Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 105(2): e4220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037285

RESUMO

Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community-weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community-weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community-weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community-weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community-weighted trait means as well as their functional diversity across grassland ecosystems.


Assuntos
Ecossistema , Pradaria , Secas , Plantas , América do Norte , Ásia Oriental , Nitrogênio
2.
Ecology ; 102(10): e03465, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34236696

RESUMO

Extreme drought decreases aboveground net primary production (ANPP) in most grasslands, but the magnitude of ANPP reductions varies especially in C3 -dominated grasslands. Because the mechanisms underlying such differential ecosystem responses to drought are not well resolved, we experimentally imposed an extreme 4-yr drought (2015-2018) in two C3 grasslands that differed in aridity. These sites had similar annual precipitation and dominant grass species (Leymus chinensis) but different annual temperatures and thus water availability. Drought treatments differentially affected these two semiarid grasslands, with ANPP of the drier site reduced more than at the wetter site. Structural equation modeling revealed that community-weighted means for some traits modified relationships between soil moisture and ANPP, often due to intraspecific variation. Specifically, drought reduced community mean plant height at both sites, resulting in a reduction in ANPP beyond that attributable to reduced soil moisture alone. Higher community mean leaf carbon content enhanced the negative effects of drought on ANPP at the drier site, and ANPP-soil-moisture relationships were influenced by soil C:N ratio at the wetter site. Importantly, neither species richness nor functional dispersion were significantly correlated with ANPP at either site. Overall, as expected, soil moisture was a dominant, direct driver of ANPP response to drought, but differential sensitivity to drought in these two grasslands was also related to soil fertility and plant traits.


Assuntos
Secas , Solo , Ecossistema , Pradaria , Plantas , Poaceae , Chuva
3.
Sci Total Environ ; 721: 137730, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172113

RESUMO

Prolonged exposure to human induced-stressors can profoundly modify the natural trajectory of ecosystems. Predicting how ecosystems respond under stress requires understanding how physical and biological properties of degraded systems parallel or deviate over time from those of near-natural systems. Utilizing comprehensive forest inventory datasets, we used a paired chronosequence modelling approach to test the effects of long-term channelization and flow regulation of a large river on changes in abiotic conditions and related riparian forest attributes across a range of successional phases. By comparing ecological trajectories between the highly degraded Rhône and the relatively unmodified Drôme rivers, we demonstrated a rapid, strong and likely irreversible divergence in forest succession between the two rivers. The vast majority of metrics measuring life history traits, stand structure, and community composition varied with stand age but diverged significantly between rivers, concurrent with large differences in hydrologic and geomorphic trajectories. Channelization and flow regulation induced a more rapid terrestrialization of the river channel margins along the Rhône River and accelerated change in stand attributes, from pioneer-dominated stands to a mature successional phase dominated by non-native species. Relative to the Drôme, dispersion of trait values was higher in young forest stands along the Rhône, indicating a rapid assembly of functionally different species and an accelerated transition to post-pioneer communities. This study demonstrated that human modifications to the hydro-geomorphic regime have induced acute and sustained changes in environmental conditions, therefore altering the structure and composition of riparian forests. The speed, strength and persistence of the changes suggest that the Rhône River floodplain forests have strongly diverged from natural systems under persistent multiple stressors during the past two centuries. These results reinforce the importance of considering historical changes in environmental conditions to determine ecological trajectories in riparian ecosystems, as has been shown for old fields and other successional contexts.


Assuntos
Ecossistema , Rios , Florestas , Humanos , Hidrologia , Árvores
4.
Ecol Evol ; 7(4): 1125-1134, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28303183

RESUMO

Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community-level traits varied with habitat changes and soil gradients using both abundance-weighted and non-weighted averages of trait values. We quantified the relative contribution of inter- and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community-average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance-weighted trait was greater than that of a non-weighted trait with regard to all traits except LDMC. A community-level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter- and intraspecific variation further suggests that both effects of inter- and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA