Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Biochem J ; 481(19): 1349-1377, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39268843

RESUMO

Cholesterol-dependent cytolysins (CDCs) are the distinct class of ß-barrel pore-forming toxins (ß-PFTs) that attack eukaryotic cell membranes, and form large, oligomeric, transmembrane ß-barrel pores. Listeriolysin O (LLO) is a prominent member in the CDC family. As documented for the other CDCs, membrane cholesterol is essential for the pore-forming functionality of LLO. However, it remains obscure how exactly cholesterol facilitates its pore formation. Here, we show that cholesterol promotes both membrane-binding and oligomerization of LLO. We demonstrate cholesterol not only facilitates membrane-binding, it also enhances the saturation threshold of LLO-membrane association, and alteration of the cholesterol-recognition motif in the LLO mutant (LLOT515G-L516G) compromises its pore-forming efficacy. Interestingly, such defect of LLOT515G-L516G could be rescued in the presence of higher membrane cholesterol levels, suggesting cholesterol can augment the pore-forming efficacy of LLO even in the absence of a direct toxin-cholesterol interaction. Furthermore, we find the membrane-binding and pore-forming abilities of LLOT515G-L516G, but not those of LLO, correlate with the cholesterol-dependent rigidity/ordering of the membrane lipid bilayer. Our data further suggest that the line tension derived from the lipid phase heterogeneity of the cholesterol-containing membranes could play a pivotal role in LLO function, particularly in the absence of cholesterol binding. Therefore, in addition to its receptor-like role, we conclude cholesterol can further facilitate the pore-forming, membrane-damaging functionality of LLO by asserting the optimal physicochemical environment in membranes. To the best of our knowledge, this aspect of the cholesterol-mediated regulation of the CDC mode of action has not been appreciated thus far.


Assuntos
Toxinas Bacterianas , Colesterol , Proteínas de Choque Térmico , Proteínas Hemolisinas , Colesterol/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Membrana Celular/metabolismo , Humanos , Ligação Proteica , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-39285123

RESUMO

The bacterium Streptococcus pneumoniae has become a leading cause of meningitis, sepsis, and bacterial pneumonia worldwide, with increased prevalence of antibiotic-resistant serotypes serving to exacerbate the issue. The main factor responsible for colonization and immune response escape in pneumococcal infections is the secreted molecule pneumolysin, which is a subset within a family of related toxins that form transmembrane pores in biological membranes through cholesterol recognition and binding. The conserved activity and structure of pneumolysin between all observed S. pneumoniae serotypes, along with its requirement for pathogenicity, has made this molecule an attractive target for vaccination, diagnostic, and sequestration platforms, but not yet as a facilitative agent for therapeutic treatment. Consequently, the present work aimed to examine the impact of liposomal cholesterol content for pneumolysin-induced release of the encapsulated antimicrobial peptide nisin. It was determined that a cholesterol content above 45 mol% was necessary to facilitate interactions with both purified pneumolysin toxin and S. pneumoniae culture, demonstrated through enhanced nisin release and a reduction in hemolytic rates upon exposure of the toxin with cholesterol-rich vesicles. Antibacterial testing highlighted the ability of the developed platform to elicit a potent and specific bactericidal response in vitro against cultured S. pneumoniae when compared to a control strain, Staphylococcus epidermidis. It further improved viability of a fibroblast cell line upon S. pneumoniae challenge, outperforming free nisin via the synergistic impact of simultaneous bacterial clearance and pneumolysin neutralization. These findings collectively indicate that cholesterol-rich liposomes hold promise as a selective treatment platform against pneumococcal infections.

3.
Res Microbiol ; : 104231, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197696

RESUMO

Group B Streptococcus (GBS) is the leading cause of neonatal sepsis and meningitis. A major virulence factor is a pigmented beta-haemolytic/cyto-lysin (ß-h/c) toxin with an ornithine rhamnolipid structure. We initially observed that absence of MprF enzyme altered pigmentation and haemolytic activity in GBS. Next, we showed that MprF-dependent lipid lysination contributes to the retention of the ornithine rhamnolipid within GBS membrane. Furthermore, cationic lipidation by MprF altered membrane properties contributing to resistance to the cyclic lipopeptide daptomycin and to acidic pH. This study highlights the importance of cationic lipids in cell envelope homeostasis and in modulating ß-h/c activity.

4.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928408

RESUMO

Trueperella pyogenes is an important opportunistic pathogenic bacterium widely distributed in the environment. Pyolysin (PLO) is a primary virulence factor of T. pyogenes and capable of lysing many different cells. PLO is a member of the cholesterol-dependent cytolysin (CDC) family of which the primary structure only presents a low level of homology with other members from 31% to 45%. By deeply studying PLO, we can understand the overall pathogenic mechanism of CDC family proteins. This study established a mouse muscle tissue model infected with recombinant PLO (rPLO) and its single-point mutations, rPLO N139K and rPLO F240A, and explored its mechanism of causing inflammatory damage. The inflammatory injury abilities of rPLO N139K and rPLO F240A are significantly reduced compared to rPLO. This study elaborated on the inflammatory mechanism of PLO by examining its unit point mutations in detail. Our data also provide a theoretical basis and practical significance for future research on toxins and bacteria.


Assuntos
Proteínas de Bactérias , Proteínas Hemolisinas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Mutação Puntual , Animais , Camundongos , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Inflamação/metabolismo , Inflamação/genética , Potássio/metabolismo , Transdução de Sinais , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Inflamassomos/metabolismo , Humanos
5.
ACS Synth Biol ; 13(7): 2128-2140, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38925629

RESUMO

Cyclic peptides, such as most ribosomally synthesized and post-translationally modified peptides (RiPPs), represent a burgeoning area of interest in therapeutic and biotechnological research because of their conformational constraints and reduced susceptibility to proteolytic degradation compared to their linear counterparts. Herein, an expression system is reported that enables the production of structurally diverse lanthipeptides and derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus, the endoplasmic reticulum, and the plasma membrane is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide-based cyclic peptide inhibitors of native, organelle-specific protein-protein interactions in mammalian systems.


Assuntos
Retículo Endoplasmático , Humanos , Retículo Endoplasmático/metabolismo , Peptídeos Cíclicos/metabolismo , Núcleo Celular/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Processamento de Proteína Pós-Traducional
6.
Chembiochem ; 25(12): e202400212, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38648232

RESUMO

The ß-hemolytic factor streptolysin S (SLS) is an important linear azol(in)e-containing peptide (LAP) that contributes significantly to the virulence of Streptococcus pyogenes. Despite its discovery 85 years ago, SLS has evaded structural characterizing owing to its notoriously problematic physicochemical properties. Here, we report the discovery and characterization of a structurally analogous hemolytic peptide from Enterococcus caccae, termed enterolysin S (ELS). Through heterologous expression, site-directed mutagenesis, chemoselective modification, and high-resolution mass spectrometry, we found that ELS contains an intriguing contiguous octathiazole moiety. The discovery of ELS expands our knowledge of hemolytic LAPs by adding a new member to this virulence-promoting family of modified peptides.


Assuntos
Enterococcus , Enterococcus/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Hemólise/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sequência de Aminoácidos
7.
Methods Protoc ; 6(6)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37987354

RESUMO

Alcohol-associated liver disease (ALD) is a major global health issue, contributing significantly to morbidity and mortality worldwide. Among the ALD subtypes, alcohol-associated hepatitis poses a severe and urgent medical challenge with high short-term mortality rates. Despite extensive research, the current therapeutic approaches for alcohol-associated hepatitis have limited efficacy, necessitating novel interventions. Recent studies have highlighted the crucial role of the gut microbiota in ALD pathogenesis, particularly Enterococcus faecalis (E. faecalis) and its cytolysin exotoxin. This study presents the development of a standardized real-time quantitative polymerase chain reaction (RT-qPCR) assay to detect and quantify cytolysin in fecal samples from patients with alcohol-associated hepatitis. The diagnostic assay allows for an association analysis between cytolysin-positive E. faecalis and disease severity as well as mortality. This assay was developed to standardize the identification of cytolysin-positive patients who can be selected for clinical trials.

8.
J Adv Res ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37689243

RESUMO

INTRODUCTION: The limitations of conventional cancer therapies necessitate target-oriented, highly invasive, and safe treatment approaches. Hence, the intrinsic anti-tumor activity of Salmonella can offer better options to combat cancers. OBJECTIVES: This study aims to utilize attenuated Salmonella and deliver cytolytic protein cytolysin A (ClyA) under quorum sensing (QS) signaling for precise localized expression in tumors but not in healthy organs. METHODS: The therapeutic delivery strain was imposed with tryptophan auxotroph for selective colonization in tumors by trpA and trpE deletion, and lipid-A and O-antigen were altered by pagL and rfaL deletions using lambda red recombination method. The strain was transformed with the designed QS-controlled ClyA expression vector which was validated by western blot. The in vivo passaged therapeutic strain was used for treatment four times at a weekly interval, with a dose of 5 × 106 CFU/mouse for cancer therapy. RESULTS: The attenuated strain induced minimal endotoxicity-related cytokines TNF-α, IL-1ß, and IFN-γ and exhibited adequate colonization despite earlier exposure in mice. The QS-controlled ClyA expression was confirmed by western blot from bacterial cultures grown at different cell densities. The results demonstrated that the in vivo passaged strain preferentially colonized the tumor after vacating the spleen, liver, and lung, leaving no outward histological scars. The anti-cancer effect of the designed construct was evaluated in the murine CT26 colon cancer model. The expression of ClyA increased tumoricidal activity by 67 % compared to vector control. CONCLUSION: Hence, the anti-tumor effect of the engineered Salmonella strain was improved by ClyA expression via QS activation after achieving the threshold bacterial cell density. Further, immunohistochemical staining of the tumor and other organs corroborated the QS-controlled tumor-specific expression of ClyA. Overall, the results imply that the developed anti-cancer Salmonella has low endotoxicity and QS-controlled expression of ClyA as beneficial safety elements and supports recurrent Salmonella inoculation by O-antigen deficiency.

9.
Microbiology (Reading) ; 169(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37702594

RESUMO

Cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins, produced by numerous Gram-positive pathogens. CDCs depend on host membrane cholesterol for pore formation; some CDCs also require surface-associated human CD59 (hCD59) for binding, conferring specificity for human cells. We purified a recombinant version of a putative CDC encoded in the genome of Streptococcus oralis subsp. tigurinus, tigurilysin (TGY), and used CRISPR/Cas9 to construct hCD59 knockout (KO) HeLa and JEG-3 cell lines. Cell viability assays with TGY on wild-type and hCD59 KO cells showed that TGY is a hCD59-dependent CDC. Two variants of TGY exist among S. oralis subsp. tigurinus genomes, only one of which is functional. We discovered that a single amino acid change between these two TGY variants determines its activity. Flow cytometry and oligomerization Western blots revealed that the single amino acid difference between the two TGY isoforms disrupts host cell binding and oligomerization. Furthermore, experiments with hCD59 KO cells and cholesterol-depleted cells demonstrated that TGY is fully dependent on both hCD59 and cholesterol for activity, unlike other known hCD59-dependent CDCs. Using full-length CDCs and toxin constructs differing only in the binding domain, we determined that having hCD59 dependence leads to increased lysis efficiency, conferring a potential advantage to organisms producing hCD59-dependent CDCs.


Assuntos
Citotoxinas , Especificidade de Hospedeiro , Humanos , Linhagem Celular Tumoral , Citotoxinas/genética , Colesterol , Aminoácidos , Antígenos CD59/genética
10.
J Infect Dis ; 228(11): 1610-1620, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37722688

RESUMO

Bacterial vaginosis (BV) is a dysbiotic condition of the vaginal microbiome associated with higher risk of infection by Neisseria gonorrhoeae-the cause of gonorrhea. Here we test if one known facet of BV-the presence of bacterial cytolysins-leads to mobilization of intracellular contents that enhance gonococcal virulence. We cloned and expressed recombinant vaginolysin (VLY), a cytolysin produced by the BV-associated bacterium Gardnerella, verifying that it liberates contents of cervical epithelial (HeLa) cells, while vector control preparations did not. We tested if VLY mediates a well-known gonococcal virulence mechanism-the molecular mimicry of host glycans. To evade host immunity, N. gonorrhoeae caps its lipooligosaccharide (LOS) with α2-3-linked sialic acid. For this, gonococci must scavenge a metabolite made inside host cells. Flow cytometry-based lectin-binding assays showed that gonococci exposed to vaginolysin-liberated contents of HeLa cells displayed greater sialic acid capping of their LOS. This higher level of bacterial sialylation was accompanied by increased binding of the complement regulatory protein factor H, and greater resistance to complement attack. Together these results suggest that cytolytic activities present during BV may enhance the ability of N. gonorrhoeae to capture intracellular metabolites and evade host immunity via glycan molecular mimicry.


Assuntos
Gonorreia , Vaginose Bacteriana , Feminino , Humanos , Neisseria gonorrhoeae , Gardnerella/metabolismo , Células HeLa , Ácido N-Acetilneuramínico/metabolismo , Mimetismo Molecular , Proteínas de Bactérias/genética , Vaginose Bacteriana/microbiologia , Bactérias , Gonorreia/microbiologia , Fator H do Complemento
11.
Infect Immun ; 91(9): e0021323, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37607057

RESUMO

Streptococcus pneumoniae, a common cause of community-acquired bacterial pneumonia, can cross the respiratory epithelial barrier to cause lethal septicemia and meningitis. S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers robust neutrophil (PMN) infiltration that promotes bacterial transepithelial migration in vitro and disseminated disease in mice. Apical infection of polarized respiratory epithelial monolayers by S. pneumoniae at a multiplicity of infection (MOI) of 20 resulted in recruitment of PMNs, loss of 50% of the monolayer, and PMN-dependent bacterial translocation. Reducing the MOI to 2 decreased PMN recruitment two-fold and preserved the monolayer, but apical-to-basolateral translocation of S. pneumoniae remained relatively efficient. At both MOI of 2 and 20, PLY was required for maximal PMN recruitment and bacterial translocation. Co-infection by wild-type S. pneumoniae restored translocation by a PLY-deficient mutant, indicating that PLY can act in trans. Investigating the contribution of S. pneumoniae infection on apical junction complexes in the absence of PMN transmigration, we found that S. pneumoniae infection triggered the cleavage and mislocalization of the adherens junction (AJ) protein E-cadherin. This disruption was PLY-dependent at MOI of 2 and was recapitulated by purified PLY, requiring its pore-forming activity. In contrast, at MOI of 20, E-cadherin disruption was independent of PLY, indicating that S. pneumoniae encodes multiple means to disrupt epithelial integrity. This disruption was insufficient to promote bacterial translocation in the absence of PMNs. Thus, S. pneumoniae triggers cleavage and mislocalization of E-cadherin through PLY-dependent and -independent mechanisms, but maximal bacterial translocation across epithelial monolayers requires PLY-dependent neutrophil transmigration.


Assuntos
Junções Aderentes , Streptococcus pneumoniae , Animais , Camundongos , Proteínas de Bactérias , Caderinas
12.
Immunity ; 56(5): 1082-1097.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37100059

RESUMO

CD4+ T cell-mediated immunity against Streptococcus pneumoniae (pneumococcus) can protect against recurrent bacterial colonization and invasive pneumococcal diseases (IPDs). Although such immune responses are common, the pertinent antigens have remained elusive. We identified an immunodominant CD4+ T cell epitope derived from pneumolysin (Ply), a member of the bacterial cholesterol-dependent cytolysins (CDCs). This epitope was broadly immunogenic as a consequence of presentation by the pervasive human leukocyte antigen (HLA) allotypes DPB1∗02 and DPB1∗04 and recognition via architecturally diverse T cell receptors (TCRs). Moreover, the immunogenicity of Ply427-444 was underpinned by core residues in the conserved undecapeptide region (ECTGLAWEWWR), enabling cross-recognition of heterologous bacterial pathogens expressing CDCs. Molecular studies further showed that HLA-DP4-Ply427-441 was engaged similarly by private and public TCRs. Collectively, these findings reveal the mechanistic determinants of near-global immune focusing on a trans-phyla bacterial epitope, which could inform ancillary strategies to combat various life-threatening infectious diseases, including IPDs.


Assuntos
Linfócitos T CD4-Positivos , Citotoxinas , Humanos , Bactérias , Epitopos de Linfócito T , Colesterol
13.
Plant J ; 115(2): 452-469, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026387

RESUMO

Plasma membrane represents a critical battleground between plants and attacking microbes. Necrosis-and-ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), cytolytic toxins produced by some bacterial, fungal and oomycete species, are able to target on lipid membranes by binding eudicot plant-specific sphingolipids (glycosylinositol phosphorylceramide) and form transient small pores, causing membrane leakage and subsequent cell death. NLP-producing phytopathogens are a big threat to agriculture worldwide. However, whether there are R proteins/enzymes that counteract the toxicity of NLPs in plants remains largely unknown. Here we show that cotton produces a peroxisome-localized enzyme lysophospholipase, GhLPL2. Upon Verticillium dahliae attack, GhLPL2 accumulates on the membrane and binds to V. dahliae secreted NLP, VdNLP1, to block its contribution to virulence. A higher level of lysophospholipase in cells is required to neutralize VdNLP1 toxicity and induce immunity-related genes expression, meanwhile maintaining normal growth of cotton plants, revealing the role of GhLPL2 protein in balancing resistance to V. dahliae and growth. Intriguingly, GhLPL2 silencing cotton plants also display high resistance to V. dahliae, but show severe dwarfing phenotype and developmental defects, suggesting GhLPL2 is an essential gene in cotton. GhLPL2 silencing results in lysophosphatidylinositol over-accumulation and decreased glycometabolism, leading to a lack of carbon sources required for plants and pathogens to survive. Furthermore, lysophospholipases from several other crops also interact with VdNLP1, implying that blocking NLP virulence by lysophospholipase may be a common strategy in plants. Our work demonstrates that overexpressing lysophospholipase encoding genes have great potential for breeding crops with high resistance against NLP-producing microbial pathogens.


Assuntos
Lisofosfolipase , Verticillium , Lisofosfolipase/genética , Gossypium/genética , Peroxissomos , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
14.
J Microbiol Methods ; 207: 106696, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898586

RESUMO

Cholesterol-dependent cytolysins (CDCs) are proteinaceous toxins widely distributed in gram-positive pathogenic bacteria. CDCs can be classified into three groups (I-III) based on the mode of receptor recognition. Group I CDCs recognize cholesterol as their receptor. Group II CDC specifically recognizes human CD59 as the primary receptor on the cell membrane. Only intermedilysin from Streptococcus intermedius has been reported as a group II CDC. Group III CDCs recognize both human CD59 and cholesterol as receptors. CD59 contains five disulfide bridges in its tertiary structure. Therefore, we treated human erythrocytes with dithiothreitol (DTT) to inactivate CD59 on membranes. Our data showed that DTT treatment caused a complete loss of recognition of intermedilysin and an anti-human CD59 monoclonal antibody. In contrast, this treatment did not affect the recognition of group I CDCs, judging from the fact that DTT-treated erythrocytes were lysed with the same efficiency as mock-treated human erythrocytes. The recognition of group III CDCs toward DTT-treated erythrocytes was partially reduced, and these results are likely due to the loss of human CD59 recognition. Therefore, the degree of human CD59 and cholesterol requirements of uncharacterized group III CDCs frequently found in Mitis group streptococci can be easily estimated by comparing the amounts of hemolysis between DTT-treated and mock-treated erythrocytes.


Assuntos
Toxinas Bacterianas , Toxinas Bacterianas/metabolismo , Citotoxinas/farmacologia , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia
15.
AIMS Microbiol ; 9(4): 647-667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173970

RESUMO

Bacterial meningitis is a catastrophic nervous system disorder with high mortality and wide range of morbidities. Some of the meningitis-causing bacteria occupy cholesterol dependent cytolysins (CDCs) to increase their pathogenicity and arrange immune-evasion strategy. Studies have observed that the relationship between CDCs and pathogenicity in these meningitides is complex and involves interactions between CDC, blood-brain barrier (BBB), glial cells and neurons. In BBB, these CDCs acts on capillary endothelium, tight junction (TJ) proteins and neurovascular unit (NVU). CDCs also observed to elicit intriguing effects on brain inflammation which involves microglia and astrocyte activations, along with neuronal damage as the end-point of pathological pathways in bacterial meningitis. As some studies mentioned potential advantage of CDC-targeted therapeutic mechanisms to combat CNS infections, it might be a fruitful avenue to deepen our understanding of CDC as a candidate for adjuvant therapy to combat bacterial meningitis.

16.
Membranes (Basel) ; 12(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36557095

RESUMO

Artificial membrane systems can serve as models to investigate molecular mechanisms of different cellular processes, including transport, pore formation, and viral fusion. However, the current, such as SUVs, GUVs, and the supported lipid bilayers suffer from issues, namely high curvature, heterogeneity, and surface artefacts, respectively. Freestanding membranes provide a facile solution to these issues, but current systems developed by various groups use silicon or aluminum oxide wafers for fabrication that involves access to a dedicated nanolithography facility and high cost while conferring poor membrane stability. Here, we report the development, characterization and applications of an easy-to-fabricate suspended lipid bilayer (SULB) membrane platform leveraging commercial track-etched porous filters (PCTE) with defined microwell size. Our SULB system offers a platform to study the lipid composition-dependent structural and functional properties of membranes with exceptional stability. With dye entrapped in PCTE microwells by SULB, we show that sphingomyelin significantly augments the activity of pore-forming toxin, Cytolysin A (ClyA) and the pore formation induces lipid exchange between the bilayer leaflets. Further, we demonstrate high efficiency and rapid kinetics of membrane fusion by dengue virus in our SULB platform. Our suspended bilayer membrane mimetic offers a novel platform to investigate a large class of biomembrane interactions and processes.

17.
Biochem Biophys Res Commun ; 637: 240-246, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36410272

RESUMO

Cholesterol-dependent cytolysin (CDC) is a bacterial toxin that binds to eukaryotic cholesterol-containing membranes, forms oligomeric complexes, and is inserted into the bilayer to create large aqueous pores. Recently, we reported a species-specific duplication of the hemolysin gene in group III Clostridium botulinum. The duplicated genes (bly1 and bly2) encoded two separate CDC proteins (botulinolysins; BLY1 and BLY2). Here, we aimed to investigate whether BLY1 and BLY2 exert differential cytotoxicity. We isolated two bly genes from C. botulinum and evaluated the cytotoxicity of two recombinant BLY proteins (rBLY1 and rBLY2) in HeLa, IEC-6, and NRK cells. rBLYs were cytotoxic to equine erythrocytes. rBLY1 showed higher hemolytic activity than rBLY2. rBLY2 showed no or very weak cytotoxicity to the HeLa, IEC-6, and NRK cells, whereas rBLY1 showed high cytotoxicity to these cells. The comparison of the amino acid sequence of BLYs with those of other CDCs revealed that the already-known amino acid residues involved in cholesterol-containing membrane recognition, oligomerization, and insertion into membranes are well conserved in both BLYs. However, several amino acid substitutions were observed in the conserved regions, particularly in L2 and L3 regions involved in cell binding. These findings suggest that gene duplication in group III C. botulinum evolved distinct functional specializations, and differential cytotoxicity of BLY1 and BLY2 could be due to the amino acid substitution in the conserved regions. However, the structural and functional comparisons of the two BLYs are essential to gain insights into the function of the CDCs.


Assuntos
Clostridium botulinum , Duplicação Gênica , Animais , Cavalos , Citotoxinas/genética , Clostridium , Colesterol
18.
Front Immunol ; 13: 999201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189200

RESUMO

In contrast to the virulent human skin commensal Staphylococcus aureus, which secretes a plethora of toxins, other staphylococci have much reduced virulence. In these species, commonly the only toxins are those of the phenol-soluble modulin (PSM) family. PSMs are species-specific and have only been characterized in a limited number of species. S. xylosus is a usually innocuous commensal on the skin of mice and other mammals. Prompted by reports on the involvement of PSMs in atopic dermatitis (AD) and the isolation of S. xylosus from mice with AD-like symptoms, we here identified and characterized PSMs of S. xylosus with a focus on a potential involvement in AD phenotypes. We found that most clinical S. xylosus strains produce two PSMs, one of the shorter α- and one of the longer ß-type, which were responsible for almost the entire lytic and pro-inflammatory capacities of S. xylosus. Importantly, PSMα of S. xylosus caused lysis and degranulation of mast cells at degrees higher than that of S. aureus δ-toxin, the main PSM previously associated with AD. However, S. xylosus did not produce significant AD symptoms in wild-type mice as opposed to S. aureus, indicating that promotion of AD by S. xylosus likely requires a predisposed host. Our study indicates that non-specific cytolytic potency rather than specific interaction underlies PSM-mediated mast cell degranulation and suggest that the previously reported exceptional potency of δ-toxin of S. aureus is due to its high-level production. Furthermore, they suggest that species that produce cytolytic PSMs, such as S. xylosus, all have the capacity to promote AD, but a high combined level of PSM cytolytic potency is required to cause AD in a non-predisposed host.


Assuntos
Toxinas Bacterianas , Staphylococcus aureus , Animais , Toxinas Bacterianas/genética , Humanos , Mamíferos , Camundongos , Staphylococcus
19.
Microbiol Spectr ; 10(5): e0092322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214694

RESUMO

Pyolysin (PLO) is secreted by Trueperella pyogenes as a water-soluble monomer after forming transmembrane ß-barrel channels in the cell membrane by binding cholesterol. Two significantly conserved residues at domain 1 of PLO are mutated, which provides novel evidence of a relationship between conformational change and interaction with the cell membrane and uncovers the pore formation mechanism of the cholesterol-dependent cytolysin (CDC) family. Moreover, PLO is a special member of the CDCs, which the percentage of sequence identities between PLO and other CDC members is from 31% to 45%, while others are usually from 40% to 70%. It is important to understand that at very low sequence identities, models can be different in the pathogenic mechanisms of these CDC members, which are dedicated to a large number of Gram-positive bacterial pathogens. Our studies, for the first time, located and mutated two different highly conserved structural sites in the primary structure critical for PLO structure and function that proved the importance of these sites. Together, novel and repeatable observations into the pore formation mechanism of CDCs are provided by our findings. IMPORTANCE Postpartum disease of dairy cows caused by persistent bacterial infection is a global disease, which has a serious impact on the development of the dairy industry and brings huge economic losses. As one of the most relevant pathogenic bacteria for postpartum diseases in dairy cows, Trueperella pyogenes can secrete pyolysin (PLO), a member of the cholesterol-dependent cytolysin (CDC) family and recognized as the most important toxin of T. pyogenes. However, the current research work on PLO is still insufficient. The pathogenic mechanism of this toxin can be fully explored by changing the local structure and overall function of the toxin by a previously unidentified single point mutation. These studies lay the groundwork for future studies that will explore the contribution of this large family of CDC proteins to microbial survival and human disease.


Assuntos
Proteínas de Bactérias , Mutação Puntual , Bovinos , Animais , Feminino , Humanos , Virulência , Proteínas Cdh1/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Colesterol/química , Colesterol/metabolismo , Bactérias/metabolismo , Citotoxinas , Água
20.
J Biol Chem ; 298(10): 102441, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055404

RESUMO

Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging ß-barrel pore-forming toxin. Upon binding to the target membranes, VCC monomers first assemble into oligomeric prepore intermediates and subsequently transform into transmembrane ß-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane ß-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals WT-like oligomeric ß-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature than that of the WT toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the prepore-like intermediate state that is hindered from converting into the functional ß-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.


Assuntos
Proteínas de Bactérias , Citotoxinas , Proteínas Citotóxicas Formadoras de Poros , Vibrio cholerae , Fatores de Virulência , Membrana Celular/metabolismo , Citotoxinas/química , Citotoxinas/genética , Vibrio cholerae/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Motivos de Aminoácidos , Mutação , Ácido Glutâmico/química , Ácido Glutâmico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA