which could be relevant to better design strategies to combat it.

5.
PNAS Nexus ; 3(8): pgae293, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118835

RESUMO

Adaptation and tolerance to changes in heat and cold temperature are essential for survival and proliferation in plants and animals. However, there is no clear information regarding the common molecules between animals and plants. In this study, we found that heat, and cold tolerance of the nematode Caenorhabditis elegans is oppositely regulated by the RNA-binding protein EMB-4, whose plant homolog contains polymorphism causing heat tolerance diversity. Caenorhabditis elegans alters its cold and heat tolerance depending on the previous cultivation temperature, wherein EMB-4 respectively acts as a positive and negative controller of heat and cold tolerance by altering gene expression. Among the genes whose expression is regulated by EMB-4, a phospholipid scramblase, and an acid sphingomyelinase, which are involved in membrane lipid metabolism, were found to play essential roles in the negative regulation of heat tolerance.

6.
J Econ Entomol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121382

RESUMO

The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), one of the most important invasive pests of fresh fruits and vegetables from the coastal Mediterranean habitats, is expanding its current geographic distribution to cooler more temperate areas of Europe. Every year since 2010 the fly is detected in the area of Vienna, Austria. However, whether it can establish permanent populations is not known. In this current paper, the capacity of C. capitata to overwinter in Vienna, Austria (48.1° northern latitude) was studied over 2 consecutive winter seasons (2020-2022). Overwintering trials with different life stages (larva, pupa, and adult) of C. capitata were performed in the open field and in the protected environment of a basement without a heating system. Control flies were kept under constant conditions in a climate chamber (25 °C, 60% RH, 14:10 L:D). Our data showed that no life stage of the Mediterranean fruit fly was able to survive the Austrian winter in the open field. However, in the protected environment C. capitata outlived the winter months in all studied life stages at least in small numbers and several surviving females were able to lay eggs at the time of the following fruiting season. Implications of these findings for the ongoing geographic range expansion of the pest in temperate European countries are discussed.

7.
BMC Plant Biol ; 24(1): 698, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044176

RESUMO

Cold stress can impact plant biology at both the molecular and morphological levels. We cultivated two different types of tobacco seedlings using distinct seeding methods, observing significant differences in their cold tolerance at 4 °C. After 12 h cold stress, shallow water seeding cultivation treatment demonstrates a relatively good growth state with slight wilting of the leaves. Tobacco grown using the float system exhibited short, thick roots, while those cultivated through shallow water seeding had elongated roots with more tips and forks. After cold stress, the shallow water seeding cultivation treatment demonstrated higher antioxidant enzyme activity, and lower malondialdehyde (MDA) content.Transcriptome analysis was performed on the leaves of these tobacco seedlings at three stages of cold treatment (before cold stress, after cold stress, and after 3 days of recovery). Upon analyzing the raw data, we found that the shallow water seeding cultivation treatment was associated with significant functional enrichment of nicotinamide adenine dinucleotide (NAD) biosynthesis and NAD metabolism before cold stress, enrichment of functions related to the maintenance of cellular structure after cold stress, and substantial functional enrichment related to photosynthesis during the recovery period. Weighted gene co-expression network analysis (WGCNA) was conducted, identifying several hub genes that may contribute to the differences in cold tolerance between the two tobacco seedlings. Hub genes related to energy conversion were predominantly identified in shallow water seeding cultivation treatment during our analysis, surpassing findings in other areas. These include the AS gene, which controls the synthesis of NAD precursors, the PED1 gene, closely associated with fatty acid ß-oxidation, and the RROP1 gene, related to ATP production.Overall, our study provides a valuable theoretical basis for exploring improved methods of cultivating tobacco seedlings. Through transcriptome sequencing technology, we have elucidated the differences in gene expression in different tobacco seedlings at three time points, identifying key genes affecting cold tolerance in tobacco and providing possibilities for future gene editing.


Assuntos
Nicotiana , Plântula , Água , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Água/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
8.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38979283

RESUMO

Arabidopsis PSEUDO RESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its transcriptional repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 protein activity is unknown. We used double mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR (CBF) and COLD REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. We establish that HOS15 mediates PRR7 protein turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoter regions of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated regulation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways leading to freezing tolerance through upregulation of CBF1 and COR15A.

9.
Plants (Basel) ; 13(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065438

RESUMO

In China, the Liaodong Peninsula is an important growing area for blueberries because of the high organic matter content in the soil, the abundance of light, and the large temperature difference between day and night. However, the low temperature and relative humidity of the air during the winter and early spring in the Liaodong Peninsula are the main reasons for the damage to blueberry plants. Here, we documented the transcriptome and proteome dynamics in response to cold stress in three blueberry cultivars ('Northland', 'Bluecrop', and 'Berkeley'). Functional enrichment analysis indicated that many differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) were mainly involved in the pathways of protein processing in the endoplasmic reticulum, the glutathione metabolism pathway, and ribosomes. We identified 12,747 transcription factors (TFs) distributed in 20 families. Based on our findings, we speculated that cold tolerance development was caused by the expression of calcium-related genes (CDPKs and CMLs), glutathione proteins, and TFs (NAC, WRKY, and ERF). Our investigation found that three cultivars experienced cold damage when exposed to temperatures between -9 °C and -15 °C in the field. Therefore, the cold resistance of blueberries during overwintering should not only resist the influence of low temperatures but also complex environmental factors such as strong winds and low relative humidity in the air. The order of cold resistance strength in the three blueberry cultivars was 'Berkeley', 'Bluecrop', and 'Northland'. These results provide a comprehensive profile of the response to cold stress, which has the potential to be used as a selection marker for programs to improve cold tolerance in blueberries.

10.
BMC Plant Biol ; 24(1): 713, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060959

RESUMO

Rice (Oryza sativa L.) is an essential food for half of the global population and is vital in maintaining global food security. Climate change, increasing population and recent incident of COVID pandemic has generated financial burden and threaten the global food security. Due to theses factors rice cultivation also has to face significant challenges. frequent weather changes pose a considerable challenge to agricultural planning, which was previously relaying on consistent seasonal variations. In this context, rice cultivation is particularly sensitive to cold, where its development and productivity inhibited by low temperatures (< 18 °C). Developing rice varietes with low temprature tolerence and good yield potential is one of the major goals of current breeding efforts of plant scientists. For this purpose, short duration and early rice varieties are most favorable to avoid cold stress and yield more in less number of days. this study was designed to investigate the effect of low temperatures on different rice varieties. the study was designed to identify low temprature tolerent genotypes with early and regular cultivation. For this, thirty-four genotypes were evaluated in two gorwing seasons (2018-2019) with four different sowing times. Statistically sowing time showed significant interaction between all yield contributing parameters. The data indicate that exposure to low temperatures during the reproductive phase prolongs the maturation period of the crop, also length of the panicle and the fertility of the spikelets drops, resulting in a significant decrease in the production of sensitive varieties. Some varieties are more sensitive to cold stress compared to others. In the Egyptian context, Giza176, Sakha104, and Sakha107 are recommended for early cultivation, while the genotypes Giza 179, Sakha101, Sakha104, and GZ 9730-1-1-1-1 are indicated for the normal cultivation period. The Sakha104 variety is particularly notable, as it is recommended for both purposes. In addition, the data obtained in this study provide valuable information for selecting rice varieties suitable for double cropping in the North Delta of Egypt. This study also contributes to the existing literature, providing insights into the resilience of rice cultivation in the face of climate change.


Assuntos
Resposta ao Choque Frio , Genótipo , Oryza , Oryza/genética , Oryza/crescimento & desenvolvimento , Resposta ao Choque Frio/genética , Temperatura Baixa , Fatores de Tempo , Estações do Ano
11.
J Integr Plant Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990113

RESUMO

Domestication has shaped the population structure and agronomic traits of tea plants, yet the complexity of tea population structure and genetic variation that determines these traits remains unclear. We here investigated the resequencing data of 363 diverse tea accessions collected extensively from almost all tea distributions and found that the population structure of tea plants was divided into eight subgroups, which were basically consistent with their geographical distributions. The genetic diversity of tea plants in China decreased from southwest to east as latitude increased. Results also indicated that Camellia sinensis var. assamica (CSA) illustrated divergent selection signatures with Camellia sinensis var. sinensis (CSS). The domesticated genes of CSA were mainly involved in leaf development, flavonoid and alkaloid biosynthesis, while the domesticated genes in CSS mainly participated in amino acid metabolism, aroma compounds biosynthesis, and cold stress. Comparative population genomics further identified ~730 Mb novel sequences, generating 6,058 full-length protein-encoding genes, significantly expanding the gene pool of tea plants. We also discovered 217,376 large-scale structural variations and 56,583 presence and absence variations (PAVs) across diverse tea accessions, some of which were associated with tea quality and stress resistance. Functional experiments demonstrated that two PAV genes (CSS0049975 and CSS0006599) were likely to drive trait diversification in cold tolerance between CSA and CSS tea plants. The overall findings not only revealed the genetic diversity and domestication of tea plants, but also underscored the vital role of structural variations in the diversification of tea plant traits.

12.
BMC Plant Biol ; 24(1): 649, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977989

RESUMO

BACKGROUND: The cold tolerance of rice is closely related to its production and geographic distribution. The identification of cold tolerance-related genes is of important significance for developing cold-tolerant rice. Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) is well-adapted to the cold climate of northernmost-latitude habitats ever found in the world, and is one of the most valuable rice germplasms for cold tolerance improvement. RESULTS: Transcriptome analysis revealed genes differentially expressed between Xieqingzao B (XB; a cold sensitive variety) and 19H19 (derived from an interspecific cross between DXWR and XB) in the room temperature (RT), low temperature (LT), and recovery treatments. The results demonstrated that chloroplast genes might be involved in the regulation of cold tolerance in rice. A high-resolution SNP genetic map was constructed using 120 BC5F2 lines derived from a cross between 19H19 and XB based on the genotyping-by-sequencing (GBS) technique. Two quantitative trait loci (QTLs) for cold tolerance at the early seedling stage (CTS), qCTS12 and qCTS8, were detected. Moreover, a total of 112 candidate genes associated with cold tolerance were identified based on bulked segregant analysis sequencing (BSA-seq). These candidate genes were divided into eight functional categories, and the expression trend of candidate genes related to 'oxidation-reduction process' and 'response to stress' differed between XB and 19H19 in the RT, LT and recovery treatments. Among these candidate genes, the expression level of LOC_Os12g18729 in 19H19 (related to 'response to stress') decreased in the LT treatment but restored and enhanced during the recovery treatment whereas the expression level of LOC_Os12g18729 in XB declined during recovery treatment. Additionally, XB contained a 42-bp deletion in the third exon of LOC_Os12g18729, and the genotype of BC5F2 individuals with a survival percentage (SP) lower than 15% was consistent with that of XB. Weighted gene coexpression network analysis (WGCNA) and modular regulatory network learning with per gene information (MERLIN) algorithm revealed a gene interaction/coexpression network regulating cold tolerance in rice. In the network, differentially expressed genes (DEGs) related to 'oxidation-reduction process', 'response to stress' and 'protein phosphorylation' interacted with LOC_Os12g18729. Moreover, the knockout mutant of LOC_Os12g18729 decreased cold tolerance in early rice seedling stage signifcantly compared with that of wild type. CONCLUSIONS: In general, study of the genetic basis of cold tolerance of rice is important for the development of cold-tolerant rice varieties. In the present study, QTL mapping, BSA-seq and RNA-seq were integrated to identify two CTS QTLs qCTS8 and qCTS12. Furthermore, qRT-PCR, genotype sequencing and knockout analysis indicated that LOC_Os12g18729 could be the candidate gene of qCTS12. These results are expected to further exploration of the genetic mechanism of CTS in rice and improve cold tolerance of cultivated rice by introducing the cold tolerant genes from DXWR through marker-assisted selection.


Assuntos
Temperatura Baixa , Oryza , Locos de Características Quantitativas , Plântula , Oryza/genética , Oryza/fisiologia , Locos de Características Quantitativas/genética , Plântula/genética , Plântula/fisiologia , Plântula/crescimento & desenvolvimento , Genes de Plantas , RNA-Seq , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Frio/genética
13.
J Econ Entomol ; 117(4): 1553-1563, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38956822

RESUMO

Hylurgus ligniperda invaded Shandong, China, through imported forest timber, posing a threat to China's forest health. Exotic insects with broad environmental tolerance, including low temperatures, may have a better chance of surviving the winters and becoming invasive. Understanding the cold-tolerance strategies of H. ligniperda may help to design sustainable pest management approaches. In this study, we aim to investigate the cold-tolerance ability and relevant physiological indicators in overwintering H. ligniperda adults to determine any possible overwintering strategies. Supercooling points (SCPs) for adults H. ligniperda differed significantly across months and reached the lowest level in the mid- and post-overwintering period, the minimum SCPs -6.45 ±â€…0.18 °C. As the cold exposure temperature decreased, the survival rate of adults gradually decreased, and no adult survived more than 1 day at -15 °C, and the LLT50 for 1 day was -7.1 °C. Since H. ligniperda adults can survive internal ice formation, they are freeze-tolerant insects. Throughout the overwintering period, the SCPs and the water, protein, sorbitol, and glycerol content in adults decreased initially and then increased. We reported significant correlations between total protein, sorbitol, trehalose, and glycerol content in the beetles and SCPs. Glycogen, lipid, protein, trehalose, and sorbitol content in adult beetles may directly affect their cold-tolerance capacity and survival during winter. This study provides a physiological and biochemical basis for further study of metabolism and cold-tolerance strategies in H. ligniperda adults, which may help predict population dynamics and distribution potential of pests.


Assuntos
Temperatura Baixa , Estações do Ano , Gorgulhos , Animais , Gorgulhos/fisiologia , Aclimatação , China
14.
Mol Breed ; 44(8): 50, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39070774

RESUMO

Cold stress is one of the main abiotic stresses that affects rice growth and production worldwide. Dissection of the genetic basis is important for genetic improvement of cold tolerance in rice. In this study, a new source of cold-tolerant accession from the Yunnan plateau, Lijiangxiaoheigu, was used as the donor parent and crossed with a cold-sensitive cultivar, Deyou17, to develop recombinant inbred lines (RILs) for quantitative trait locus (QTL) analysis for cold tolerance at the early seedling and booting stages in rice. In total, three QTLs for cold tolerance at the early seedling stage on chromosomes 2 and 7, and four QTLs at the booting stage on chromosomes 1, 3, 5, and 7, were identified. Haplotype and linear regression analyses showed that QTL pyramiding based on the additive effect of these favorable loci has good potential for cold tolerance breeding. Effect assessment in the RIL and BC3F3 populations demonstrated that qCTB1 had a stable effect on cold tolerance at the booting stage in the genetic segregation populations. Under different cold stress conditions, qCTB1 was fine-mapped to a 341-kb interval between markers M3 and M4. Through the combination of parental sequence comparison, candidate gene-based association analysis, and tissue and cold-induced expression analyses, eight important candidate genes for qCTB1 were identified. This study will provide genetic resources for molecular breeding and gene cloning to improve cold tolerance in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01488-3.

15.
Ann Bot ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066503

RESUMO

BACKGROUND AND AIMS: As winter and spring temperatures continue to increase, the timing of flowering and leaf out is advancing in many seasonally cold regions. This advancement could put plants that flower early in the spring at risk of decreased reproduction in years when there are late freeze events. Unfortunately, relatively little is known about floral freezing tolerance in forest communities. In this study, we examined the impact of freezing temperatures on the flowers of woody plants in a region where there is rapid winter warming in North America. METHODS: We subjected the flowers of twenty-five woody species to a hard (-5ºC) and a light freeze (0ºC). We assessed tissue damage using electrolyte leakage. In a subset of species, we also examined the impact of a hard freeze on pollen tube growth. To determine if the vulnerability of flowers to freezing damage relates to flowering time and to examine the responsiveness of flowering time to spring temperature, we recorded the date of first flower for our study species for three years. KEY RESULTS AND CONCLUSIONS: Across species, we found that floral freezing tolerance was strongly tied to flowering time with the highest freezing tolerance occurring in plants that bloomed earlier in the year. We hypothesize that these early blooming species are unlikely to be impacted by a false spring. Instead, the most vulnerable species to a false spring should be those that bloom later in the season. The flowering time in these species is also more sensitive to temperature, putting them at a great risk of experiencing a false spring. Ultimately, floral damage in one year will not have a large impact on species fitness, but if false springs become more frequent, there could be long-term impacts on reproduction of vulnerable species.

17.
Curr Res Insect Sci ; 5: 100077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027355

RESUMO

Cold temperatures can play a significant role in the range and impact of pest insects. Severe cold events can reduce the size of insect outbreaks and perhaps even cause outbreaks to end. Measuring the precise impact of cold events, however, can be difficult because estimates of insect mortality are often made at the end of the winter season. In late January 2023 long-term climate models predicted a significant cold event to occur over eastern North America. We used this event to evaluate the immediate impact on hemlock woolly adelgid (Adelges tsugae Annand) overwintering mortality at four sites on the northern edge of the insects invaded range in eastern North America. We observed complete mortality, partial mortality and no effects on hemlock woolly adelgid mortality that correlated with the location of populations and strength of the cold event. Our data showed support for preconditioning of overwintering adelgids having an impact on their overwintering survival following this severe cold event. Finally, we compared the climatic conditions at our sites to historical weather data and previous observations of mortality in Nova Scotia. The cold event observed in February 2023 resulted in the coldest temperatures observed at these sites, including the period within which hemlock woolly adelgid invaded, suggesting cold conditions, especially under anthropogenic climate forcing, may not be a limiting factor in determining the ultimate northern range of hemlock woolly adelgid in eastern North America.

18.
Front Plant Sci ; 15: 1390603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911983

RESUMO

Rice, a critical staple on a global scale, faces escalating challenges in yield preservation due to the rising prevalence of abiotic and biotic stressors, exacerbated by frequent climatic fluctuations in recent years. Moreover, the scorching climate prevalent in the rice-growing regions of South China poses obstacles to the cultivation of good-quality, heavy-grain varieties. Addressing this dilemma requires the development of resilient varieties capable of withstanding multiple stress factors. To achieve this objective, our study employed the broad-spectrum blast-resistant line Digu, the brown planthopper (BPH)-resistant line ASD7, and the heavy-grain backbone restorer lines Fuhui838 (FH838) and Shuhui527 (SH527) as parental materials for hybridization and multiple crossings. The incorporation of molecular markers facilitated the rapid pyramiding of six target genes (Pi5, Pita, Pid2, Pid3, Bph2, and Wxb ). Through a comprehensive evaluation encompassing blast resistance, BPH resistance, cold tolerance, grain appearance, and quality, alongside agronomic trait selection, a promising restorer line, Guihui5501 (GH5501), was successfully developed. It demonstrated broad-spectrum resistance to blast, exhibiting a resistance frequency of 77.33% against 75 artificially inoculated isolates, moderate resistance to BPH (3.78 grade), strong cold tolerance during the seedling stage (1.80 grade), and characteristics of heavy grains (1,000-grain weight reaching 35.64 g) with good grain quality. The primary rice quality parameters for GH5501, with the exception of alkali spreading value, either met or exceeded the second-grade national standard for premium edible rice varieties, signifying a significant advancement in the production of good-quality heavy-grain varieties in the southern rice-growing regions. Utilizing GH5501, a hybrid combination named Nayou5501, characterized by high yield, good quality, and resistance to multiple stresses, was bred and received approval as a rice variety in Guangxi in 2021. Furthermore, genomic analysis with gene chips revealed that GH5501 possessed an additional 20 exceptional alleles, such as NRT1.1B for efficient nitrogen utilization, SKC1 for salt tolerance, and STV11 for resistance to rice stripe virus. Consequently, the restorer line GH5501 could serve as a valuable resource for the subsequent breeding of high-yielding, good-quality, and stress-tolerant hybrid rice varieties.

19.
Mol Breed ; 44(6): 43, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836186

RESUMO

Actinidia arguta (A. arguta, kiwiberry) is a perennial deciduous vine with a strong overwintering ability. We hypothesized that trehalose metabolism, which plays a pivotal role in the stress tolerance of plants, may be involved in the cold acclimatization of A. arguta. Transcriptome analysis showed that the expression of AaTPPA, which encodes a trehalose-6-phosphate phosphatase (TPP), was upregulated in response to low temperatures. AaTPPA expression levels were much higher in lateral buds, roots, and stem cambia than in leaves in autumn. In AaTPPA-overexpressing (OE) Arabidopsis thaliana (A. thaliana), trehalose levels were 8-11 times higher than that of the wild type (WT) and showed different phenotypic characteristics from WT and OtsB (Escherichia coli TPP) overexpressing lines. AaTPPA-OE A. thaliana exhibited significantly higher freezing tolerance than WT and OtsB-OE lines. Transient overexpression of AaTPPA in A. arguta leaves increased the scavenging ability of reactive oxygen species (ROS) and the soluble sugar and proline contents. AaERF64, an ethylene-responsive transcription factor, was induced by ethylene treatment and bound to the GCC-box of the AaTPPA promoter to activate its expression. AaTPPA expression was also induced by abscisic acid. In summary, the temperature decrease in autumn is likely to induce AaERF64 expression through an ethylene-dependent pathway, which consequently upregulates AaTPPA expression, leading to the accumulation of osmotic protectants such as soluble sugars and proline in the overwintering tissues of A. arguta. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01475-8.

20.
Plant Physiol Biochem ; 213: 108837, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878389

RESUMO

One of the most significant problems of the 21st century is the anthropogenic strain on the environment. The development of nanotechnology makes it possible to produce a variety of nanomaterials widely used in people's daily lives. However, nanomaterials can accumulate in ecosystems and spread through food chains. The environmental risks of nanoparticle proliferation are unclear. At the same time, certain nanoparticles act as adaptogens, improving plant tolerance to unfavorable stress factors. It is quite realistic to choose such experimental conditions, under which the effect on plant stress tolerance will be obvious and the accumulation of nanoparticles in tissues will be minimal. In this case, the main relevant factors are the type of nanoparticles, their concentration and their way of penetration into plants. We chose to study gold nanoparticles (Au-NPs), widely used in biomedical research. The concentration of Au-NPs was 20 µg/mL, which is considered safe for living organisms. The influence of Au-NPs on some physiological, biochemical and molecular characteristics of wheat plants during low temperature hardening was examined. The study of the photosynthetic apparatus and antioxidant system was the primary focus. The stimulating effect of Au-NPs on cold tolerance of wheat plants was shown. The results expand our knowledge of the processes by which nanoparticles impact plants and the potential applications of nanoparticles as adaptogens in science and agriculture.


Assuntos
Temperatura Baixa , Ouro , Nanopartículas Metálicas , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Ouro/química , Nanopartículas Metálicas/química , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA