Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.552
Filtrar
1.
Environ Pollut ; 359: 124707, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128605

RESUMO

National Capital Territory of Delhi and its satellite cities suffer from poor air quality during the post-monsoon months of October-November. In this study, a novel attempt is made to estimate the contribution of different emission sources (industrial, residential, power generation, transportation, biomass burning, photochemical production, lateral transport, etc.) towards the criteria air pollutant carbon monoxide (CO) concentration over North India. Multiple simulations of the WRF-Chem model with a tagged tracer approach with different inputs (6 anthropogenic emission inventories and 3 biomass burning emission inventories) were used. The model performance was evaluated against the MOPITT retrieved CO surface concentration. Analysis of model simulated CO over North India suggests that anthropogenic emissions contribute around 32-49% to surface CO concentration while crop residue burning contributes 27-44% of which 80% originates from Punjab. For Delhi, the contribution from anthropogenic sources is dominant (53-77%) of which 10-28% is from the domestic sector and 14-55% is from the transport sector. Agricultural waste burning contributes about 15-30% to Delhi's surface CO concentration (of which 75% originates from Punjab). Crop residue burning emission is a chief source of CO over Punjab with a contribution of about 56-76%. The results suggest that industrial, transport, and domestic sector activities are more responsible for increased CO levels over New Delhi and surrounding regions than crop residue burning over Punjab. Furthermore, critical meteorological parameters like 10 m wind speed, boundary layer height, 2 m temperature, total precipitation, and relative humidity were evaluated against CO concentration to understand their impact on CO distribution. Results conclude that deteriorating air quality over the North Indian region is caused by a combination of prevailing meteorological factors (such as slow winds, shallow mixing layer, and cold temperatures) and man-made emissions.

2.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39107250

RESUMO

Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Cromossomos Fúngicos/genética , Ascomicetos/genética , Doenças das Plantas/microbiologia , Genoma Fúngico
3.
Glob Chang Biol ; 30(8): e17440, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39185562

RESUMO

The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR-derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient-dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next-generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public-private partnerships in a pre-competitive space.


Assuntos
Segurança Alimentar , Melhoramento Vegetal , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Resistência à Doença/genética , Pandemias , Fungicidas Industriais , Meio Ambiente
4.
DNA Res ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185728

RESUMO

Wild Malus species flourished in North America long before Europeans introduced domesticated apples. Malus coronaria and M. ioensis are native to the mid-western and eastern USA, while M. angustifolia and M. fusca grow in the southeast and west, respectively. They offer disease resistance, climate and soil adaptability, and horticultural traits for apple breeding. However, their utilization remains limited due to insufficient genomic resources and specific genetics. We report high-quality phased chromosome-scale assemblies of M. coronaria and M. ioensis, generated using long-read and conformation capture sequencing. Phylogenetic and synteny analysis indicated high relatedness between these two genomes and previously-published genome of M. angustifolia, and lower relatedness with M. fusca. Gene family-based pangenome of North American Malus identified 60,211 orthogroups containing 340,087 genes. Genes involved in basic cellular and metabolic processes, growth, and development were core to the existence of these species, whereas genes involved in secondary metabolism, stress response, and interactions with other organisms were accessory and are likely associated with adaptation to specific environments. Structural variation hotspots were mostly overlapping with high gene density. This study offers novel native North American Malus genome resources that can be used to identify genes for apple breeding and understand their evolution and adaptation.

5.
Sci Total Environ ; 950: 175218, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39097025

RESUMO

Ensuring the sustainability and circularity of mixed crop-ruminant livestock systems is essential if they are to deliver on the enhancement of long-term productivity and profitability with a smaller footprint. The objectives of this study were to select indicators in the environmental, economic and social dimensions of sustainability of crop-livestock systems, to assess if these indicators are relevant in the operational schedule of farmers, and to score the indicators in these farm systems. The scoring system was based on relevance to farmers, data availability, frequency of use, and policy. The study was successful in the assemblage of a suite of indicators comprising three dimensions of sustainability and the development of criteria to assess the usefulness of these indicators in crop-ruminant livestock systems in distinct agro-climatic regions across the globe. Except for ammonia emissions, indicators within the Emissions to air theme obtained high scores, as expected from mixed crop-ruminant systems in countries transitioning towards low emission production systems. Despite the inherent association between nutrient losses and water quality, the sum of scores was numerically greater for the former, attributed to a mix of economic and policy incentives. The sum of indicator scores within the Profitability theme (farm net income, expenditure and revenue) received the highest scores in the economic dimension. The Workforce theme (diversity, education, succession) stood out within the social dimension, reflecting the need for an engaged labor force that requires knowledge and skills in both crop and livestock husbandry. The development of surveys with farmers/stakeholders to assess the relevance of farm-scale indicators and tools is important to support direct actions and policies in support of sustainable mixed crop-ruminant livestock farm systems.


Assuntos
Agricultura , Criação de Animais Domésticos , Fazendeiros , Gado , Animais , Criação de Animais Domésticos/métodos , Agricultura/métodos , Produtos Agrícolas , Fazendas , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos
6.
Plant Dis ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172526

RESUMO

Tomato zonate spot virus (TZSV, Orthotospovirus tomatozonae, genus Orthotospovirus, family Tospoviridae) was first reported to infect tomato (Solanum lycopersicum) in China in 2008 (Dong et al. 2008). Belamcanda chinensis (L.) Redouté is a perennial herbaceous medicinal plant of the family Iridaceae, which is widely distributed in China. Its rhizome contains abundant active components, mainly including flavonoids, and has antibacterial, anticancer, and antioxidative effects. In July 2023, four B. chinensis plants with virus-like symptoms were collected in Fuyuan County, Yunnan Province in China. The diseased leaves showed chlorosis and ringspots (Fig. S1). Spherical virus particles with a diameter of 80-100 nm were observed in the saps of diseased leaves under a transmission electron microscope (Fig. S2). The presence of an orthotospovirus was confirmed by the previously reported method to amplify the partial sequence (312 nt) of L segment (Huang et al. 2018) (Fig. S3). BLASTn analysis showed that the obtained 312-nt sequence was 95.62% nucleotide identity with TZSV tomato-YN isolate (accession no. NC_010491.1). To obtain the complete genome of this isolate, total RNA from symptomatic leaves of two single diseased B. chinensis were extracted using Hipure Universal RNA Mini Kit (Magen Biotech) and subjected to high-throughput sequencing with a NovaPE150 (Illumina, USA) at MAGIGENE (Shenzhen, China). A total of 41,144,571 clean reads were obtained after removing low quality reads. Quality-controlled, qualified reads were assembled into contigs using Megahit v1.1.2 software. Thirteen contigs shared nucleotide identity ranging 86.94%-97.73% with the L, S, and M segments of TZSV using BLASTn searches online (https://blast.ncbi.nlm.nih.gov/Blast.cgi). In addition, no contigs were mapped to other viral (taxid:10239) and viroidal (taxid:12884) sequences in GenBank Databases. The full-length L, M, and S RNA segments of TZSV-Bc isolate was determined tbe 8917 nt (PP314222), 4718 nt (PP314223) and 3213 nt (PP314224), respectively. These segments were validated by RT-PCR, and Sanger sequencing. They shared nucleotide sequence identities of 95.9%, 97.2%, and 93.1% of the L (NC_010491.1), M (NC_010490.1), and S (NC_010489.1) segments, of the TZSV tomato-YN isolate, respectively. Compared to the TZSV tomato-YN isolate, there exists a missing segment with 113 nt in the intergenic region of S RNA and a segment with 199 nt in M RNA. To further confirm the TZSV infection on B. chinensis, three primers pairs Tosp10/ Tosp11, Tosp5/Tosp6, and NSs-F/NSs-R were tested by RT-PCR for TZSV based on the previous report (Dong et al, 2008). The sequences of amplicons shared >99% nucleotide identity with the corresponding TZSV-Bc isolate sequences. Total of 14 B. chinensis samples were detected with the primer pair N-F/N-R (5'-ATGTCTAACGTCCGGAGTTTAACA-3'/ 5'-AAAAGACAGATCATTGCTGCTCTT-3') by One Step RT-PCR, 6 samples (42.85%) showed the positive results. The mechanical inoculation and RT-PCR detection confirmed TZSV-Bc isolate can infect N. bethamiana. So far, tomato zonate spot virus has been detected in different plants including tobacco (N. tabacum) (Huang et al. 2017), sticktight (Bidens pilosa) (Xu et al. 2022), pepper (Capsicum annuum) (Li et al. 2023) in China. To our knowledge, it is the first report of TZSV naturally infecting B. chinensis plants, which enriches information on the host range of TZSV and will be helpful for disease management.

7.
Sci Rep ; 14(1): 18989, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39160252

RESUMO

There is growing interest in intercropping as a practice to increase productivity per unit area and ecosystem functioning in agricultural systems. Relay intercropping with soy and winter wheat may benefit soil health due to increased diversity and longer undisturbed soil cover, yet this remains largely unstudied. Using a field experiment in Eastern Germany, we studied the temporal dynamics of chemical, biological, and physical indicators of soil health in the topsoil over a year of cultivation to detect early effects of soy-wheat relay intercropping compared to sole cropping. Indicators included microbial abundance, permanganate-oxidizable carbon, carbon fractions, pH, and water infiltration. Relay intercropping showed no unique soil health benefits compared to sole cropping, likely affected by drought that stressed intercropped soy. Relay intercropping did, however, maintain several properties of both sole crops including an increased MAOM C:N ratio and higher soil water infiltration. The MAOM C:N ratio increased by 4.2 and 6.2% in intercropping and sole soy and decreased by 5% in sole wheat. Average near-saturated soil water infiltration rates were 12.6, 14.9, and 6.0 cm hr-1 for intercropping, sole wheat, and sole soy, respectively. Cropping system did not consistently affect other indicators but we found temporal patterns of these indicators, showing their sensitivity to external changes.


Assuntos
Agricultura , Produtos Agrícolas , Glycine max , Estações do Ano , Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Glycine max/crescimento & desenvolvimento , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Microbiologia do Solo , Alemanha , Carbono/análise , Carbono/metabolismo , Ecossistema , Produção Agrícola/métodos , Água
8.
Front Plant Sci ; 15: 1416216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166233

RESUMO

High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.

9.
Transl Anim Sci ; 8: txae111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156965

RESUMO

The objective of this study was to evaluate growth and reproductive performance of heifers developed using 3 different winter systems in the midwestern U.S. Spring-born heifers (n = 1,156; 214 d of age; SD ±â€…17 d) were used in a 3-yr study to evaluate performance in winter development systems, which utilized cover crop (CC) and corn residue grazing. Heifers were assigned to 1 of 3 treatments: grazing corn residue with 0.77 kg/d dried distillers grains (CD) or 1.69 kg/d wheat midds (CW) supplementation followed by a grower ration in the drylot, or grazing late summer planted oat-brassica CC followed by corn residue grazing with 0.35 kg/d dried distillers grains supplementation (CC). Supplementation during the corn residue phase was targeted to result in a common body weight (BW) (276 kg; ~45% of mature BW) by the end of the winter development period. Grazing of corn residue (CD and CW) and CC began in early November. After 63 d, heifers assigned to CC were moved to corn residue; on day 77 heifers assigned to CD and CW began receiving a grower ration in the drylot. In mid-February (day 98), heifers were comingled and managed in a single group. Breeding season began in June and lasted for 29 d. The ADG of heifers assigned to CC when grazing CC (days 1 to 63) was greater (0.76 kg/d; P < 0.01) than those assigned to CD or CW (0.58 kg/d and 0.49 kg/d, respectively). Gain during the last 35 d of the winter period for heifers assigned to CC (0.36 kg/d) was less (P < 0.01) than those assigned to CW (0.49 kg/d) but not different from CD heifers (0.41 kg/d). Overall (days 1 to 98), winter ADG was greater (P < 0.05) for heifers assigned to CC (0.62 kg/d) than CD (0.53 kg/d) or CW (0.50 kg/d), which did not differ (P = 0.42). Percent of mature BW in May (27 d pre-breeding) was greater (P < 0.01) for heifers assigned to CC (52%) than for those on CD and CW (50%), which did not differ (P = 0.64). Pregnancy rates were affected by treatment (P < 0.03), with heifers assigned to CC (76%) being greater than CW (64%) and CD heifers being intermediate (70%). When accounting for the differences in cost and the value of open and bred heifers, the economic return tended to differ (P = 0.07) among treatments, with CC and CW not differing (P ≥ 0.20) from CD but return for CC being $73 greater than CW (P = 0.02). Utilizing oat-brassica CCs early in the winter followed by a slower rate of gain while grazing corn residue with distillers supplementation appears to be as effective for developing beef heifers in the midwestern U.S. as supplementing distillers grains.

10.
Sci Total Environ ; : 175585, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39155002

RESUMO

This study explores the integration of crop phenology models and machine learning (ML) approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R2) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.

11.
New Phytol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155785

RESUMO

Strengthening future food security through the application of unsustainable levels of inorganic nitrogen (N) fertilizers to crop fields may exacerbate environmental damage. Coordination of N-use efficiency (NUE) and plant growth is, therefore, crucial for sustainable agriculture. Auxin plays pivotal roles in developmental and signaling responses that affect NUE. Hence, a better understanding of these processes provides great potential to improve crop NUE. This review summarizes the effects of auxin on N-related and root developmental processes that either directly or indirectly affect NUE in the model plant Arabidopsis and major crop species to highlight the potential of fostering sustainable agricultural development in the future through modulating auxin-related processes.

12.
Pest Manag Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158367

RESUMO

BACKGROUND: The sustainable control of weed populations is a significant challenge facing farmers around the world. Although various methods for the control of weeds exist, the use of small molecule herbicides remains the most effective and versatile approach. Striving to find novel herbicides that combat resistant weeds via the targeting of plant specific modes of action (MoAs), we further investigated the bicyclic class of acyl-acyl carrier protein (ACP) thioesterase (FAT) inhibitors in an effort to find safe and efficacious lead candidates. RESULTS: Utilizing scaffold hopping and bioisosteric replacements strategies, we explored new bicyclic inhibitors of FAT. Amongst the investigated compounds we identified new structural motifs that showed promising target affinity coupled with good in vivo efficacy against commercially important weed species. We further studied the structure-activity relationship (SAR) of the novel dihydropyranopyridine structural class which showed promise as a new type of FAT inhibiting herbicides. CONCLUSION: The current work presents how scaffold hopping approaches can be implemented to successfully find novel and efficacious herbicidal structures that can be further optimized for potential use in sustainable agricultural practices. The identified dihydropyranopyridine bicyclic class of herbicides were demonstrated to have in vitro inhibitory activity against the plant specific MoA FAT as well as showing promising control of a variety of weed species, particularly grass weeds in greenhouse trials on levels competitive with commercial standards. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
Front Plant Sci ; 15: 1393965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139722

RESUMO

Introduction: Predicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects. Methods: In this study, we propose a type of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN) and compare it to two classical GP regression methods for their ability to predict an integrative trait of sorghum: aboveground fresh weight accumulation. We also suggest that the use of a crop growth model (CGM) can enhance predictions of integrative traits by decomposing them into more heritable intermediate traits. Results: The results show that CNN outperformed both LASSO and Bayes C methods in accuracy, suggesting that CNN are better suited to predict integrative traits. Furthermore, the predictive ability of the combined CGM-GP approach surpassed that of GP without the CGM integration, irrespective of the regression method used. Discussion: These results are consistent with recent works aiming to develop Genome-to-Phenotype models and advocate for the use of non-linear prediction methods, and the use of combined CGM-GP to enhance the prediction of crop performances.

14.
Chem Biodivers ; : e202401259, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141524

RESUMO

Efforts are intensifying to identify bioactive microbial metabolites from biocontrol agents to manage plant pathogens in critical crops. This study examined both volatile organic compounds (VOCs) and non-volatile compounds from Metarhizium carneum and Lecanicillium uredinophilum strains for their antimicrobial effects against various phytopathogens and analyzed their exo-metabolomes. M. carneum VOCs inhibited four bacterial and eight fungal species by up to 45.45%, while L. uredinophilum VOCs inhibited five bacterial and eight fungal species by up to 50.91%. Additionally, n-BuOH extracts from both biocontrol agents effectively targeted three fungi and five bacteria. The exo-metabolomes of M. carneum and L. uredinophilum included 125 and 102 spectrometric features, respectively, primarily consisting of polyketides, alkaloids, lipids, organic aromatic compounds, terpenoids, and peptides. Our findings revealed a correlation between the phylogenetic relationships of M. carneum strains, their bioactivity patterns against phytopathogens, and their metabolomic profiles. Notably, some compounds detected in both fungi previously demonstrated biological activity against plant pathogens, enhancing their biocontrol potential. This study not only evidences the antimicrobial properties of diffusible compounds from M. carneum and L. uredinophilum, but also documents the antimicrobial potential of their VOCs for the first time, supporting their use in sustainable agricultural practices, reducing reliance on chemical inputs.

15.
Plant Dis ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143817

RESUMO

The Ralstonia solanacearum species complex (RSSC) causes vascular wilt of many crops and is considered one of the most destructive plant pathogenic bacteria worldwide. The species complex was recently resolved into a stable taxonomy of three species aligning with the previously determined phylotypes, namely R. solanacearum (phylotype II), R. pseudosolanacearum (phylotype I and III), and R. syzygii (phylotype IV). Knowing which Ralstonia species and subspecies are established in Australia is important to Australia's biosecurity and market access. The goal of this study was to analyse Australia's Ralstonia culture collections and to assign the isolates to the modern taxonomic groups. The results shed light on the identity, distribution, and pathogenicity of the Ralstonia strains in Australia. Ralstonia solanacearum, R. pseudosolanacearum phylotype I, and R. syzygii phylotype IV-11 are present in Australia but have limited geographic ranges. We identified two aberrant RSSC strains that have genetic similarity to R. syzygii based on sequevar analysis, but do not yield a phylotype IV multiplex PCR band, similar to the known aberrant strain ACH732. The aberrant strains may represent a novel species. Three new sequevars were determined, 72, 73 and 74. Several Ralstonia lineages remain undetected in Australia, providing evidence that they are absent. These include R. pseudosolanacearum phylotype III and the phylotype I mulberry infecting strains; R. solanacearum strains IIC and the Moko causing strains; and R. syzygii subsp. celebesensis, and R. syzygii subsp. syzygii. This study fulfilled Koch's postulates for the Australian strains, R. solanacearum wilted potato plants, and R. pseudosolanacearum wilted blueberry plants, the hosts from which they were initially isolated. The data supports the hypothesis that Australia has native and introduced strains of Ralstonia.

16.
Plant Dis ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143813

RESUMO

Take-all of wheat (Triticum aestivum L.), caused by Gaeumannomyces tritici (syn. G. graminis var. tritici), is perhaps the most important soil-borne disease of wheat globally and can cause substantial yield losses under several cropping scenarios in Oregon. Though resistance to take-all has not been identified in hexaploid wheat, continuous cropping of wheat for several years can reduce take-all severity through the development of suppressive soils, a process called "take-all decline" (TAD). Extensive work has shown that TAD is driven primarily by members of the Pseudomonas fluorescens complex that produce 2,4-diacetlyphloroglucinol (DAPG), an antibiotic that is associated with antagonism and induced host resistance against multiple pathogens. Field experiments were conducted to determine the influence of agronomically relevant first year wheat cultivars on take-all levels and ability to accumulate DAPG-producing pseudomonads within their rhizospheres in second-year field trials and in greenhouse trials. One first year wheat cultivar consistently resulted in less take-all in second-year wheat and accumulated significantly more DAPG-producing pseudomonads than other cultivars, suggesting a potential mechanism for take-all reduction associated with that cultivar. An intermediate level of take-all suppression in other other cultivars was not clearly associated with population size of DAPG-producing pseudomonads, however. The first year cultivar effect on take-all dominated in subsequent plantings, and its impact was not specific to the first year cultivar. Our results confirm that wheat cultivars may be used to suppress take-all when deployed appropriately over cropping seasons, an approach that is cost effective, sustainable, and currently being utilized by some wheat growers in Oregon to reduce take-all.

17.
Plant Dis ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146000

RESUMO

Plasma-activated water (PAW) exhibits potent antimicrobial properties attributed to the generation of diverse reactive oxygen and nitrogen species. This study assessed the effectiveness of PAW in vitro against phytopathogenic Xanthomonas arboricola and Pseudomonas syringae pv. syringae, which cause diseases on ornamental plants. Extending the plasma activation time of water and the incubation time of bacterial suspension in PAW increased the effectiveness of PAW. Treatments consisting of PAW activation using a power output of 200 Watts and a frequency of 50 Hz at different activation times and target population incubation times revealed significantly different effectiveness against P. syringae pv. syringae and X. arboricola. X. arboricola (reduction of 4.946 ± 0.20 log10 CFU/mL) was more sensitive to PAW inactivation than P. syringae pv. syringae (reduction of 3 ± 0.15 log10 CFU/mL). The plasma activation of water for 20 min followed by incubation of bacterial population for 180 min was proven to be the most effective treatment combination. The plasma activation time dose required to reduce the population by 90% was 7.47 ± 1.09 min for P. syringae pv. syringae and 4.45 ± 1.81 min for X. arboricola incubated for 180 min in PAW. The results of this study have the potential to further contribute to assessment of the effects of PAW on pathogen infected plant tissues. In addition, the findings of this study could aid in further characterization of the reactive species formed during the plasma activation of water.

18.
Plant Dis ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146001

RESUMO

In the summer of 2023, the Connecticut Agricultural Experiment Station was contacted by a farm in southern Connecticut due to reports of strawberry (Fragaria × ananassa) plants showing signs of severe wilting and crown rot across multiple fields, covering ~20 hectares. Cut crowns from diseased plants had marbled red and white lesions typically associated with anthracnose crown rot (ACR). Symptomatic plants were collected from five June-bearing cultivars (cvs. AC Valley Sunset, Lyla, Dickens, and Allstar) spanning four non-adjacent fields with incidence ranging from 5-90% and severity ranging mild wilting in low incidence fields to severe wilting/mortality in high incidence fields. Internal tissue from diseased crowns was surface sterilized in 0.6% NaOCL for 3 minutes, rinsed with sterile water, and plated on potato dextrose agar. After one-week, hyphal tips of fungi were transferred to fresh plates which formed dense mycelial mats of fluffy, greyish-white hyphae. Orange spore masses formed near the center of the colonies, each of which contained numerous cylindrical and fusiform straight conidia, matching spores within the genus Colletotrichum (De Silva et al. 2019). Average conidia (n=192) length was 15.7 ± 1.6 µm and width was 5.4 ± 0.7 µm. Fungi matching this morphology were isolated from 83% of the collected symptomatic crowns and hyphae were collected from two isolates, CT5-1 and CT23-1, for DNA extraction using the GeneJET Plant Genomic DNA Purification Kit. PCR was performed using primers targeting actin (ACT), calmodulin (CAL), ß-tubulin (TUB2), GAPDH (gpdA), and ITS, followed by Sanger sequencing, which yielded identical sequences for both isolates (CT5-1 Accessions numbers: PP002078-81, OR999066)(Carbone and Kohn 1999; Hassan et al. 2018; Templeton et al. 1992). These were combined with sequences from fourteen Colletotrichum genomes, all of which were aligned, trimmed, and concatenated using Mega11 (Tamura, Stecher, and Kumar 2021). Model selection was conducted using IQ-TREE and selected parameters were used to generate maximum-likelihood trees from all five loci individually and the concatenated sequence, all of which placed the isolates in a high confidence cluster with Colletotrichum siamense (Nguyen et al. 2015). To confirm the pathogenicity of the pathogen, strawberry plants (cv. Jewel) (n=5) five weeks after bare root transplant were infected. The base of each crown was penetrated 5 mm deep with a sterile 20 µL pipette tip and then inoculated with 10 µL of spores at a concentration of 106 spores/mL. Control plants (n=5) were inoculated with 10 µL of sterile water. Plants were maintained at 30°C day (16-hour)/20°C night (8-hour) in a growth chamber and assessed after 14-days. Four of the five inoculated plants had visible wilt symptoms and bisected crowns revealed the marbled red and white lesions typifying ACR. Control plants had no clear wilting and bisected crowns were visibly healthy. C. siamense re-isolated from infected tissue presented with identical hyphal /spore morphology and ITS/Tub2 were re-amplified and sequenced, yielding identical sequences to CT5-1. Plant inoculations with the same variety were repeated, yielding identical symptom development and crown lesions. C. siamense has been a dominant source of ACR throughout the southeastern US but has not previously been a major problem in the Northeast. Given the extent of the field infection, it is likely that these isolates can survive the colder winter temperatures of New England, but further experimentation is necessary to determine the extent of the pathogen's winter hardiness.

19.
Plant Dis ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146005

RESUMO

Stem End Rot (SER) is a devastating post-harvest disease of mango fruits causing severe losses during storage. In 22 July 2023, 31 out of 50 intact mangoes (cv. Sensation) collected from five orchards in Huaping county (26°37'N 101°15') showed typical symptoms of SER after stored for 9 d in room temperature (24-28℃). Initially, small dark brown to black spots appeared around the fruit peduncle, which rapidly expanded through the pulp tissues. The symptomatic mangoes were surface disinfected by 3% NaClO for 30 s after soaking in 75% alcohol for 3 min, and cleaned by sterile water for 3 times. Tissues were cut from the edge of lesions, dried by sterile filter paper, transferred to PDA and cultured at 28 ℃ for 5 d (Tovar-Pedraza et al., 2020). The single-spore isolation method was used to obtain pure culture. Thirty eight isolates presented four distinct kind of morphology on PDA medium. Among them, 11 isolates with same morphology were significantly distinct from common pathogens of SER. The colonies were white and pale yellow on reverse side. Mycelia grew fast and reached the edge of 90 mm Petri dish after cultured for 5d. Pycnidia were black and scattered on the mycelial mats after 15-20 d. Conidia were fusoid, straight to slightly curved, four septa, and brown. Pigmented median cells doliiform, 14.97 - 18.62(16.11 ±0.89)×5.61- 7.28 (6.61±0.51) µm. Apical cell hyaline, subcylindrical; 1-3 tubular transparent apical appendages 12.27 - 16.68 (13.65±3.78)×1.14 - 1.99 (1.59±0.36) µm. Basal cell conical with a truncate base, hyaline, and 1-2 tubulose basal appendages with 2.85 - 7.97 (5.18±1.88)×0.99 - 1.85 (1.38±0.29) µm (n=50). These fungi were described as Pestalotiopsis kenyana. based on morphological characters (Maharachchikumbura et al., 2014) which were different from isolates characterized as other common SER pathogens (Botryosphaeria, Neofusicoccum). Based on morphology, HPSX-4 was selected for further identification. ITS region, tef1-α, ß-tub of HPSX-4 were amplified and sequenced (Xun et al., 2023). The sequences were deposited in GenBank (ITS:OR889126, tef1-α:OR913431, ß-tub: OR913432). The ITS, tef1-α, ß-tub sequence of HPSX-4 showed 100% (525/525),99.59% (241/242), and 100% (742/742) identity to the P. kenyana CBS442.67 sequences (ITS: NR147549,tef1-α: KM199502, ß-tub: KM199395), respectively. HPSX-4 clustered with P. kenyana CBS 442.67 (type strain) based on maximum likelihood method by MEGA 7.0.21(Minh et al., 2013). Pathogenicity test was performed on 12 healthy mangoes (cv. Golek) by placing mycelial plugs around the peduncle and the middle of the fruit by pin-prick method according to Feng et al.(2023). Sterile PDA were used as control (three mangoes). Every inoculated fruit was incubated at 28°C, 95% ± 3% humidity with three replicates for each treatment. The experiment was repeated three times. Typical symptoms of SER were observed. There were no symptoms in the control group. The strain was reisolated and identified as P. kenyana with the method mentioned above which fulfilled Koch's postulates. This is the first report of P. kenyana causing SER disease on Mangifera indica L.. This study expands our understanding of the pathogen range of mango SER which conducive to prevent and control the SER caused by P. kenyana.

20.
Plant Dis ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146008

RESUMO

Verbena × hybrida, also known as common garden verbena, has an important ornamental value for their wide range of flower colors and for attracting hummingbirds and butterflies. During the winter of 2021-2022 (December through February), more than 50% pot-grown verbena plants showed symptoms of powdery mildew in a field trial at a Syngenta Crop Protection research facility in Vero Beach, FL. Symptoms were characterized by the development of white, superficial mycelium on the adaxial side of leaves which, eventually, progressed to covering the whole surface of leaves, causing leaf discoloration, shoot distortion, and eventual plant death. Morphological characterization was carried out by observing powdery mildew colonies under the microscope. This powdery mildew forms dense patches of white mycelia, mainly on the adaxial leaf surfaces. The mycelium was a mat of hyphae with septa. Conidiophores were erect. The foot cells were straight, followed by one to three short cells bearing short chains of up to four conidia. The conidia were hyaline and ellipsoidal to doliiform in shape. Conidial germination is of the Eudoidium type. The conidia ranged from 25 to 32 µm long by 12 to 16 µm wide. The length to width ratio ranged between 1.6 and 2.3, but most were between 2.0 and 2.2. This is further verification of its identity as Golovinomyces ambrosiae and not Golovinomyces latisporus, because the length to width ratio of the latter species is consistently less than 2.0 (Qiu et al. 2020). Chasmothecia were not observed. Additionally, the ITS, GAPDH, and IGS regions were sequenced using the primer pairs ITS4/ITS5 (White et al. 1990), PMGAPDH1/PMGAPDH3R (Bradshaw et al. 2022a), and IGS-12a/NS1R (Carbone and Kohn 1999), respectively. The ITS region (GenBank number=PP924119) cannot distinguish between G. latisporus and G. ambrosiae and as such aligned 100% with both species on GenBank. However, the GAPDH and IGS regions can be used to distinguish G. ambrosiae from G. latisporus (Bradshaw et al. 2022b). The GAPDH (GenBank number=PP931995) and IGS (GenBank number=PP931996) regions aligned 100% with multiple G. ambrosiae sequences from GenBank including ON360708 and MK452567, respectively. The specimen was deposited in the Larry F. Grand Mycological Herbarium (NCSLG 24479). To confirm pathogenicity, 'Tuscany® Pink Picotee' and 'Quartz XP Violet with Eye' plugs were transplanted to 10-cm diameter pots containing ProMix potting mix and maintained in a greenhouse (± 26 °C). Inoculation was carried out 21 days after transplanting by touching infected leaves onto healthy leaves of 15 disease-free plants of each variety. Fifteen non-inoculated plants of each variety were used as controls. Typical powdery mildew symptoms and signs were first observed ten days after inoculation and the pathogen was more aggressive on 'Tuscany® Pink Picotee'. Symptoms were not observed on non-inoculated plants. The fungus was morphologically identical to the one originally recovered from infected plants in the field. There have been many reports of Golovinomyces spp. affecting Verbena spp. worldwide; however, this is the first report of G. ambrosiae causing powdery mildew on Verbena × hybrida in the U.S. (Braun and Cook, 2012, Choi et al., 2021; Bradshaw et al. 2024). Powdery mildews reduce plant quality and decreases the aesthetics value of infected plants, causing great losses to the ornamental industry. Correct identification of the causal agent is crucial to recommend appropriate control methods, as they may differ according to the pathogen species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA