Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Environ Geochem Health ; 46(9): 358, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088124

RESUMO

Groundwater is the main source of water for more than 2 billion people worldwide. In southern Brazil, the Crystalline Basement Aquifer System is composed of strategic groundwater reservoirs. Groundwater is mostly taken from shallow wells, and it is often used without any treatment, which poses a risk to public health. The present study aims to evaluate shallow groundwater quality and the geochemistry of shallow and deep groundwater located in the municipality of Canguçu, southern Brazil. The physicochemical and microbiological parameters of groundwater samples collected from shallow wells were monitored and analyzed using ANOVA variance analysis and water quality index (CCME WQI) approaches. Also, the results were compared with secondary data from deep wells. The monitored shallow wells had thermotolerant coliforms, Escherichia coli, pH, potassium, manganese, iron, and nitrate in disagreement with the guidelines of the World Health Organization. Moreover, variance analysis showed that the parameters temperature, dissolved oxygen, pH, chloride, and magnesium were the most influenced by seasonal variations. According to the CCME WQI, most samples had good quality (60%), 28% had fair quality, and 12% had poor quality. In addition, the field campaigns with higher precipitation rates also presented fair quality. Therefore, most of the shallow groundwater quality is affected by surface pollutants from the urban area, aggravated in rainy periods. Whereas deep groundwater is influenced by geochemistry mechanisms. The results revealed the risk of water consumption for public health and the urgent need for better maintenance of these wells and water treatment implementation.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Qualidade da Água , Água Subterrânea/química , Brasil , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Microbiologia da Água , Estações do Ano , Poços de Água , Nitratos/análise
2.
Appl Spectrosc ; : 37028241268158, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39094004

RESUMO

The aim of this work was the development and morphological/chemical, spectroscopic, and structural characterization of titanium dioxide, niobium pentoxide, and titanium:niobium (Ti:Nb) oxides, as well as materials modified with ruthenium (Ru) with the purpose of providing improvement in photoactivation capacity with visible sunlight radiation. The new materials synthesized using the sol-gel methodology were characterized using the following techniques: scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), photoacoustic spectroscopy (PAS), and X-ray diffraction (XRD). The SEM-EDS analyses showed the high purity of the bases, and the modified samples showed the adsorption of ruthenium on the surface with the crystals' formation and visible agglomerates for higher calcination temperature. The nondestructive characterization of PAS in the ultraviolet visible region suggested that increasing calcination temperature promoted changes in chemical structures and an apparent decrease in gap energy. The separation of superimposed absorption bands referring to charge transfers from the ligand to the metal and the nanodomains of the transition metals suggested the possible absorption centers present at the absorption threshold of the analyzed oxides. Through the XRD analysis, the formation of stable phases such as T-Nb16.8O42, o-Nb12O29, and rutile was observed at a lower temperature level, suggesting pore induction and an increase in surface area for the oxides studied, at a calcination temperature below that expected by the related literature. In addition, the synthesis with a higher temperature level altered the previously existing morphologies of the Ti:Nb, base and modified with Ru, forming the new mixed crystallographic phases Ti2Nb10O29 and TiNb2O7, respectively. As several semiconductor oxide applications aim to reduce costs with photoexcitation under visible light, the modified Ti:Ru oxide calcined at a temperature of 800 °C and synthesized according to the sol-gel methodology used in this work is suggested as the optimum preparation point. This study presented the formation of a stable crystallographic phase (rutile), a significant decrease in gap energy (2.01 eV), and a visible absorption threshold (620 nm).

3.
J Colloid Interface Sci ; 673: 373-385, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38878372

RESUMO

Smart nanocarrier-based bioactive delivery systems are a current focus in nanomedicine for allowing and boosting diverse disease treatments. In this context, the design of hybrid lipid-polymer particles can provide structure-sensitive features for tailored, triggered, and stimuli-responsive devices. In this work, we introduce hybrid cubosomes that have been surface-modified with a complex of chitosan-N-arginine and alginate, making them pH-responsive. We achieved high-efficiency encapsulation of acemannan, a bioactive polysaccharide from Aloe vera, within the nanochannels of the bioparticle crystalline structure and demonstrated its controlled release under pH conditions mimicking the gastric and intestinal environments. Furthermore, an acemannan-induced phase transition from Im3m cubic symmetry to inverse hexagonal HII phase enhances the bioactive delivery by compressing the lattice spacing of the cubosome water nanochannels, facilitating the expulsion of the encapsulated solution. We also explored the bioparticle interaction with membranes of varying curvatures, revealing thermodynamically driven affinity towards high-curvature lipid membranes and inducing morphological transformations in giant unilamellar vesicles. These findings underscore the potential of these structure-responsive, membrane-active smart bioparticles for applications such as pH-triggered drug delivery platforms for the gastrointestinal tract, and as modulators and promoters of cellular internalization.


Assuntos
Aloe , Mananas , Aloe/química , Mananas/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície , Lipídeos de Membrana/química , Nanoestruturas/química
4.
Mater Today Bio ; 25: 101000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38390343

RESUMO

Using advanced nanotechnology membranes has opened up new possibilities in the field of biomedicine, particularly for controlled drug delivery and especially for topical use. Bacterial cellulose membranes (BCM), particularly, have gained prominence owing to their distinctive attributes, including remarkable water retention, safety, biodegradability, and tunable gas exchange. However, they are aqueous matrices and, for this reason, of limited capacity for incorporation of apolar compounds. Cubosomes are lipid nanoparticles composed of a surfactant bicontinuous reverse cubic phase, which, owing to their bicontinuous structure, can incorporate both polar and apolar compounds. Therefore, these particles present a promising avenue for encapsulating and releasing drugs and biomolecules due to their superior entrapment efficiency. In this study, we aim to extend earlier investigations using polymeric hydrogels for cubosome immobilization, now using BCMs, a more resilient biocompatible matrix. Phytantriol cubosome-loaded BCMs were prepared by three distinct protocols: ex situ incorporation into wet BCMs, ex situ incorporation by swelling of dry BCMs, and an in situ process with the growth of BCMs in a sterile medium already containing cubosomes. Our investigation revealed that these methodologies ensured that cubosomes remained integral, uniformly distributed, and thoroughly dispersed within the membrane, as confirmed using Small-Angle X-ray Scattering (SAXS) and high-resolution confocal microscopy. The effective incorporation and sustained release of diclofenac were validated across the different BCMs and compared with hyaluronic acid (HA) hydrogel in our previous studies. Furthermore, the resistance against cubosome leaching from the three BCM and HA hydrogel samples was quantitatively evaluated and contrasted. We hope that the outcomes from this research will pave the way for innovative use of this platform in the incorporation and controlled release of varied active agents, amplifying the already multifaceted applicability of BCMs.

5.
Biology (Basel) ; 13(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392320

RESUMO

This review provides insights into cellulolytic bacteria present in global forest and agricultural soils over a period of 11 years. It delves into the study of soil-dwelling cellulolytic bacteria and the enzymes they produce, cellulases, which are crucial in both soil formation and the carbon cycle. Forests and agricultural activities are significant contributors to the production of lignocellulosic biomass. Forest ecosystems, which are key carbon sinks, contain 20-30% cellulose in their leaf litter. Concurrently, the agricultural sector generates approximately 998 million tons of lignocellulosic waste annually. Predominant genera include Bacillus, Pseudomonas, Stenotrophomonas, and Streptomyces in forests and Bacillus, Streptomyces, Pseudomonas, and Arthrobacter in agricultural soils. Selection of cellulolytic bacteria is based on their hydrolysis ability, using artificial cellulose media and dyes like Congo red or iodine for detection. Some studies also measure cellulolytic activity in vitro. Notably, bacterial cellulose hydrolysis capability may not align with their cellulolytic enzyme production. Enzymes such as GH1, GH3, GH5, GH6, GH8, GH9, GH10, GH12, GH26, GH44, GH45, GH48, GH51, GH74, GH124, and GH148 are crucial, particularly GH48 for crystalline cellulose degradation. Conversely, bacteria with GH5 and GH9 often fail to degrade crystalline cellulose. Accurate identification of cellulolytic bacteria necessitates comprehensive genomic analysis, supplemented by additional proteomic and transcriptomic techniques. Cellulases, known for degrading cellulose, are also significant in healthcare, food, textiles, bio-washing, bleaching, paper production, ink removal, and biotechnology, emphasizing the importance of discovering novel cellulolytic strains in soil.

6.
Pharmaceutics ; 16(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276511

RESUMO

Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.

7.
Braz. J. Pharm. Sci. (Online) ; 60: e23380, 2024. graf
Artigo em Inglês | LILACS | ID: biblio-1533983

RESUMO

Abstract Glioblastoma multiforme is a tumor of the central nervous system. Focal Adhesion Kinase (FAK) and αB-crystalline are two proteins involved in glioblastoma development. In this study, we investigated whether the FAK/αB-crystalline interaction is important for glioblastoma cells, we aimed to investigate the interaction of these two proteins in the glioblastoma multiforme cell line U87-MG. Two peptides named FP01 peptide (derived from αB-crystalline) and FP02 peptide (derived from FAK) were synthesized for this study. Treatment of U87-MG with the peptides FP01 and FP02 in the concentration at 50 µM reduced the viability cellular to around 41% and 51%, respectively. Morphological alterations in the cells treated with the peptides when compared to the control were observed. This study suggests that the interaction between FAK and αB-crystalline is important for the viability of glioblastoma cells


Assuntos
Peptídeos/efeitos adversos , Células/classificação , Glioblastoma/patologia , Proteína-Tirosina Quinases de Adesão Focal/efeitos adversos , Neoplasias/patologia , Linhagem Celular/classificação , Sistema Nervoso Central/anormalidades
8.
Nanotechnology ; 35(1)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37751721

RESUMO

Recalcitrant pollutants present in wastewater, without an effective treatment, have several effects on aquatic ecosystems and human health due to their chemical structure and persistence. Therefore, it is crucial the development of efficient technologies to eliminate such pollutants in water. Nano-photocatalysts are considered a promising technology for water remediation; however, one common drawback is the difficulty of recovering it after water processing. One effective strategy to overcome such problem is its immobilization into substrates such as polymeric membranes. In this study, a polymeric membrane with embedded Mg0.975Ni0.025SiO3is proposed to remove model pollutants diclofenac sodium and methylene blue dye by synergetic adsorption and photocatalytic processes. Mg0.975Ni0.025SiO3was synthesized by the combustion method. The matrix polymeric blend consisting of a blend of cellulose acetate, crystalline nanocellulose and polyvinylidene fluoride was obtained by the phase inversion method. The composite membranes were characterized by FTIR, x-ray diffraction, and scanning electron microscopy. With pollutant solutions at pH 7, the pollutant adsorption capacity of the membranes reached up to 30% and 45% removal efficiencies for diclofenac sodium and methylene blue, respectively. Under simulated solar irradiation photocatalytic removal performances of 70% for diclofenac sodium pH 7, and of 97% for methylene blue dye at pH 13, were reached. The membrane photocatalytic activity allows the membrane to avoid pollutant accumulation on its surface, given a self-cleaning property that allows the reuse of at least three cycles under sunlight simulator irradiation. These results suggest the high potential of photocatalytic membranes using suitable and economical materials such as cellulosic compounds and magnesium silicates for water remediation.

9.
J Funct Biomater ; 14(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37754881

RESUMO

The goal of this study is to evaluate the influence of the concentration of silver on the structural and antimicrobial in vitro properties of silver-doped hydroxyapatite powders obtained using the precipitation method. Different concentrations of silver were evaluated to assess the antimicrobial properties. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), and dispersive energy spectroscopy (EDS) were used to characterize the powders. XRD and FTIR showed that the hydroxyapatite structure is not affected by the incorporation of silver; on the other hand, EDS showed the presence of silver in the powders. Antibacterial studies showed the efficiency of hydroxyapatite powders in inhibiting bacterial growth as silver concentration increases. According to the results, silver-doped hydroxyapatite powders are suggested for use in the prevention and treatment of infections in bone and dental tissues.

10.
Photodiagnosis Photodyn Ther ; 44: 103739, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37582452

RESUMO

Oral cancer is one of the most prevalent types of cancer head and neck cancers worldwide. Photodynamic therapy (PDT) has demonstrated great potential against cancers, reducing long-term morbidity. In this study, we investigated the incorporation of methylene blue (MB) in a mucoadhesive liquid crystal precursor system (LCPS) for oral cancer treatment. The photostability and the in vitro release, permeation, and retention profile of MB-loaded LCPS (MB-LCPS) were investigated, as well as its in vitro PDT activity against normal (HaCaT) and tumoral (HSC-3) cell lines. LCPS increased the photostability of MB and exhibited a prolonged release profile of MB. In addition, LCPS increased the retention of MB in the porcine esophageal mucosa by around 3 times higher than the MB solution. The retention of MB in LCPS was around 2 times greater than its permeability, which is suitable for guaranteeing the maintenance of the therapy in the oral cavity. In vitro cytotoxicity assay indicated that MB-LCPS increased the antitumoral activity of MB after 20 min of irradiation at 660 nm and 12.5 J/cm2. The results obtained suggest that the developed formulation is an interesting strategy for the potential application in the treatment of oral cancer by PDT.


Assuntos
Cristais Líquidos , Neoplasias Bucais , Fotoquimioterapia , Animais , Suínos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Azul de Metileno , Neoplasias Bucais/tratamento farmacológico
11.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629040

RESUMO

Zinc ferrite nanoparticles (ZFO NPs) are a promising magneto-crystalline platform for nanomedicine-based cancer theranostics. ZFO NPs synthesized using co-precipitation method are characterized using different techniques. UV-visible spectroscopy exhibits absorption peaks specific for ZFO. Raman spectroscopy identifies Raman active, infrared active, and silent vibrational modes while Fourier transforms infrared spectroscopic (FTIR) spectra display IR active modes that confirm the presence of ZFO. X-ray diffraction pattern (XRD) exhibits the crystalline planes of single-phase ZFO with a face-centered cubic structure that coincides with the selected area electron diffraction pattern (SAED). The average particle size according to high-resolution transmission electron microscopy (HR-TEM) is 5.6 nm. X-ray photoelectron spectroscopy (XPS) signals confirm the chemical states of Fe, Zn, and O. A superconducting quantum interference device (SQUID) displays the magnetic response of ZFO NPs, showing a magnetic moment of 45.5 emu/gm at 70 kOe. These ZFO NPs were then employed for comparative cytotoxicity evaluation using MTT, crystal violet, and LDH assays on breast adenocarcinoma epithelial cell (MCF-7), triple-negative breast cancer lines (MDA-MB 231), and human embryonic kidney cell lines (HEK-293). Flow cytometric analysis of all the three cell lines were performed in various concentrations of ZFO NPs for automated cell counting and sorting based on live cells, cells entering in early or late apoptotic phase, as well as in the necrotic phase. This analysis confirmed that ZFO NPs are more cytotoxic towards triple-negative breast cancer cells (MDA-MB-231) as compared to breast adenocarcinoma cells (MCF-7) and normal cell lines (HEK-293), thus corroborating that ZFO can be exploited for cancer therapeutics.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Violeta Genciana , Zinco , Células HEK293 , Apoptose
12.
Drug Dev Ind Pharm ; 49(6): 416-428, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37278581

RESUMO

OBJECTIVE: The investigation of benznidazole (BZN), excipients, and tablets aims to evaluate their thermal energy and tableting effects. They aim to understand better the molecular and pharmaceutical processing techniques of the formulation. SIGNIFICANCE: The Product Quality Review, part of Good Manufacturing Practices, is essential to highlight trends and identify product and process improvements. METHODS: A set of technique approaches, infrared spectroscopy, X-ray diffraction, and thermal analysis with isoconversional kinetic study, were applied in the protocol. RESULTS: X-ray experiments suggest talc and α-lactose monohydrate dehydration and conversion of ß-lactose to stable α-lactose upon tableting. The signal crystallization at 167 °C in the DSC curve confirmed this observation. A calorimetric study showed a decrease in the thermal stability of BZN tablets. Therefore, the temperature is a critical process parameter. The specific heat capacity (Cp) of BZN, measured by DSC, was 10.04 J/g at 25 °C and 9.06 J/g at 160 °C. Thermal decomposition required 78 kJ mol-1. Compared with the tablet (about 200 kJ mol-1), the necessary energy is two-fold lower, as observed in the kinetic study by non-isothermal TG experiment at 5; 7.5; 10; and 15 °C min-1. CONCLUSIONS: These results indicate the necessity of considering the thermal energy and tableting effects of BZN manufacturing, which contributes significantly to the molecular mechanistic understanding of this drug delivery system.


Assuntos
Química Farmacêutica , Temperatura Alta , Lactose/química , Comprimidos/química
13.
Int J Pharm ; 640: 123019, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37149114

RESUMO

Liquid crystalline nanoparticles (LCNs) are an attractive drugs topical delivery system due to the great internal ordering, wide interfacial area and structural similarities with the skin. In this work, LCNs were designed to encapsulate triptolide (TP) and to complex on its surface small interfering RNAs (siRNA) targeting TNF-α and IL-6, aiming at topical co-delivery and regulating multi-targets in psoriasis. These multifunctional LCNs showed appropriate physicochemical properties for topical application, such as a mean size of 150 nm, low polydispersion, TP encapsulation greater than 90% and efficient complexation with siRNA. The internal reverse hexagonal mesostructure of LCNs was confirmed by SAXS while their morphology was assessed by cryo-TEM. In vitro permeation studies revealed an increase of more than 20-fold in the distribution of TP through the porcine epidermis/dermis was achieved after the application of LCN-TP or LCN TP in hydrogel. In cell culture, LCNs showed good compatibility and rapid internalization, which was attributed to macropinocytosis and caveolin-mediated endocytosis. Anti-inflammatory potential of multifunctional LCNs was assessed by reducing of TNF-α, IL-6, IL-1ß and TGF-ß1 levels in LPS-stimulated macrophages. These results support the hypothesis that the co-delivery of TP and siRNAs by LCNs may be a new strategy for psoriasis topical therapy.


Assuntos
Nanopartículas , Psoríase , Suínos , Animais , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa , Interleucina-6 , Espalhamento a Baixo Ângulo , Difração de Raios X , Psoríase/tratamento farmacológico , Nanopartículas/química
14.
Entropy (Basel) ; 25(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36832624

RESUMO

High entropy alloys (HEAs) of the type CrCuFeNiTi-Alx were processed through mechanical alloying. The aluminum concentration was varied in the alloy, to determine its effect on the HEAs' microstructure, phase formation, and chemical behavior. X-ray diffraction studies performed on the pressureless sintered samples revealed the presence of structures composed of face centered cubic (FCC) and body centered cubic (BCC) solid-solution phases. Since the valences of the elements that form the alloy are different, a nearly stoichiometric compound was obtained, increasing the final entropy of the alloy. The aluminum was partly responsible for this situation, which also favored transforming part of the FCC phase into BCC phase on the sintered bodies. X-ray diffraction also indicated the formation of different compounds with the alloy's metals. Bulk samples exhibited microstructures with different phases. The presence of these phases and the results of the chemical analyses revealed the formation of alloying elements that, in turn, formed a solid solution and, consequently, had a high entropy. From the corrosion tests, it could be concluded that the samples with a lower aluminum content were the most resistant to corrosion.

15.
Food Sci Technol Int ; 29(5): 491-500, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35440182

RESUMO

To increase hydration properties and soluble fiber content, okara with different moisture contents (30, 35, and 40%) was extruded in single-screw equipment, keeping the temperature (120 °C) and screw speed (115 rpm) fixed. The physical, chemical, and techno-functional properties of extruded and non-extruded okara (control) were evaluated. The microstructure, color, chemical composition, and techno-functional properties of okara were altered after extrusion. The extruded samples showed general microstructure aspects similar between them, with an irregular and rough surface, striated parts, orifices, and some agglomerated particles with distorted, compact, and amorphous appearance, different from control. Among the modified samples, okara extruded with 30% moisture showed more intense changes in relation to the samples extruded with 35 and 40% moisture. Based on the results, it can be inferred that okara extruded with 35% moisture is the most suitable. Under this condition, there was an increase of 80% in soluble fiber content, 45% in water absorption and holding capacity and 11% in solid stability in water, the maintenance of swelling and oil absorption and holding capacities and the reduction of protein solubility in water. X-ray diffraction analysis showed that crystalline phase was affected by extrusion.


Assuntos
Glycine max , Água , Fenômenos Químicos , Solubilidade , Temperatura , Água/análise
16.
IUCrdata ; 8(Pt 11): x231018, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38313067

RESUMO

A second crystalline modification of the title compound, C12H19N3S [common name: cis-jasmone thio-semicarbazone] was crystallized from tetra-hydro-furane at room temperature. There is one crystallographic independent mol-ecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio = 0.590 (14):0.410 (14)]. The thio-semicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0463 (14) Š[r.m.s.d. = 0.0324 Å], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to 0.0465 (15) Š[r.m.s.d. = 0.0338 Å]. The mol-ecule is not planar due to the dihedral angle between these two fragments, which is 8.93 (1)°, and due to the sp 3-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the mol-ecules are connected by N-H⋯S and C-H⋯S inter-actions, with graph-set motifs R 2 2(8) and R 2 1(7), building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are H⋯H (67.8%), H⋯S/S⋯H (15.0%), H⋯C/C⋯H (8.5%) and H⋯N/N⋯H (5.6%) [only non-disordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thio-semicarbazone structure, the first one being published recently [Orsoni et al. (2020 ▸). Int. J. Mol. Sci. 21, 8681-8697] with the crystals obtained in ethanol at 273 K.

17.
Braz. J. Pharm. Sci. (Online) ; 59: e21308, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439523

RESUMO

Abstract Development of ceftriaxone loaded nanostructured lipid carriers to increase permeability of ceftriaxone across uninflamed meninges after parenteral administration. Lipids were selected by theoretical and experimental techniques and optimization of NLCs done by response surface methodology using Box-Behnken design. The Δδt for glyceryl monostearate and Capryol90 were 4.39 and 2.92 respectively. The drug had maximum solubility of 0.175% (w/w) in glycerol monostearate and 2.56g of Capryol90 dissolved 10mg of drug. The binary mixture consisted of glyceryl monostearate and Capryol90 in a ratio of 70:30. The optimized NLCs particle size was 130.54nm, polydispersity index 0.28, % entrapment efficiency 44.32%, zeta potential -29.05mV, and % drug loading 8.10%. In vitro permeability of ceftriaxone loaded NLCs was 5.06x10-6 cm/s; evidently, the NLCs pervaded through uninflamed meninges, which, was further confirmed from in vivo biodistribution studies. The ratio of drug concentration between brain and plasma for ceftriaxone loaded NLCs was 0.29 and that for ceftriaxone solution was 0.02. With 44.32% entrapment of the drug in NLCs the biodistribution of ceftriaxone was enhanced 7.9 times compared with that of ceftriaxone solution. DSC and XRD studies revealed formation of imperfect crystalline NLCs. NLCs improved permeability of ceftriaxone through uninflamed meninges resulting in better management of CNS infections.


Assuntos
Ceftriaxona/agonistas , Triagem/classificação , Lipídeos/análise , Difração de Raios X/instrumentação , Técnicas In Vitro/métodos , Infecções do Sistema Nervoso Central/patologia
18.
In. Seibert, Janaína B.; Amparo, Tatiane R.; Almeida, Tamires Cunha; Souza, Gustavo Henrique B. de; Ruela, André Luis M.; Santos, Orlando D. H. dos. Nanostructured liquid-crystalline systems containing natural compounds. , , 2023. .
Monografia em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5258

RESUMO

Liquid-crystalline systems are structures that represent an intermediate physical state between isotropic liquid and solid crystal. This particularity brings interesting characteristics of both states such as improved stability, molecular organization, high solubilization potential, diffusion control, and interaction with biological membranes, among others. This chapter describes the structure of liquid-crystalline systems, their classification according to the kind of molecular organization, the material that could be used for liquid crystal formation, the techniques that are applied for characterization, and the process of production. Moreover, the potential of nanostructured liquid-crystalline systems for the delivery of natural products, especially plant-based formulations, is discussed, highlighting the actual state of the art and examples from the literature. Finally, future prospectives for research and application of nanostructured liquid-crystalline systems as formulation of medicines and cosmetic products discussed.

19.
Rev. bras. oftalmol ; 82: e0050, 2023. graf
Artigo em Português | LILACS | ID: biblio-1521785

RESUMO

RESUMO Ao longo da vida, o cristalino produz novas fibras dispostas de forma concêntrica, que aumentam seu diâmetro anteroposterior e peso, tornando seu núcleo mais compacto e endurecido. A catarata hipermadura é uma forma de progressão avançada dessa proliferação de fibras, que pode desencadear uma variedade de complicações. A ruptura espontânea da cápsula anterior do cristalino, evoluindo com deslocamento anterior do núcleo, é uma complicação rara e com poucos casos publicados na literatura. Descrevemos o caso de uma paciente do sexo feminino, 68 anos, que apresentou ruptura espontânea da cápsula anterior do cristalino com deslocamento anterior do núcleo em olho esquerdo sem histórico de trauma ocular. A paciente foi submetida à facoemulsificação do cristalino e ao controle da pressão intraocular, evoluindo com melhora do quadro clínico.


ABSTRACT Throughout life, the lens produces new fibers arranged concentrically, which increase its anteroposterior diameter and weight, making its nucleus more compact and hardened. Hypermature cataract is an advanced stage of this fiber proliferation, which can trigger a variety of complications. Spontaneous rupture of the anterior lens capsule evolving with anterior displacement of the nucleus is a rare complication, with few cases published in the literature. We describe the case of a 68-year-old female patient, who presented spontaneous rupture of the anterior lens capsule with anterior displacement of the nucleus in the left eye, without a history of ocular trauma. The patient underwent phacoemulsification and clinical control of intraocular pressure, improving her condition.


Assuntos
Humanos , Feminino , Idoso , Catarata/complicações , Subluxação do Cristalino/diagnóstico , Subluxação do Cristalino/etiologia , Cápsula Anterior do Cristalino/patologia , Ruptura Espontânea/cirurgia , Catarata/terapia , Glaucoma Neovascular , Subluxação do Cristalino/cirurgia , Ultrassonografia , Facoemulsificação/métodos , Microscopia com Lâmpada de Fenda , Pressão Intraocular , Núcleo do Cristalino/patologia , Câmara Anterior/patologia
20.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432312

RESUMO

A series of six polybenzylic dendrons with an alkynyl focal point were synthesized for their incorporation to gold nanoparticles. Five of these compounds showed columnar mesomorphism in a wide range of temperatures. These dendrons were reacted with gold nanoparticles stabilized with a combination of a dodecanethiol and 11-azidoundecane-1-thiol. The azido group of the last compound allowed the functionalization of the nanoparticles with the six polybenzylic dendrons by 1,3-dipolar cycloaddition between their alkynyl groups and the terminal azido groups of the thiols. A high efficiency of the cycloaddition process (47-69%) was confirmed by several experimental techniques and no decomposition or aggregation phenomena were detected in the dendron-coated nanoparticles. The involved mechanism and the resulting percentage composition of the final materials are discussed. The results of the ulterior growth of the nanoparticles by thermal treatment are influenced by the size and the shape of the dendron and the temperature of the process. The structures of the final nanoparticles were investigated by TEM, DSC, TGA, NMR and UV-Vis spectroscopy. These nanoparticles do not show liquid crystal properties. However, a melting process between a crystalline and a fluid phase is observed. In the solid phase, the nanomaterials prepared show a short-range interaction between nanoparticles with a 2D local hexagonal order. A near-field effect was observed in the UV-vis spectra by coupling of different surface plasmon resonance bands (SPR) probably due to the short-range interactions. The main novelty of this work lies in the scarcity of previous studies of gold nanoparticles coated with dendrons forming themselves columnar mesophases. Most of the studies reported in the literature deal with gold nanoparticles coated with calamitic mesogens. Additionally, the effect of the thermal treatment, which in a previous paper was shown to increase the mean size of the nanoparticles without increasing their size polydispersity, has been studied in these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA