Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39066295

RESUMO

Bats, with their virus tolerance, social behaviors, and mobility, are reservoirs for emerging viruses, including coronaviruses (CoVs) known for genetic flexibility. Studying the cophylogenetic link between bats and CoVs provides vital insights into transmission dynamics and host adaptation. Prior research has yielded valuable insights into phenomena such as host switching, cospeciation, and other dynamics concerning the interaction between CoVs and bats. Nonetheless, a distinct gap exists in the current literature concerning a comparative cophylogenetic analysis focused on elucidating the contributions of sequence fragments to the co-evolution between hosts and viruses. In this study, we analyzed the cophylogenetic patterns of 69 host-virus connections. Among the 69 host-virus links examined, 47 showed significant cophylogeny based on ParaFit and PACo analyses, affirming strong associations. Focusing on two proteins, ORF1ab and spike, we conducted a comparative analysis of host and CoV phylogenies. For ORF1ab, the specific window ranged in multiple sequence alignment (positions 520-680, 770-870, 2930-3070, and 4910-5080) exhibited the lowest Robinson-Foulds (RF) distance (i.e., 84.62%), emphasizing its higher contribution in the cophylogenetic association. Similarly, within the spike region, distinct window ranges (positions 0-140, 60-180, 100-410, 360-550, and 630-730) displayed the lowest RF distance at 88.46%. Our analysis identified six recombination regions within ORF1ab (positions 360-1390, 550-1610, 680-1680, 700-1710, 2060-3090, and 2130-3250), and four within the spike protein (positions 10-510, 50-560, 170-710, and 230-730). The convergence of minimal RF distance regions with combination regions robustly affirms the pivotal role of recombination in viral adaptation to host selection pressures. Furthermore, horizontal gene transfer reveals prominent instances of partial gene transfer events, occurring not only among variants within the same host species but also crossing host species boundaries. This suggests a more intricate pattern of genetic exchange. By employing a multifaceted approach, our comprehensive strategy offers a nuanced understanding of the intricate interactions that govern the co-evolutionary dynamics between bat hosts and CoVs. This deeper insight enhances our comprehension of viral evolution and adaptation mechanisms, shedding light on the broader dynamics that propel viral diversity.


Assuntos
Quirópteros , Coronavirus , Filogenia , Quirópteros/virologia , Animais , Coronavirus/genética , Coronavirus/classificação , Coronavirus/fisiologia , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Especificidade de Hospedeiro , Infecções por Coronavirus/virologia
2.
Mol Ecol ; 33(12): e17377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713089

RESUMO

The acquisition of microbial symbionts enables animals to rapidly adapt to and exploit novel ecological niches, thus significantly enhancing the evolutionary fitness and success of their hosts. However, the dynamics of host-microbe interactions and their evolutionary implications remain largely underexplored in marine invertebrates. Crabs of the family Sesarmidae (Crustacea: Brachyura) are dominant inhabitants of mangrove forests and are considered keystone species there. Their rapid diversification, particularly after adopting a plant-feeding lifestyle, is believed to have been facilitated by symbiotic gut microbes, enabling successful colonization of intertidal and terrestrial environments. To investigate the patterns and mechanisms shaping the microbial communities and the role of microbes in the evolution of Sesarmidae, we characterized and compared the gut microbiome compositions across 43 crab species from Sesarmidae and other mangrove-associated families using 16S metabarcoding. We found that the gut microbiome assemblages in crabs are primarily determined by host identity, with a secondary influence from environmental factors such as microhabitat and sampling location, and to a lesser extent influenced by biological factors such as sex and gut region. While patterns of phylosymbiosis (i.e. when microbial community relationships recapitulate the phylogeny of their hosts) were consistently observed in all beta-diversity metrics analysed, the strength of phylosymbiosis varied across crab families. This suggests that the bacterial assemblages in each family were differentially shaped by different degrees of host filtering and/or other evolutionary processes. Notably, Sesarmidae displayed signals of cophylogeny with its core gut bacterial genera, which likely play crucial functional roles in their hosts by providing lignocellulolytic enzymes, essential amino acids, and fatty acids supplementation. Our results support the hypothesis of microbial contribution to herbivory and terrestrialization in mangrove crabs, highlighting the tight association and codiversification of the crab holobiont.


Assuntos
Braquiúros , Microbioma Gastrointestinal , Filogenia , RNA Ribossômico 16S , Simbiose , Animais , Braquiúros/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Áreas Alagadas
3.
Microbiol Spectr ; 12(4): e0383023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441978

RESUMO

Understanding the factors that sculpt fish gut microbiome is challenging, especially in natural populations characterized by high environmental and host genomic complexity. However, closely related hosts are valuable models for deciphering the contribution of host evolutionary history to microbiome assembly, through the underscoring of phylosymbiosis and co-phylogeny patterns. Here, we propose that the recent diversification of several Harpagifer species across the Southern Ocean would allow the detection of robust phylogenetic congruence between the host and its microbiome. We characterized the gut mucosa microbiome of 77 individuals from four field-collected species of the plunderfish Harpagifer (Teleostei, Notothenioidei), distributed across three biogeographic regions of the Southern Ocean. We found that seawater physicochemical properties, host phylogeny, and geography collectively explained 35% of the variation in bacterial community composition in Harpagifer gut mucosa. The core microbiome of Harpagifer spp. gut mucosa was characterized by a low diversity, mostly driven by selective processes, and dominated by a single Aliivibrio Operational Taxonomic Unit (OTU) detected in more than 80% of the individuals. Nearly half of the core microbiome taxa, including Aliivibrio, harbored co-phylogeny signal at microdiversity resolution with host phylogeny, indicating an intimate symbiotic relationship and a shared evolutionary history with Harpagifer. The clear phylosymbiosis and co-phylogeny signals underscore the relevance of the Harpagifer model in understanding the role of fish evolutionary history in shaping the gut microbiome assembly. We propose that the recent diversification of Harpagifer may have led to the diversification of Aliivibrio, exhibiting patterns that mirror the host phylogeny. IMPORTANCE: Although challenging to detect in wild populations, phylogenetic congruence between marine fish and its microbiome is critical, as it highlights intimate associations between hosts and ecologically relevant microbial symbionts. Our study leverages a natural system of closely related fish species in the Southern Ocean to unveil new insights into the contribution of host evolutionary trajectory on gut microbiome assembly, an underappreciated driver of the global marine fish holobiont. Notably, we unveiled striking evidence of co-diversification between Harpagifer and its microbiome, demonstrating both phylosymbiosis of gut bacterial communities and co-phylogeny of some specific bacterial symbionts, mirroring the host diversification patterns. Given Harpagifer's significance as a trophic resource in coastal areas and its vulnerability to climatic and anthropic pressures, understanding the potential evolutionary interdependence between the hosts and its microbiome provides valuable microbial candidates for future monitoring, as they may play a pivotal role in host species acclimatization to a rapidly changing environment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Perciformes , Animais , Filogenia , Microbioma Gastrointestinal/genética , Evolução Biológica , Peixes/genética , Bactérias/genética , Oceanos e Mares , RNA Ribossômico 16S/genética
4.
Syst Biol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477631

RESUMO

Interspecific interactions, including host-symbiont associations, can profoundly affect the evolution of the interacting species. Given the phylogenies of host and symbiont clades and knowledge of which host species interact with which symbiont, two questions are often asked: "Do closely related hosts interact with closely related symbionts?" and "Do host and symbiont phylogenies mirror one another?". These questions are intertwined and can even collapse under specific situations, such that they are often confused one with the other. However, in most situations, a positive answer to the first question, hereafter referred to as "cophylogenetic signal", does not imply a close match between the host and symbiont phylogenies. It suggests only that past evolutionary history has contributed to shaping present-day interactions, which can arise, for example, through present-day trait matching, or from a single ancient vicariance event that increases the probability that closely related species overlap geographically. A positive answer to the second, referred to as "phylogenetic congruence", is more restrictive as it suggests a close match between the two phylogenies, which may happen, for example, if symbiont diversification tracks host diversification or if the diversifications of the two clades were subject to the same succession of vicariance events. Here we apply a set of methods (ParaFit, PACo, and eMPRess), which significance is often interpreted as evidence for phylogenetic congruence, to simulations under three biologically realistic scenarios of trait matching, a single ancient vicariance event, and phylogenetic tracking with frequent cospeciation events. The latter is the only scenario that generates phylogenetic congruence, whereas the first two generate a cophylogenetic signal in the absence of phylogenetic congruence. We find that tests of global-fit methods (ParaFit and PACo) are significant under the three scenarios, whereas tests of event-based methods (eMPRess) are only significant under the scenario of phylogenetic tracking. Therefore, significant results from global-fit methods should be interpreted in terms of cophylogenetic signal and not phylogenetic congruence; such significant results can arise under scenarios when hosts and symbionts had independent evolutionary histories. Conversely, significant results from event-based methods suggest a strong form of dependency between hosts and symbionts evolutionary histories. Clarifying the patterns detected by different cophylogenetic methods is key to understanding how interspecific interactions shape and are shaped by evolution.

5.
Parasit Vectors ; 17(1): 42, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291495

RESUMO

BACKGROUND: Gyrodactylus is a lineage of monogenean flatworm ectoparasites exhibiting many features that make them a suitable model to study the host-parasite coevolutionary dynamics. Previous coevolutionary studies of this lineage mainly relied on low-power datasets (a small number of samples and a single molecular marker) and (now) outdated algorithms. METHODS: To investigate the coevolutionary relationship of gyrodactylids and their fish hosts in high resolution, we used complete mitogenomes (including two newly sequenced Gyrodactylus species), a large number of species in the single-gene dataset, and four different coevolutionary algorithms. RESULTS: The overall coevolutionary fit between the parasites and hosts was consistently significant. Multiple indicators confirmed that gyrodactylids are generally highly host-specific parasites, but several species could parasitize either multiple (more than 5) or phylogenetically distant fish hosts. The molecular dating results indicated that gyrodactylids tend to evolve towards high host specificity. Speciation by host switch was identified as a more important speciation mode than co-speciation. Assuming that the ancestral host belonged to Cypriniformes, we inferred four major host switch events to non-Cypriniformes hosts (mostly Salmoniformes), all of which occurred deep in the evolutionary history. Despite their relative rarity, these events had strong macroevolutionary consequences for gyrodactylid diversity. For example, in our dataset, 57.28% of all studied gyrodactylids parasitized only non-Cypriniformes hosts, which implies that the evolutionary history of more than half of all included lineages could be traced back to these major host switch events. The geographical co-occurrence of fishes and gyrodactylids determined the host use by these gyrodactylids, and geography accounted for most of the phylogenetic signal in host use. CONCLUSIONS: Our findings suggest that the coevolution of Gyrodactylus flatworms and their hosts is largely driven by geography, phylogeny, and host switches.


Assuntos
Platelmintos , Trematódeos , Animais , Filogenia , Trematódeos/genética , Platelmintos/genética , Evolução Biológica , Peixes/parasitologia , Geografia , Interações Hospedeiro-Parasita
6.
Biol Rev Camb Philos Soc ; 99(2): 622-652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105542

RESUMO

The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non-termite-associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep-branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep-branching termites tend to harbour deep-branching protists, reflecting their broad-scale co-diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co-diversification in this symbiosis has been complicated by lineage-specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite-protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.


Assuntos
Isópteros , Animais , Filogenia , Eucariotos , Simbiose
7.
Appl Environ Microbiol ; 89(12): e0137323, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38047686

RESUMO

IMPORTANCE: Obligate symbionts in sap-sucking hemipterans are harbored in either the same or different organs, which provide a unique perspective for uncovering complicated insect-microbe symbiosis. Here, we investigated the distribution of symbionts in adults of 10 Hodgkinia-free cicada species of 2 tribes (Sonatini and Polyneurini) and the co-phylogeny between 65 cicada species and related symbionts (Sulcia and YLSs). We revealed that YLSs commonly colonize the bacteriome sheath besides the fat bodies in these two tribes, which is different with that in most other Hodgkinia-free cicadas. Co-phylogeny analyses between cicadas and symbionts suggest that genetic variation of Sulcia occurred in Sonatini and some other cicada lineages and more independent replacement events in the loss of Hodgkinia/acquisition of YLS in Cicadidae. Our results provide new information on the complex relationships between auchenorrhynchans and related symbionts.


Assuntos
Alphaproteobacteria , Hemípteros , Animais , Insetos , Filogenia , Simbiose/genética
9.
Syst Biol ; 72(6): 1370-1386, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37703307

RESUMO

Phylogenetic tree reconciliation is extensively employed for the examination of coevolution between host and symbiont species. An important concern is the requirement for dependable cost values when selecting event-based parsimonious reconciliation. Although certain approaches deduce event probabilities unique to each pair of host and symbiont trees, which can subsequently be converted into cost values, a significant limitation lies in their inability to model the invasion of diverse host species by the same symbiont species (termed as a spread event), which is believed to occur in symbiotic relationships. Invasions lead to the observation of multiple associations between symbionts and their hosts (indicating that a symbiont is no longer exclusive to a single host), which are incompatible with the existing methods of coevolution. Here, we present a method called AmoCoala (an enhanced version of the tool Coala) that provides a more realistic estimation of cophylogeny event probabilities for a given pair of host and symbiont trees, even in the presence of spread events. We expand the classical 4-event coevolutionary model to include 2 additional outcomes, vertical and horizontal spreads, that lead to multiple associations. In the initial step, we estimate the probabilities of spread events using heuristic frequencies. Subsequently, in the second step, we employ an approximate Bayesian computation approach to infer the probabilities of the remaining 4 classical events (cospeciation, duplication, host switch, and loss) based on these values. By incorporating spread events, our reconciliation model enables a more accurate consideration of multiple associations. This improvement enhances the precision of estimated cost sets, paving the way to a more reliable reconciliation of host and symbiont trees. To validate our method, we conducted experiments on synthetic datasets and demonstrated its efficacy using real-world examples. Our results showcase that AmoCoala produces biologically plausible reconciliation scenarios, further emphasizing its effectiveness.


Assuntos
Especificidade de Hospedeiro , Simbiose , Filogenia , Teorema de Bayes
10.
Proc Biol Sci ; 290(2001): 20230619, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339742

RESUMO

Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Filogenia , Simbiose , Bactérias/genética , Mamíferos
11.
New Phytol ; 238(3): 1215-1229, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751898

RESUMO

Mechanisms of diversification in fungi are relatively poorly known. Many ectomycorrhizal symbionts show preference for particular host genera or families, so host-symbiont selection may be an important driver of fungal diversification in ectomycorrhizal systems. However, whether ectomycorrhizal hosts and symbionts show correlated evolutionary patterns remains untested, and it is unknown whether fungal specialisation also occurs in systems dominated by hosts from the same genus. We use metabarcoding of ectomycorrhizal fungi collected with hyphal ingrowth bags from Nothofagus forests across southern New Zealand to investigate host-symbiont specialisation and correlated evolution. We examine how ectomycorrhizal communities differ between host species and look for patterns of host-symbiont cophylogeny. We found substantial differences in ectomycorrhizal communities associated with different host taxa, particularly between hosts from different subgenera (Lophozonia and Fuscospora), but also between more closely related hosts. Twenty-four per cent of fungal taxa tested showed affiliations to particular hosts, and tests for cophylogeny revealed significant correlations between host relatedness and the fungal phylogeny that extended to substantial evolutionary depth. These results provide new evidence of correlated evolution in ectomycorrhizal systems, indicating that preferences among closely related host species may represent an important evolutionary driver for local lineage diversification in ectomycorrhizal fungi.


Assuntos
Micorrizas , Micorrizas/genética , Biodiversidade , Florestas , Hifas , Especificidade de Hospedeiro , Filogenia
12.
Mol Phylogenet Evol ; 180: 107680, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572164

RESUMO

Lichenicolous fungi are a heterogeneous group of organisms that grow exclusively on lichens, forming obligate associations with them. It has often been assumed that cospeciation has occurred between lichens and lichenicolous fungi, but this has been seldom analysed from a macroevolutionary perspective. Many lichenicolous species are rare or are rarely observed, which results in frequent and large gaps in the knowledge of the diversity of many groups. This, in turn, hampers evolutionary studies that necessarily are based on a reasonable knowledge of this diversity. Tremella caloplacae is a heterobasidiomycete growing on various hosts from the lichen-forming family Teloschistaceae, and evidence suggests that it may represent a species complex. We combine an exhaustive sampling with molecular and ecological data to study species delimitation, cophylogenetic events and temporal concordance of this association. Tremella caloplacae is here shown to include at least six distinct host-specific lineages (=putative species). Host switch is the dominant and most plausible event influencing diversification and explaining the coupled evolutionary history in this system, although cospeciation cannot be discarded. Speciation in T. caloplacae would therefore have occurred coinciding with the rapid diversification - by an adaptive radiation starting in the late Cretaceous - of their hosts. New species in T. caloplacae would have developed as a result of specialization on diversifying lichen hosts that suddenly offered abundant new ecological niches to explore or adapt to.


Assuntos
Ascomicetos , Basidiomycota , Líquens , Filogenia , Evolução Biológica , Ascomicetos/genética , Líquens/genética
13.
Mol Phylogenet Evol ; 179: 107667, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400419

RESUMO

Host-parasite coevolution is one of the fundamentals of evolutionary biology. Due to the intertwined evolutionary history of two interacting species and reciprocal coadaptation processes of hosts and parasites, we can expect that studying parasites will shed more light onto the evolutionary processes of their hosts. Monogenea (ectoparasitic Platyhelminthes) and their cyprinoid fish hosts represent one of the best models for studying host-parasite evolutionary relationships using a cophylogenetic approach. These parasites have developed remarkably high host specificity, where each host species often serves as a potential host for its own host-specific monogenean species. Here, the cophylogenetic relationships in the Dactylogyrus-Squalius system was investigated, as Squalius is one of several cyprinoid genera with puzzling phylogeography and inhabits all four major peri-Mediterranean peninsulas. Of 29 endemic Squalius species examined for the presence of Dactylogyrus parasites, a total of 13 Dactylogyrus species were collected from the gills of 20 Squalius species across a wide range of distribution. Phylogenetic reconstruction revealed a polyphyletic origin for Dactylogyrus species parasitizing congeneric Squalius, with four major clades being recognized. On the basis of the delimitation of host specificity, strict specialists parasitizing single host species, geographic specialists parasitizing congeners in a limited geographical region, and true generalists parasitizing congeners in various geographical regions were recognized in Dactylogyrus species parasitizing Squalius. The phylogenetic reconstruction of Squalius hosts revealed two major clades, the first encompassing only peri-Mediterranean species and the second including species from other Euro-Asian regions. Distance-based cophylogenetic methods did not reveal a statistically significant global cophylogenetic structure in the studied system; however, several host-parasite links among Iberian endemic species contributed significantly to the overall structure. The widest host range and associated genetic variability were recorded for D. folkmanovae, parasitizing nine Squalius species, and D. vistulae, parasitizing 13 Squalius species. Two different dispersion mechanisms and morphological adaptations to Squalius hosts were clearly reflected in the contrasting cophylogenetic patterns for these two species with different levels of host specificity. While host-parasite cospeciation plays an important role in diversification within D. folkmanovae, diversification within D. vistulae is driven mainly by host switching.


Assuntos
Cyprinidae , Parasitos , Platelmintos , Trematódeos , Animais , Filogenia , Trematódeos/genética , Platelmintos/genética , Interações Hospedeiro-Parasita/genética , Cyprinidae/genética
14.
Parasitology ; 150(2): 184-194, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36444641

RESUMO

Due to their high specificity, monogenoids from fish provide an interesting model to study historical associations of hosts and parasites. High agreement between host and parasite phylogeny is often interpreted as evidence of cospeciation. However, cophylogenetic signal may also arise from other, either adaptive or non-adaptive, processes. We applied the recently developed Cophylospace Framework to better understand the evolutionary relationship between monogenoids and marine catfish from the Atlantic coast of South America. The associations between 12 marine catfish and 10 monogenoid species were assessed. Molecular data of host and parasite species were used for phylogenetic reconstruction. We used anchor morphology based on Procrustes coordinates to evaluate whether closely related hosts are associated with morphologically similar parasites. To assess the association between parasite phylogeny and host morphology, we produced a distance matrix based on morphological characters of catfishes. Agreement between phylogenies and between phylogeny and morphology was measured using Procrustes R2 computed with PACo. The parasite phylogeny obtained in this study represents the first complete phylogenetic hypothesis of monogenoids parasitizing ariids from South America. The Cophylospace analysis suggested that phylogenetic and morphological distance of monogenoids contributes similarly to explain the pattern of host­parasite associations, whereas parasite phylogeny is more strongly associated with the morphological traits of the hosts than with host phylogeny. This evidence suggests that cospeciation is not a major force accounting for diversification in the monogenoids studied. Rather host morphological traits seem to be a more important driver, which conforms with evidence from other host‒monogenoid systems.


Assuntos
Peixes-Gato , Parasitos , Trematódeos , Animais , Filogenia , Peixes-Gato/parasitologia , Evolução Biológica , Interações Hospedeiro-Parasita , América do Sul
15.
Mol Ecol ; 32(23): 6671-6685, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065594

RESUMO

Long-term vertical transmissions of gut bacteria are thought to be frequent and functionally important in mammals. Several phylogenetic-based approaches have been proposed to detect, among species-rich microbiota, the bacteria that have been vertically transmitted during a host clade radiation. Applied to mammal microbiota, these methods have sometimes led to conflicting results; in addition, how they cope with the slow evolution of markers typically used to characterize bacterial microbiota remains unclear. Here, we use simulations to test the statistical performances of two widely-used global-fit approaches (ParaFit and PACo) and two event-based approaches (ALE and HOME). We find that these approaches have different strengths and weaknesses depending on the amount of variation in the bacterial DNA sequences and are therefore complementary. In particular, we show that ALE performs better when there is a lot of variation in the bacterial DNA sequences, whereas HOME performs better when there is not. Global-fit approaches (ParaFit and PACo) have higher type I error rates (false positives) but have the advantage to be very fast to run. We apply these methods to the gut microbiota of primates and our results suggest that only a small fraction of their gut bacteria is vertically transmitted.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Filogenia , DNA Bacteriano/genética , Microbiota/genética , Microbioma Gastrointestinal/genética , Transmissão Vertical de Doenças Infecciosas , Mamíferos/genética
16.
J Evol Biol ; 36(1): 221-237, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309962

RESUMO

The study of congruency between phylogenies of interacting species can provide a powerful approach for understanding the evolutionary history of symbiotic associations. Orchid mycorrhizal fungi can survive independently of orchids making cospeciation unlikely, leading us to predict that any congruence would arise from host-switches to closely related fungal species. The Australasian orchid subtribe Drakaeinae is an iconic group of sexually deceptive orchids that consists of approximately 66 species. In this study, we investigated the evolutionary relationships between representatives of all six Drakaeinae orchid genera (39 species) and their mycorrhizal fungi. We used an exome capture dataset to generate the first well-resolved phylogeny of the Drakaeinae genera. A total of 10 closely related Tulasnella Operational Taxonomic Units (OTUs) and previously described species were associated with the Drakaeinae orchids. Three of them were shared among orchid genera, with each genus associating with 1-6 Tulasnella lineages. Cophylogenetic analyses show Drakaeinae orchids and their Tulasnella associates exhibit significant congruence (p < 0.001) in the topology of their phylogenetic trees. An event-based method also revealed significant congruence in Drakaeinae-Tulasnella relationships, with duplications (35), losses (25), and failure to diverge (9) the most frequent events, with minimal evidence for cospeciation (1) and host-switches (2). The high number of duplications suggests that the orchids speciate independently from the fungi, and the fungal species association of the ancestral orchid species is typically maintained in the daughter species. For the Drakaeinae-Tulasnella interaction, a pattern of phylogenetic niche conservatism rather than coevolution likely explains the observed phylogenetic congruency in orchid and fungal phylogenies. Given that many orchid genera are characterized by sharing of fungal species between closely related orchid species, we predict that these findings may apply to a wide range of orchid lineages.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Filogenia , Micorrizas/genética , Simbiose , Evolução Biológica , Orchidaceae/genética , Basidiomycota/genética
17.
Proc Biol Sci ; 289(1985): 20221073, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36259208

RESUMO

The host spectrum of viruses is quite diverse, as they can sustainedly infect a few species to several phyla. When confronted with a new host, a virus may even infect it and transmit sustainably in this new host, a process called 'viral spillover'. However, the risk of such events is difficult to quantify. As climate change is rapidly transforming environments, it is becoming critical to quantify the potential for spillovers. To address this issue, we resorted to a metagenomics approach and focused on two environments, soil and lake sediments from Lake Hazen, the largest High Arctic freshwater lake in the world. We used DNA and RNA sequencing to reconstruct the lake's virosphere in both its sediments and soils, as well as its range of eukaryotic hosts. We then estimated the spillover risk by measuring the congruence between the viral and the eukaryotic host phylogenetic trees, and show that spillover risk increases with runoff from glacier melt, a proxy for climate change. Should climate change also shift species range of potential viral vectors and reservoirs northwards, the High Arctic could become fertile ground for emerging pandemics.


Assuntos
Lagos , Vírus , Mudança Climática , Filogenia , Regiões Árticas , Vírus/genética , Solo
18.
Proc Biol Sci ; 289(1974): 20212702, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538775

RESUMO

Amidst global shifts in the distribution and abundance of wildlife and livestock, we have only a rudimentary understanding of ungulate parasite communities and parasite-sharing patterns. We used qPCR and DNA metabarcoding of fecal samples to characterize gastrointestinal nematode (Strongylida) community composition and sharing among 17 sympatric species of wild and domestic large mammalian herbivore in central Kenya. We tested a suite of hypothesis-driven predictions about the role of host traits and phylogenetic relatedness in describing parasite infections. Host species identity explained 27-53% of individual variation in parasite prevalence, richness, community composition and phylogenetic diversity. Host and parasite phylogenies were congruent, host gut morphology predicted parasite community composition and prevalence, and hosts with low evolutionary distinctiveness were centrally positioned in the parasite-sharing network. We found no evidence that host body size, social-group size or feeding height were correlated with parasite composition. Our results highlight the interwoven evolutionary and ecological histories of large herbivores and their gastrointestinal nematodes and suggest that host identity, phylogeny and gut architecture-a phylogenetically conserved trait related to parasite habitat-are the overriding influences on parasite communities. These findings have implications for wildlife management and conservation as wild herbivores are increasingly replaced by livestock.


Assuntos
Nematoides , Parasitos , Animais , Animais Selvagens/parasitologia , Herbivoria , Interações Hospedeiro-Parasita , Gado , Mamíferos , Filogenia
19.
Int J Parasitol ; 52(6): 359-375, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35288119

RESUMO

Cichlidogyrus (including Scutogyrus) is the most speciose dactylogyridean monogenean genus known from African and Levantine cichlid fishes (Cichlidae). While its taxonomy is well established, little is known about the phylogenetic relationships and evolutionary history of this ectoparasite, especially from hosts belonging to one of the most impressive vertebrate radiations, the cichlid fishes from the East African Great Lakes and surrounding hydrological systems. Phylogenetic inference based on DNA sequences of the nuclear 18S, internal transcribed spacer 1 and 28S rDNA genes revealed that Cichlidogyrus parasitizing mainly West African cichlid tribes is paraphyletic with respect to species parasitizing hosts belonging to the East African cichlid radiation, which constitute a well-supported monophylum. Members of Cichlidogyrus from tylochromine and oreochromine hosts that colonised Lake Tanganyika only recently, cluster with their non-Lake Tanganyika relatives, indicating that they colonised Lake Tanganyika with their current host species, and did not jump over from any of the many cichlid species already present in the lake. The diversification of Cichlidogyrus in Lake Tanganyika seems to be driven by failure to diverge in old lineages of cichlids, cospeciation in more recently evolved ones, and host switching followed by parasite duplication at the level of the various host tribes. Evaluation of host specificity and structural evolution of haptoral and reproductive organs in Lake Tanganyika Cichlidogyrus revealed that strict specialist species together with larval hook size represent the ancestral state of haptor configuration, suggesting that members of Cichlidogyrus in this system evolved from a very simple form to a more complex one similarly to their West African congeners. Generalist species among Cichlidogyrus with a sclerotized vagina parasitizing ancient Lake Tanganyika lineages seem to have developed a different hook configuration, most probably to ensure successful colonisation of new, phylogenetically unrelated hosts.


Assuntos
Ciclídeos , Trematódeos , Animais , Ciclídeos/parasitologia , Feminino , Lagos/parasitologia , Filogenia , Tanzânia , Trematódeos/genética
20.
Algorithms Mol Biol ; 17(1): 2, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168648

RESUMO

BACKGROUND: Cophylogeny reconciliation is a powerful method for analyzing host-parasite (or host-symbiont) co-evolution. It models co-evolution as an optimization problem where the set of all optimal solutions may represent different biological scenarios which thus need to be analyzed separately. Despite the significant research done in the area, few approaches have addressed the problem of helping the biologist deal with the often huge space of optimal solutions. RESULTS: In this paper, we propose a new approach to tackle this problem. We introduce three different criteria under which two solutions may be considered biologically equivalent, and then we propose polynomial-delay algorithms that enumerate only one representative per equivalence class (without listing all the solutions). CONCLUSIONS: Our results are of both theoretical and practical importance. Indeed, as shown by the experiments, we are able to significantly reduce the space of optimal solutions while still maintaining important biological information about the whole space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA