Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 116(4): e22143, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166352

RESUMO

JH and ecdysone signaling regulate insect metamorphosis through the master transcription factors, Krüppel homolog 1 (kr-h1), Broad-Complex (BR-C), and E93. Ecdysone signaling activates successively expressed ecdysone responsive transcription factors (ERTFs), and the interaction between ERTFs determines the expression profiles of ERTFs themselves. Through the construction of expressed sequence tag (EST) database of Bombyx mori from many tissues, the existence of a large number of cuticular protein (CP) genes was identified in wing disc cDNA library of the 3 days after the start of wandering (W3). From the genomic analysis, 12 types of CP clusters of CP genes were identified. DNA sequences of CP genes revealed the duplication of CP genes, which suggests to reflect the insect evolution. These CP genes responded to ecdysone and ecdysone pulse; therefore, CP genes were applied for the analysis of transcriptional regulation by ERTF. The binding sites of ERTF have been reported to exist upstream of CP genes in several insects, and the activation of CP genes occurred by the binding of ERTFs. Through the analysis, the following were speculated; the successive appearance of ERTFs and the activation of target genes resulted in the successively produced CPs and cuticular layer. The sequence of the ERTF and CP gene expression was the same at larval to pupal and pupal to adult transformation. The involvement of several ERTFs in one CP gene expression was also clarified; BmorCPG12 belongs to group showing expression peak at W3 and was regulated by two ERTFs; BHR3 and ßFTZ-F1, BmorCPH2 belongs to group showing expression peak at P0 and was regulated by two ERTFs; ßFTZ-F1 and E74A. The involvement of BHR39 as a negative regulator of CP gene expression was found. Larval, pupal, and adult cuticular layers were supposed to be constructed by the combination of different and similar types of CPs, through the expressed timing of CP genes.


Assuntos
Bombyx , Proteínas de Insetos , Animais , Bombyx/genética , Bombyx/metabolismo , Bombyx/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Genoma de Inseto , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Regulação da Expressão Gênica , Metamorfose Biológica/genética
2.
Int J Biol Macromol ; 276(Pt 1): 133402, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925177

RESUMO

Cuticular proteins, in conjunction with chitin, compose the insect exoskeleton, and play a key role in the growth, development, and molting of insects. However, the specific functions of most cuticular protein genes in the growth, development, and reproductive processes of the pea aphid (Acyrthosiphon pisum) remain unclear. In this study, we have identified six cuticular protein genes in the pea aphid, namely ApCP7, ApCP10, ApCP19, ApCP19.8-like, ApCP35 and ApCP62. We found that the expression levels of six genes were highly expressed during the adult stage, and except for ApCP10, which is highly expressed in the pea aphid cuticle, other genes were highly expressed in the ovaries. Subsequently, we observed that the survival rate and fecundity of pea aphid were significantly lower than those of the control group after silencing ApCP7 and ApCP62 through RNA interference. Furthermore, when ApCP7 transcript levels were reduced, aphid encountered difficulties in molting, were smaller in body size, and exhibited a darker body color. These results indicate that ApCP7 and ApCP62 are involved in the development and reproduction of pea aphid, and could be used as RNAi targets for controlling pea aphid.


Assuntos
Afídeos , Proteínas de Insetos , Muda , Reprodução , Animais , Afídeos/genética , Afídeos/fisiologia , Muda/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Reprodução/genética , Interferência de RNA , Filogenia , Fertilidade/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento
3.
Artigo em Inglês | MEDLINE | ID: mdl-38797005

RESUMO

Chironomidae, non-biting midges, a diverse and abundant insect group in global aquatic ecosystems, represent an exceptional model for investigating genetic adaptability mechanisms in aquatic insects due to their extensive species diversity and resilience to various environmental conditions. The cuticle in insects acts as the primary defense against ecological pressures. Cuticular Proteins (CPs) determine cuticle characteristics, facilitating adaptation to diverse challenges. However, systematic annotation of CP genes has only been conducted for one Chironomidae species, Propsilocerus akamusi, by our team. In this study, we expanded this annotation by identifying CP genes in eight additional Chironomidae species, covering all Chironomidae species with available genome data. We identified a total of 889 CP genes, neatly categorized into nine CP families: 215 CPR RR1 genes, 272 CPR RR2 genes, 23 CPR RR3 genes, 21 CPF genes, 16 CPLCA genes, 19 CPLCG genes, 28 CPLCP genes, 77 CPAP genes, and 37 Tweedle genes. Subsequently, we conducted a comprehensive phylogenetic analysis of CPs within the Chironomidae family. This expanded annotation of CP genes across diverse Chironomidae species significantly contributes to our understanding of their remarkable adaptability.


Assuntos
Chironomidae , Evolução Molecular , Proteínas de Insetos , Filogenia , Animais , Chironomidae/genética , Chironomidae/classificação , Proteínas de Insetos/genética , Genoma de Inseto , Anotação de Sequência Molecular , Adaptação Fisiológica
4.
mBio ; 15(5): e0321123, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564693

RESUMO

Most arthropod-borne viruses produce intermittent epidemics in infected plants. However, the underlying mechanisms of these epidemics are unclear. Here, we demonstrated that rice stripe mosaic virus (RSMV), a viral pathogen, significantly increases the mortality of its overwintering vector, the leafhopper species Recilia dorsalis. Cold-stress assays indicated that RSMV reduces the cold tolerance of leafhoppers, a process associated with the downregulation of leafhopper cuticular protein genes. An RSMV-derived small RNA (vsiR-t00355379) was found to facilitate the downregulation of a leafhopper endocuticle gene that is mainly expressed in the abdomen (named RdABD-5) and is conserved across dipteran species. The downregulation of RdABD-5 expression in R. dorsalis resulted in fewer and thinner endocuticle lamellae, leading to decreased cold tolerance. This effect was correlated with a reduced incidence rate of RSMV in early-planted rice plants. These findings contribute to our understanding of the mechanism by which viral pathogens reduce cold tolerance in arthropod vectors and suggest an approach to managing the fluctuating prevalence of arboviruses. IMPORTANCE: Increasing arthropod vector dispersal rates have increased the susceptibility of crop to epidemic viral diseases. However, the incidence of some viral diseases fluctuates annually. In this study, we demonstrated that a rice virus reduces the cold tolerance of its leafhopper vector, Recilia dorsalis. This effect is linked to the virus-derived small RNA-mediated downregulation of a gene encoding a leafhopper abdominal endocuticle protein. Consequently, the altered structural composition of the abdominal endocuticle reduces the overwinter survival of leafhoppers, resulting in a lower incidence of RSMV infection in early-planted rice plants. Our findings illustrate the important roles of RNA interference in virus-vector insect-environment interactions and help explain the annual fluctuations of viral disease epidemics in rice fields.


Assuntos
Temperatura Baixa , Hemípteros , Oryza , Doenças das Plantas , Animais , Hemípteros/virologia , Doenças das Plantas/virologia , Oryza/virologia , Tenuivirus/genética , Tenuivirus/fisiologia , Insetos Vetores/virologia , Insetos Vetores/fisiologia
5.
Pestic Biochem Physiol ; 199: 105775, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458682

RESUMO

Insect cuticular protein (ICP) plays an important role in insect growth and development. However, research on the role of ICP in insecticide resistance is very limited. In this study, insect cuticular protein genes LCP17 and SgAbd5 were cloned and characterized in Helicoverpa armigera based on previous transcriptome data. The functions of LCP17 and SgAbd5 genes in fenvalerate resistance were assessed by RNA interference (RNAi), and their response to fenvalerate was further detected. The results showed that LCP17 and SgAbd5 were overexpressed in the fenvalerate-resistant strain comparing with a susceptible strain. The open reading frames of LCP17 and SgAbd5 genes were 423 bp and 369 bp, encoding 141 and 123 amino acids, respectively. LCP17 and SgAbd5 genes were highly expressed in the larval stage, but less expressed in the adult and pupal stages. The expression level of LCP17 and SgAbd5 genes increased significantly after fenvalerate treatment at 24 h. When the cotton bollworms larvae were exposed to fenvalerate at LD50 level, RNAi-mediated silencing of LCP17 and SgAbd5 genes increased the mortality from 50.68% to 68.67% and 63.89%, respectively; the mortality increased to even higher level, which was 73.61%, when these two genes were co-silenced. Moreover, silencing of these two genes caused the cuticle lamellar structure to become loose, which led to increased penetration of fenvalerate into the larvae. The results suggested that LCP17 and SgAbd5 may be involved in the resistance of cotton bollworm to fenvalerate, and LCP17 and SgAbd5 could serve as potential targets for H. armigera control.


Assuntos
Inseticidas , Mariposas , Nitrilas , Piretrinas , Animais , Inseticidas/toxicidade , Helicoverpa armigera , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Mariposas/genética , Mariposas/metabolismo , Larva/genética , Larva/metabolismo
6.
Int J Biol Macromol ; 254(Pt 1): 127642, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898258

RESUMO

Overuse of insecticides has led to severe environmental problems. Insect cuticle, which consists mainly of chitin, proteins and a thin outer lipid layer, serves multiple functions. Its prominent role is as a physical barrier that impedes the penetration of xenobiotics, including insecticides. Blattella germanica (L.) is a major worldwide indoor pest that causes allergic disease and asthma. Extensive use of pyrethroid insecticides, including ß-cypermethrin, has selected for the rapid and independent evolution of resistance in cockroach populations on a global scale. We demonstrated that BgCPLCP1, the first CPLCP (cuticular proteins of low complexity with a highly repetitive proline-rich region) family cuticular protein in order Blattodea, contributes to insecticide penetration resistance. Silencing BgCPLCP1 resulted in 85.0 %-85.7 % and 81.0 %-82.0 % thinner cuticle (and especially thinner endocuticle) in the insecticide-susceptible (S) and ß-cypermethrin-resistant (R) strains, respectively. The thinner and more permeable cuticles resulted in 14.4 % and 20.0 % lower survival of ß-cypermethrin-treated S- and R-strain cockroaches, respectively. This study advances our understanding of cuticular penetration resistance in insects and opens opportunities for the development of new efficiently and environmentally friendly insecticides targeting the CPLCP family of cuticular proteins.


Assuntos
Blattellidae , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Blattellidae/genética , Alérgenos
7.
Insects ; 14(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132614

RESUMO

Resilin is an elastic protein that is vital to insects' vigorous movement. Canonical resilin proteins possess the R&R Consensus, a chitin-binding domain conserved in a family of cuticular proteins, and highly repetitive sequences conferring elastic properties. In the malaria vector mosquito, Anopheles gambiae, however, a cuticular protein has been found that has an R&R Consensus resembling that of resilin but lacks the repetitive sequences (here, we call it resilin-related or resilin-r). The relationship between resilin-r and resilin was unclear. It was also unknown whether resilin-r is conserved in mosquitoes. In this paper, phylogenetic and structural analyses were performed to reveal the relationship of resilin homologous proteins from holometabolous insects. Their chitin-binding abilities were also assessed. A resilin-r was found in each mosquito species, and these proteins constitute a clade with resilin from other insects based on the R&R Consensus sequences, indicating an evolutionary relationship between resilin-r and resilin. The resilin-r showed chitin-binding activity as same as resilin, but had distinct structural features from resilin, suggesting that it plays specialized roles in the mosquito cuticle. Another resilin-like protein was found to exist in each holometabolous insect that possesses resilin-like repetitive sequences but lacks the R&R Consensus. These results suggest that similar evolutionary events occurred to create resilin-r and resilin-like proteins.

8.
BMC Biol ; 21(1): 187, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667263

RESUMO

BACKGROUND: The continuously developing pesticide resistance is a great threat to agriculture and human health. Understanding the mechanisms of insecticide resistance is a key step in dealing with the phenomenon. Insect cuticle is recently documented to delay xenobiotic penetration which breaks the previous stereotype that cuticle is useless in insecticide resistance, while the underlying mechanism remains scarce. RESULTS: Here, we find the integument contributes over 40.0% to insecticide resistance via different insecticide delivery strategies in oriental fruit fly. A negative relationship exists between cuticle thickening and insecticide penetration in resistant/susceptible, also in field strains of oriental fruit fly which is a reason for integument-mediated resistance. Our investigations uncover a regulator of insecticide penetration that miR-994 mimic treatment causes cuticle thinning and increases susceptibility to malathion, whereas miR-994 inhibitor results in opposite phenotypes. The target of miR-994 is a most abundant cuticle protein (CPCFC) in resistant/susceptible integument expression profile, which possesses capability of chitin-binding and influences the cuticle thickness-mediated insecticide penetration. Our analyses find an upstream transcriptional regulatory signal of miR-994 cascade, long noncoding RNA (lnc19419), that indirectly upregulates CPCFC in cuticle of the resistant strain by sponging miR-994. Thus, we elucidate the mechanism of cuticular competing endogenous RNAs for regulating insecticide penetration and demonstrate it also exists in field strain of oriental fruit fly. CONCLUSIONS: We unveil a regulatory axis of lnc19419 ~ miR-994 ~ CPCFC on the cuticle thickness that leads to insecticide penetration resistance. These findings indicate that competing endogenous RNAs regulate insecticide resistance by modulating the cuticle thickness and provide insight into the resistance mechanism in insects.


Assuntos
Inseticidas , MicroRNAs , Humanos , Animais , Inseticidas/farmacologia , Malation/farmacologia , Pele , Agricultura , Drosophila , MicroRNAs/genética
9.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108155

RESUMO

Antheraea pernyi is one of the most famous edible and silk-producing wild silkworms of Saturniidae. Structural cuticular proteins (CPs) are the primary component of insect cuticle. In this paper, the CPs in the genome of A. pernyi were identified and compared with those of the lepidopteran model species Bombyx mori, and expression patterns were analyzed based on the transcriptomic data from the larval epidermis/integument (epidermis in the following) and some non-epidermis tissues/organs of two silkworm species. A total of 217 CPs was identified in the A. pernyi genome, a comparable number to B. mori (236 CPs), with CPLCP and CPG families being the main contribution to the number difference between two silkworm species. We found more RR-2 genes expressed in the larval epidermis of fifth instar of A. pernyi than B. mori, but less RR-2 genes expressed in the prothoracic gland of A. pernyi than B. mori, which suggests that the hardness difference in the larval epidermis and prothoracic gland between the two species may be caused by the number of RR-2 genes expressed. We also revealed that, in B. mori, the number of CP genes expressed in the corpus allatum and prothoracic gland of fifth instar was higher than that in the larval epidermis. Our work provided an overall framework for functional research into the CP genes of Saturniidae.


Assuntos
Bombyx , Mariposas , Humanos , Animais , Transcriptoma , Mariposas/metabolismo , Bombyx/metabolismo , Seda/química , Perfilação da Expressão Gênica , Larva/genética , Larva/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
10.
J Econ Entomol ; 116(3): 963-972, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36964708

RESUMO

As the most outer layer between itself and the environment, integuments are necessary for insects with various important functions. Cuticular proteins (CPs) are the main components in integuments, while the functions of CP genes remain unknown in Mythimna separata (Walker), which is a devastating agricultural pest. In this study, 79 CP genes were identified from the transcriptomes of larval integuments, 57 of which were from the family containing conserved Rebers & Riddiford (R&R) consensus (CPR family). Amongst these CPRs, 44 genes belonged to the subfamily with RR-1 motif (RR-1 genes) and clustered into three clades, with the top 15 most abundant RR-1 genes identified based on fragments per kilobase per million mapped fragments (FPKM) values. RT-qPCR analysis showed that most of RR-1 genes such as MsCPR1-4 were highly expressed at larval stages and in their integuments. The expression levels of RR-1 genes were generally decreased at the beginning but increased at the late stage of molting process. RNAi was applied for six RR-1 genes, and MsCPR1-4 were knocked down significantly. Silence of MsCPR2 resulted in abnormal integument formed after molting, while knockdown of MsCPR3 and MsCPR4 led to failure of molting, respectively. No phenotype was obtained for the RNAi of MsCPR1. Therefore, the expression of RR-1 genes and their functions were analyzed in the development of integuments in M. separata, providing new insights of RR-1 genes and potential targets for the development of growth regulators and new insecticides for M. separata.


Assuntos
Inseticidas , Mariposas , Animais , Mariposas/genética , Interferência de RNA , Larva/genética , Transcriptoma
11.
Front Insect Sci ; 3: 1124278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469461

RESUMO

Verson's glands are segmental pairs of dermal glands attached to the epidermis in lepidopteran larvae. They produce macromolecules during intermolt period and empty them during each molt. Morphological, histochemical, developmental, and protein analysis studies have been conducted to determine the functions of Verson's glands. However, the exact role of Verson's glands remains unclear. In our previous study, a strain of transgenic fall armyworm, Spdoptera frugiperda expressing green fluorescence protein (GFP) and Systemic RNA interference defective protein 1 (SID1) from Caenorhabditis elegans was established to improve RNA interference (RNAi) efficiency. Unexpectedly, we found that GFP fluorescence was significantly brighter in Verson's glands than in other tissues. Also, RNAi efficiency improved more in Verson's glands than in other tissues. We took advantage of improved RNAi efficiency to explore the function of Verson's glands. RNA-seq analysis revealed that genes highly expressed in Verson's glands code for cuticular proteins, molting fluid proteins, hemolymph proteins, and antimicrobial peptides. Injection of dsRNA targeting essential genes, inhibitor of apoptosis (IAP), Actin, and vacuolar-type ATPase (VATPase) interfered with Verson's glands growth. These results revealed that Verson's glands may contribute to hemolymph, cuticle, molting fluid, and immune response during molting. This study also provide useful tools for future research in identifying the physiological role of Verson's glands in lepidopteran insects.

12.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499662

RESUMO

To avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown. The acrostyle, a cuticular organ located at the tip of maxillary stylets that transiently binds plant viruses via its stylin proteins, may participate in this specific delivery process. Here, we demonstrate that Mp10, a saliva effector released into the plant cytoplasm during aphid probing, binds to the acrostyles of Acyrthosiphon pisum and Myzus persicae. The effector probably interacts with Stylin-03 as a lowered Mp10-binding to the acrostyle was observed upon RNAi-mediated reduction in Stylin-03 production. In addition, Stylin-03 and Stylin-01 RNAi aphids exhibited changes in their feeding behavior as evidenced by electrical penetration graph experiments showing longer aphid probing behaviors associated with watery saliva release into the cytoplasm of plant cells. Taken together, these data demonstrate that the acrostyle also has effector binding capacity and supports its role in the delivery of aphid effectors into plant cells.


Assuntos
Afídeos , Vírus de Plantas , Animais , Afídeos/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Vírus de Plantas/metabolismo , Plantas/metabolismo
13.
Int J Biol Macromol ; 223(Pt A): 555-566, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36356871

RESUMO

The insect cuticle is a sophisticated chitin-protein extracellular structure for mutable functions. The cuticles varied their structures and properties in different species, and the same species but in different regions or at different stages, to fill the requirements of different functions. The alteration of cuticle structures may also be induced due to challenges by some environmental crises, such as pollution exposures. The physical properties of the cuticle were determined by the cuticle proteins (CPs) they contain. The cuticle proteins are large protein groups in all insects, which are commonly divided into different families according to their conserved protein sequence motifs. Although Chironomidae is an abundant and universal insect in global aquatic ecosystems and a popular model for aquatic toxicology, no systematic annotation of CPs was done for any species in Chironomidae before. In this work, we annotated the CP genes of Propsilocerus akamusi, the most abundant Chironomidae species in Asia. A total of 160 CP genes were identified, and 97 of them could be well classified into eight CP families: 76 CPR genes can be subdivided into three groups (further divided into three subgroups: 36 RR1 genes, 37 RR2 genes, and 3 RR3 genes), 2 CPF genes, 3 CPLCA genes, 1 CPLCG gene, 8 CPAP genes, and 3 Tweedle genes. Additionally, we analyzed the response of P. akamusi CP genes at expression level to Cu exposure, which is related to the high heavy metal tolerance and the earlier onset of pupariation in heavy metal polluted water.


Assuntos
Chironomidae , Metais Pesados , Humanos , Animais , Proteínas de Insetos/genética , Ecossistema , Chironomidae/genética , Perfilação da Expressão Gênica , Metais Pesados/toxicidade , Metais Pesados/metabolismo
14.
Insects ; 13(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292906

RESUMO

Apidermins (APDs) are known as structural cuticular proteins in insects, but their additional roles are poorly understood. In this study, we characterized the honeybee, Apis mellifera, APD 2 (AmAPD 2), which displays activity suggesting antimicrobial properties. In A. mellifera worker bees, the AmAPD 2 gene is transcribed in the epidermis, hypopharyngeal glands, and fat body, and induced upon microbial ingestion. Particularly in the epidermis of A. mellifera worker bees, the AmAPD 2 gene showed high expression and responded strongly to microbial challenge. Using a recombinant AmAPD 2 peptide, which was produced in baculovirus-infected insect cells, we showed that AmAPD 2 is heat-stable and binds to live bacteria and fungi as well as carbohydrates of microbial cell wall molecules. This binding action ultimately induced structural damage to microbial cell walls, which resulted in microbicidal activity. These findings demonstrate the antimicrobial role of AmAPD 2 in honeybees.

15.
Insect Mol Biol ; 31(4): 519-532, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403301

RESUMO

Cuticular proteins (CPs) play important roles in insect growth and development. However, it is unknown whether CPs are related to heat tolerance. Cnaphalocrocis medinalis, a serious pest of rice, occurs in summer and exhibits strong adaptability to high temperature, but the underlying mechanism is unclear. Here, the role of CP genes in heat acclimation was studied. Heat tolerance of the heat-acclimated larvae was significantly stronger than the unacclimated larvae. The cuticular protein content in the heat-acclimated larvae was higher than that of the unacclimated larvae. 191 presumed CP genes of C. medinalis (CmCPs) were identified. Expression patterns of 14 CmCPs were different between the heat acclimated (S39) and unacclimated (S27) larvae under heat stress. CmCPs were specifically expressed in epidermis and the head except CmCPR20 mainly expressed in Malpighian tubules. CmCPR20 was upregulated in S39 while downregulated in S27, but CmTweedle1 and CmCPG1 were upregulated in S27 and downregulated in S39. RNAi CmTweedle1 or CmCPG1 remarkably decreased heat tolerance and cuticular protein content of the heat-acclimated larvae but not the unacclimated larvae. RNAi CmCPR20 decreased heat tolerance and cuticular protein content of the unacclimated larvae but not the heat-acclimated larvae. CmTweedle1 and CmCPG1 genes involve heat acclimation of C. medinalis.


Assuntos
Aquecimento Global , Mariposas , Aclimatação , Animais , Insetos , Larva/genética , Mariposas/metabolismo
16.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35088829

RESUMO

A long-standing view in the field of evo-devo is that insect forewings develop without any Hox gene input. The Hox gene Antennapedia (Antp), despite being expressed in the thoracic segments of insects, has no effect on wing development. This view has been obtained from studies in two main model species: Drosophila and Tribolium. Here, we show that partial loss of function of Antp resulted in reduced and malformed adult wings in Bombyx, Drosophila and Tribolium. Antp mediates wing growth in Bombyx by directly regulating the ecdysteriod biosynthesis enzyme gene (shade) in the wing tissue, which leads to local production of the growth hormone 20-hydroxyecdysone. Additional targets of Antp are wing cuticular protein genes CPG24, CPH28 and CPG9, which are essential for wing development. We propose, therefore, that insect wing development occurs in an Antp-dependent manner. This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Asas de Animais/embriologia , Animais , Bombyx , Drosophila , Ecdisterona/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Mutação com Perda de Função , Morfogênese , Tribolium , Asas de Animais/metabolismo
17.
Gene ; 809: 146002, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34648919

RESUMO

We aimed to explain the reason and function of the successive expression of ecdysone-responsive transcription factors (ERTFs) and related cuticular protein (CP) genes during transformation from larva to pupa. The regulation of the expression of CP genes by ERTFs was examined by in vitro wing disc culture and reporter assay using a gene gun transduction system. Two CP genes that showed expression peaks at different stages-BmorCPG12 at W3L and BmorCPH2 at P0 stage-were selected and examined. Reporter constructs conveying putative BHR3, ßFTZ-F1, BHR39, and E74A binding sites of BmorCPG12 and BmorCPH2 showed promoter activity when introduced into wing discs. In the present study, we showed the functioning of the putative BHR3 and E74A binding sites, together with putative ßFTZ-F1 binding sites, on the activation of CP genes, and different ERTF binding sites functioned in one CP gene. From these, we conclude that BHR3, ßFTZ-F1, and E74A that are successively expressed bring about the successive expression of CP genes, resulting in insect metamorphosis. In addition to this, reporter constructs conveying putative BHR39 binding sites of BmorCPG12 and BmorCPH2 showed negative regulation.


Assuntos
Bombyx/genética , Ecdisona/metabolismo , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Bombyx/fisiologia , Ecdisona/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Insetos/metabolismo , Larva/genética , Mutagênese Sítio-Dirigida , Pupa/genética , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento
18.
Insects ; 12(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34821798

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects' protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.

19.
J Invertebr Pathol ; 186: 107674, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606828

RESUMO

The insect cuticle is a composite structure that can further be divided into a few sub-structural layers. Its large moiety comprises a lattice of chitin fibrils and structural proteins, both of which are stabilized by covalent bonding among them. The cuticle covers the whole surface of insect body, and thus has long been suggested for the involvement in defense against entomopathogens, especially entomopathogenic fungi that infect percutaneously. We have been addressing this issue in the past few years and have so far demonstrated experimentally that chitin synthase 1, laccase2 as well as benzoquinone synthesis-related genes of Tribolium castaneum have indispensable roles in the antifungal host defense. In the present study we focused on another major component of the insect cuticular integument, structural cuticular proteins. We chose three genes coding for adult-specific cuticular proteins, namely CPR4, CPR18 and CPR27, and examined their roles in forming immunologically sound adult cuticular integuments. Analyses of developmental expression revealed that the three genes showed high level expression in the pupal stage. These results are consistent with their proposed roles in constructing cuticle of adult beetles. The RNA interference-mediated gene knockdown was employed to silence these genes, and the administration of double strand RNAs in pupae resulted in the adults with malformed elytra. The single knockdown of the three genes attenuated somewhat the defense of the resulting adult beetles against Beauveria bassiana and Metarhizium anisopliae, but statistical analyses indicated no significant differences from controls. In contrast, the double or triple knockdown mutant beetles displayed a drastic disruption of the host defense against the two entomopathogenic fungal species irrespective of the combination of targeted cuticular protein genes, demonstrating the important roles of the three cuticular protein genes in conferring robust antifungal properties on the adult cuticle. Scanning electron microscopic observation revealed that the germination of conidia attached on the adult body surface was still suppressed after the gene knockdown as in the case of wild-type beetles, suggesting that the weakened antifungal phenotypes resulted from the combined knockdown of the adult-specific cuticular protein genes could not be accounted for by the disfunction of secretion/retention of fungistatic benzoquinone derivatives.


Assuntos
Beauveria/fisiologia , Proteínas de Insetos/genética , Metarhizium/fisiologia , Tribolium/genética , Animais , Proteínas de Insetos/metabolismo , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Pupa/microbiologia , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Tribolium/microbiologia
20.
J Proteomics ; 238: 104155, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33610826

RESUMO

Wing discs of Bombyx mori (B. mori) are transformed into wings during metamorphosis via dramatic morphological and structural changes. Mutations in genes related to the wings cause the adults to have altered wing shapes or abnormal wing colour. At present, there are more than 20 wing mutants recorded in the silkworm. However, the key factors that influence B. mori wing development are still unclear. Here, we used the strains +Wes/+Wes and Wes/+Wes that are typical for the normal wing and shriveled wing phenotypes, respectively, to identify differentially expressed proteins by label-free data-independent acquisition (DIA). Ten enriched GO terms and 9 KEGG pathways were identified based on the 3993 proteins in the wings. Among the identified and quantified proteins, 370 differentially expressed proteins (DEPs) were detected (P-value <0.01, |log2FC| > 0.58). Mapping of the DEPs to the reference canonical pathways in KEGG showed that the top 20% of the pathways were related to fatty acid, cutin, suberin and wax biosynthesis, protein processing in endoplasmic reticulum, protein export, etc. Of the 370 DEPs, 238 were down-regulated, and 132 were up-regulated of Wes/+Wes compared with +Wes/+Wes. Numerous cuticular proteins were down-regulated, and fatty metabolism enzymes were up-regulated, in Wes/+Wes compared with +Wes/+Wes. SIGNIFICANCE: The comparative analysis of proteomes suggested that cuticular proteins and fatty metabolism enzymes are the main abnormally expressed proteins in the pupal wings of Wes/+Wes, leading to curly and shrunken wings after moth transformation. Our results also identify the substances affecting the development of silkworm wings from the perspective of proteins. The information from this study is important for further research on the molecular mechanisms of wing development in lepidopteran insects, and these differentially expressed genes may be targets for Lepidoptera pest control.


Assuntos
Bombyx , Animais , Bombyx/genética , Proteínas de Insetos/genética , Lipídeos , Proteoma , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA