Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Endourol ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39155817

RESUMO

Background: Urologists frequently activate foot pedals in a low-light operating room (OR). Pedal activation in low-light conditions poses the potential for incorrect pedal activation, potentially leading to increased radiation exposure, patient burns, or OR fires. This study compares speed, accuracy, dark adaptation, and surgeon preference for pedal activation in 4 lighting conditions. Materials and Methods: During a simulated percutaneous nephrolithotomy (PCNL), pedals for C-arm, laser, and ultrasonic lithotripter (USL) were randomized to 3 different positions. Urology attendings, residents, and medical students activated pedals in a randomized order in 4 settings: a dark OR with no illumination, an OR with overhead illumination, a dark OR with glowstick illumination, and a dark OR with blacklight illumination. Endpoints included pedal activation time; number of attempted, incomplete, and incorrect activations; dark adaptation; and subjective pedal preference. ANOVA was used for analysis with p < 0.05 considered significant. Results: In our study with 20 participants, the mean pedal activation times were significantly faster when using glowstick illumination (6.77 seconds) and blacklight illumination (5.34 seconds) compared with the no illumination arm (8.47 seconds, p < 0.001). Additionally, individual pedal activations for the C-arm, laser, and USL were significantly faster with glowstick and blacklight illumination compared with a dark OR (p < 0.001 for all). The blacklight illumination arm demonstrated decreased attempted (0.30 vs. 3.45, p < 0.001), incomplete (1.25 vs. 7.75, p < 0.001), and incorrect activations (0.35 vs. 1.25, p < 0.001) compared with the dark setting, while demonstrating no difference compared with having room lights on. Dark adaptation was significantly improved with blacklight illumination compared with having the room lights on (134.5 vs. 140.5 luminance, p < 0.001). All participants (100%) preferred illuminated pedals compared with the dark OR, with 90% favoring the blacklight illumination. Conclusions: During a simulated PCNL, blacklight illumination significantly improved accuracy and efficiency of pedal activation compared with the conventional dark OR, while maintaining the surgeon's dark adaptation.

2.
Ophthalmol Sci ; 4(6): 100551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161750

RESUMO

Purpose: To understand the spatial relationship between local rod-mediated visual function and reticular pseudodrusen (RPD) in eyes with large drusen. Design: Retrospective cross-sectional study. Participants: One eye with large drusen (>125 µm) each from 91 individuals with intermediate age-related macular degeneration, with and without RPD. Methods: All participants underwent dark adaptation testing using a dark-adapted chromatic perimeter, where visual sensitivities were measured over 30 minutes of dark adaptation after photobleach. The rod intercept time (RIT; a measure of dynamic rod function) and pointwise sensitivity difference (PWSD; a relative measure of rod- compared with cone-mediated function) was determined at multiple retinal locations, and their association with the overall (central 20° × 20° region) and local (2° diameter region centered on the location tested) extent of RPD and drusen (quantified using multimodal imaging) was examined. Main Outcome Measures: Association between overall and local extent of RPD and drusen with RIT and PWSD at each retinal location tested. Results: In a multivariable analysis, delayed RIT was associated with an increasing overall (P < 0.001), but not local (P = 0.884), extent of RPD. In contrast, the increasing local (P < 0.001), but not overall (P = 0.475), extent of drusen was associated with delayed RIT. Furthermore, only an increasing overall extent of RPD (P < 0.001) was associated with reduced PWSD (or worse rod compared with cone function), but not the local extent of RPD and drusen, or overall extent of drusen (P ≥ 0.344). Conclusions: Local rod-mediated function was associated with the overall, rather than local, extent of RPD in eyes with large drusen, suggesting that there may be widespread pathologic changes in eyes with RPD that account for this. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Front Plant Sci ; 15: 1326375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584953

RESUMO

Antarctic algae are exposed to prolonged periods of extreme darkness due to polar night, and coverage by ice and snow can extend such dark conditions to up to 10 months. A major group of microalgae in benthic habitats of Antarctica are diatoms, which are key primary producers in these regions. However, the effects of extremely prolonged dark exposure on their photosynthesis, cellular ultrastructure, and cell integrity remain unknown. Here we show that five strains of Antarctic benthic diatoms exhibit an active photosynthetic apparatus despite 10 months of dark-exposure. This was shown by a steady effective quantum yield of photosystem II (Y[II]) upon light exposure for up to 2.5 months, suggesting that Antarctic diatoms do not rely on metabolically inactive resting cells to survive prolonged darkness. While limnic strains performed better than their marine counterparts, Y(II) recovery to values commonly observed in diatoms occurred after 4-5 months of light exposure in all strains, suggesting long recovering times. Dark exposure for 10 months dramatically reduced the chloroplast ultrastructure, thylakoid stacking, and led to a higher proportion of cells with compromised membranes than in light-adapted cells. However, photosynthetic oxygen production was readily measurable after darkness and strong photoinhibition only occurred at high light levels (>800 µmol photons m-2 s-1). Our data suggest that Antarctic benthic diatoms are well adapted to long dark periods. However, prolonged darkness for several months followed by only few months of light and another dark period may prevent them to regain their full photosynthetic potential due to long recovery times, which might compromise long-term population survival.

4.
Exp Biol Med (Maywood) ; 249: 10024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463390

RESUMO

This research aims to investigate the potential of using intrinsic optical signal (IOS) optoretinography (ORG) to objectively detect dark adaptation (DA) abnormalities related to rod photoreceptor degeneration. Functional optical coherence tomography (OCT) was employed in both wild-type (WT) and retinal degeneration 10 (rd10) mice to conduct this assessment. Dynamic OCT measurements captured the changes in retinal thickness and reflectance from light-to-dark transition. Comparative analysis revealed significant IOS alterations within the outer retina. Specifically, a reduction in thickness from external limiting membrane (ELM) peak to retinal pigment epithelium (RPE) peak was observed (WT: 1.13 ± 0.69 µm, 30 min DA; rd10: 2.64 ± 0.86 µm, 30 min DA), as well as a decrease in the intensity of the inner segment ellipsoid zone (EZ) in 30 min DA compared to light adaptation (LA). The reduction of relative EZ intensity was notable in rd10 after 5 min DA and in WT after 15 min DA, with a distinguishable difference between rd10 and WT after 10 min DA. Furthermore, our findings indicated a significant decrease in the relative intensity of the hypo-reflective band between EZ and RPE in rd10 retinas during DA, which primarily corresponds to the outer segment (OS) region. In conclusion, the observed DA-IOS abnormalities, including changes in ELM-RPE thickness, EZ, and OS intensity, hold promise as differentiators between WT and rd10 mice before noticeable morphological abnormalities occur. These findings suggest the potential of this non-invasive imaging technique for the early detection of dysfunction in retinal photoreceptors.


Assuntos
Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/diagnóstico por imagem , Adaptação à Escuridão , Retina , Epitélio Pigmentado da Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Bastonetes
5.
Biomimetics (Basel) ; 9(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38534843

RESUMO

Nighttime object detection is challenging due to dim, uneven lighting. The IIHS research conducted in 2022 shows that pedestrian anti-collision systems are less effective at night. Common solutions utilize costly sensors, such as thermal imaging and LiDAR, aiming for highly accurate detection. Conversely, this study employs a low-cost 2D image approach to address the problem by drawing inspiration from biological dark adaptation mechanisms, simulating functions like pupils and photoreceptor cells. Instead of relying on extensive machine learning with day-to-night image conversions, it focuses on image fusion and gamma correction to train deep neural networks for dark adaptation. This research also involves creating a simulated environment ranging from 0 lux to high brightness, testing the limits of object detection, and offering a high dynamic range testing method. Results indicate that the dark adaptation model developed in this study improves the mean average precision (mAP) by 1.5-6% compared to traditional models. Our model is capable of functioning in both twilight and night, showcasing academic novelty. Future developments could include using virtual light in specific image areas or integrating with smart car lighting to enhance detection accuracy, thereby improving safety for pedestrians and drivers.

6.
Ophthalmol Retina ; 8(7): 646-656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38278174

RESUMO

PURPOSE: To investigate the spatial distribution of reticular pseudodrusen (RPD) in eyes with age-related macular degeneration (AMD) and their correlation with functional measures, retinal thickness, and changes over time. DESIGN: Longitudinal, cohort study. PARTICIPANTS: Thirty-five participants with RPD and spectrum of AMD severity (including no AMD). METHODS: Multimodal imaging was graded by a reading center, including evaluation of color fundus imaging to assess AMD severity scores. Reticular pseudodrusen presence on OCT volumes was confirmed on en face imaging and the RPD extent was contoured on infrared images. One study eye per participant underwent rod-mediated dark adaptation, measuring rod intercept time (RIT) at 5° and, if needed, 12° superior to the fovea. MAIN OUTCOME MEASURES: The primary outcome was RIT and OCT thickness measures which were correlated with RPD area. RESULTS: A total of 51 eyes had ≥ 1 visit with RPD detected (mean follow-up, 2.19 ± 2.04 years; range, 0-5 years), totaling 169 eye-based visits with RPD. Of the 51 eyes with RPD, 5 (9.8%) developed geographic atrophy and 17 (33.3%) progressed to neovascular AMD. Larger RPD areas were detected more frequently in AMD severity scores 6-7. Reticular pseudodrusen area within an eye generally increased over time. The lesion distribution showed a predilection for the superior retina, especially the outer superior subfield of the ETDRS grid, with the central subfield having least involvement. Reticular pseudodrusen area was inversely correlated with central subfield thickness and positively correlated with RIT at 5° (P = 0.001; r2 = 0.01) and 12° (P = 0.004; r2 = 0.01). Rod-mediated dark adaptation at 5° reached the test ceiling in > 85% of visits, irrespective of RPD lesion presence/absence at the test location. Retinal thickness decreased monotonically, with the central subfield demonstrating the greatest percentage change over 5 years (Δ = -5.47%). CONCLUSIONS: In AMD, RPD involve predominantly the superior retina but can involve all ETDRS subfields and evolve over time. Eyes with RPD exhibit structural and functional impairments that can be measured beyond the boundaries of the RPD lesions, suggesting changes associated with RPD are associated with both local changes and a more widespread process. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Angiofluoresceinografia , Fundo de Olho , Drusas Retinianas , Tomografia de Coerência Óptica , Humanos , Drusas Retinianas/diagnóstico , Drusas Retinianas/etiologia , Feminino , Tomografia de Coerência Óptica/métodos , Masculino , Idoso , Seguimentos , Angiofluoresceinografia/métodos , Idoso de 80 Anos ou mais , Acuidade Visual , Degeneração Macular/diagnóstico , Imagem Multimodal , Retina/patologia , Retina/diagnóstico por imagem , Pessoa de Meia-Idade , Adaptação à Escuridão/fisiologia , Progressão da Doença
7.
Curr Eye Res ; 48(11): 1050-1056, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37539829

RESUMO

PURPOSE: Photoreceptor (PR) outer segments, retinal pigment epithelium apical processes, and inter-PR matrix contribute to the interdigitation zone (IZ) of optical coherence tomography (OCT). We hypothesize that this interface degrades over adulthood, in concert with a delay of rod mediated dark adaptation (RMDA). To explore this idea, we determined IZ discernibility and RMDA in younger and older adults. METHODS: For this cross-sectional study, eyes of 20 young (20-30 years) and 40 older (≥60 years) participants with normal maculas according to the AREDS 9-step grading system underwent OCT imaging and RMDA testing at 5° superior to the fovea. Custom FIJI plugins enabled analysis for IZ discernibility at 9 eccentricities in 0.5 mm steps on one single horizontal B-scan through the fovea. Locations with discernible IZ met two criteria: visibility on B-scans and a distinct peak on a longitudinal reflectivity profile. The frequency of sites meeting both criteria was compared between both age groups and correlated with rod intercept time (RIT). RESULTS: The median number of locations with discernible IZ was significantly higher (foveal, 4 vs. 0, p = 0.0099; extra-foveal 6 vs. 0, p < 0.001) in eyes of young (26 ± 3 years) compared to older (73 ± 5 years) participants. For the combined young and older sample, the higher frequency of discernible IZ was correlated with shorter RIT (faster dark adaptation) (rs = -0.56, p < 0.0001). This association was significant within young eyes (rs = -0.54; p = 0.0134) and not within older eyes (rs = -0.29, p = 0.706). CONCLUSIONS: Results suggest that the interface between outer segments and apical processes degrades in normal aging, potentially contributing to delayed rod-mediated dark adaptation. More research is needed to verify an age-related association between IZ discernibility and rod-mediated dark adaptation. If confirmed in a large sample, IZ discernibility might prove to be a valuable biomarker and predictor for visual function in aging.

8.
Bioessays ; 45(9): e2300068, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454357

RESUMO

The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.


Assuntos
Fotofobia , Rodopsina , Humanos , Rodopsina/metabolismo , Retinaldeído/química , Retinaldeído/metabolismo , Retina
9.
Front Mol Neurosci ; 16: 1135088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168678

RESUMO

Vertebrate rods and cones operate over a wide range of ambient illumination, which is provided by light adaptation mechanisms regulating the sensitivity and speed of the phototransduction cascade. Three calcium-sensitive feedback loops are well established in both rods and cones: acceleration of the quenching of a light-activated visual pigment and cGMP synthesis by guanylate cyclase, and increased affinity of ion channels for cGMP. Accumulating evidence suggests that the molecular mechanisms of light adaptation are more complex. While investigating these putative mechanisms, we discovered a novel phenomenon, observing that the recovery of light sensitivity in rods after turning off non-saturating adaptive light can take tens of seconds. Moreover, after a formal return of the membrane current to the dark level, cell sensitivity to the stimuli remains decreased for a further 1-2 min. We termed this phenomenon of prolonged photoreceptor desensitization 'adaptation memory' (of previous illumination) and the current study is focused on its detailed investigation in rods and an attempt to find the same phenomenon in cones. In rods, we have explored the dependencies of this phenomenon on adapting conditions, specifically, the intensity and duration of adapting illumination. Additionally, we report that fish and frog red-sensitive cones possess similar features of adaptation memory, such as a drop in sensitivity just after the steps of bright light and slow sensitivity recovery. However, we have found that the rate of this process and its nature are not the same as in rods. Our results indicate that the nature of the temporary drop in the sensitivity in rods and cones after adapting steps of light is different. In the rods, adaptation memory could be attributed to the existence of long-lasting modifications of the components of the phototransduction cascade after adapting illumination. In cones, the observed form of the adaptation memory seems to be due to the sensitivity drop caused by a decrease in the availability of the visual pigment, that is, by bleaching.

10.
Proc Biol Sci ; 290(1998): 20230596, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161333

RESUMO

Many birds move fast into dark nest cavities forcing the visual system to adapt to low light intensities. Their visual system takes between 15 and 60 min for complete dark adaptation, but little is known about the visual performance of birds during the first seconds in low light intensities. In a forced two-choice behavioural experiment we studied how well budgerigars can discriminate stimuli of different luminance directly after entering a darker environment. The birds made their choices within about 1 s and did not wait to adapt their visual system to the low light intensities. When moving from a bright facility into an environment with 0.5 log unit lower illuminance, the budgerigars detected targets with a luminance of 0.825 cd m-2 on a black background. When moving into an environment with 1.7 or 3.5 log units lower illuminance, they detected targets with luminances between 0.106 and 0.136 cd m-2. In tests with two simultaneously displayed targets, the birds discriminated similar luminance differences between the targets (Weber fraction of 0.41-0.54) in all light levels. Our results support the notion that partial adaptation of bird eyes to the lower illumination occurring within 1 s allows them to safely detect and feed their chicks.


Assuntos
Aclimatação , Melopsittacus , Animais , Luz , Galinhas , Olho , Iluminação
11.
Ophthalmol Sci ; 3(2): 100274, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36875335

RESUMO

Purpose: We evaluate the impact of test target location in assessing rod-mediated dark adaptation (RMDA) along the transition from normal aging to intermediate age-related macular degeneration (AMD). We consider whether RMDA slows because the test locations are near mechanisms leading to or resulting from high-risk extracellular deposits. Soft drusen cluster under the fovea and extend to the inner ring of the ETDRS grid where rods are sparse. Subretinal drusenoid deposits (SDDs) appear first in the outer superior subfield of the ETDRS grid where rod photoreceptors are maximal and spread toward the fovea without covering it. Design: Cross-sectional. Participants: Adults ≥ 60 years with normal older maculas, early AMD, or intermediate AMD as defined by the Age-Related Eye Disease Study (AREDS) 9-step and Beckman grading systems. Methods: In 1 eye per participant, RMDA was assessed at 5° and at 12° in the superior retina. Subretinal drusenoid deposit presence was identified with multi-modal imaging. Main Outcome Measures: Rod intercept time (RIT) as a measure of RMDA rate at 5° and 12°. Results: In 438 eyes of 438 persons, RIT was significantly longer (i.e., RMDA is slower) at 5° than at 12° for each AMD severity group. Differences among groups were bigger at 5° than at 12°. At 5°, SDD presence was associated with longer RIT as compared to SDD absence at early and intermediate AMD but not in normal eyes. At 12°, SDD presence was associated with longer RIT in intermediate AMD only, and not in normal or early AMD eyes. Findings were similar in eyes stratified by AREDS 9-step and Beckman systems. Conclusions: We probed RMDA in relation to current models of deposit-driven AMD progression organized around photoreceptor topography. In eyes with SDD, slowed RMDA occurs at 5° where these deposits typically do not appear until later in AMD. Even in eyes lacking detectable SDD, RMDA at 5° is slower than at 12°. The effect at 5° may be attributed to mechanisms associated with the accumulation of soft drusen and precursors under the macula lutea throughout adulthood. These data will facilitate the design of efficient clinical trials for interventions that aim to delay AMD progression.

12.
Protein Cell ; 14(8): 603-617, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930538

RESUMO

Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.


Assuntos
Luz , Retina , Animais , Camundongos , Adaptação à Escuridão , Células Fotorreceptoras Retinianas Cones/metabolismo , Adaptação Ocular , Neuroglia/fisiologia , Comunicação Celular , Hormônios Tireóideos
13.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766830

RESUMO

The short and long isoforms of FAIM (FAIM-S and FAIM-L) hold important functions in the central nervous system, and their expression levels are specifically enriched in the retina. We previously described that Faim knockout (KO) mice present structural and molecular alterations in the retina compatible with a neurodegenerative phenotype. Here, we aimed to study Faim KO retinal functions and molecular mechanisms leading to its alterations. Electroretinographic recordings showed that aged Faim KO mice present functional loss of rod photoreceptor and ganglion cells. Additionally, we found a significant delay in dark adaptation from early adult ages. This functional deficit is exacerbated by luminic stress, which also caused histopathological alterations. Interestingly, Faim KO mice present abnormal Arrestin-1 redistribution upon light reception, and we show that Arrestin-1 is ubiquitinated, a process that is abrogated by either FAIM-S or FAIM-L in vitro. Our results suggest that FAIM assists Arrestin-1 light-dependent translocation by a process that likely involves ubiquitination. In the absence of FAIM, this impairment could be the cause of dark adaptation delay and increased light sensitivity. Multiple retinal diseases are linked to deficits in photoresponse termination, and hence, investigating the role of FAIM could shed light onto the underlying mechanisms of their pathophysiology.


Assuntos
Arrestina , Retina , Animais , Camundongos , Arrestina/metabolismo , Adaptação à Escuridão , Camundongos Knockout , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Translocação Genética , Visão Ocular
14.
Curr Eye Res ; 48(5): 512-517, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36662498

RESUMO

PURPOSE: Studies on age-related macular degeneration often use rod-mediated dark adaptation (RMDA) to evaluate macular functional health, studying eyes with cataract and pseudophakic eyes within the same sample. We examine a poorly understood issue-whether rod intercept time (RIT), a measure of RMDA, changes after cataract surgery and intraocular lens (IOL) insertion as compared to RIT before cataract surgery. Cataract may serve as a filter reducing photo-bleach magnitude prior to surgery, biasing RMDA interpretation. METHODS: A pre-/post-cataract surgery design was used. Persons with nuclear sclerotic and/or cortical cataract per the electronic health record were enrolled. Prior to cataract surgery, visual acuity, RMDA, and the LOCS III classification documenting cataract presence/severity were measured. Thirty days after surgery (mean), visual acuity and RMDA were repeated, followed by fundus photos to document macular health. RESULTS: Twenty-four participants (mean age 72.7 years, standard deviation 5.6) enrolled. All eyes had nuclear sclerotic and nuclear color cataract; 68% had cortical cataract. All IOLs were monofocal with 21 having blue blocking characteristics and 3 had clear IOLs. Most eyes had higher RIT post-surgery (15.6 min, SD 6.7) as compared to pre-surgery (13.7 min, SD 6.4), p = 0.0006, meaning that RMDA was slower post-surgery. Eyes with moderate cataract (<4 on any LOCS III grade) had RIT that increased on average by 0.7 min; those with more advanced cataract (≥4) had RIT that increased by 3.1 min (p = 0.0116). Results were unchanged when clear IOLs were removed from analysis. CONCLUSION: RMDA was significantly slower (RIT was greater) following cataract surgery, with the greatest impact on RIT in older eyes after surgery for more advanced cataract. These findings suggest that persons with more advanced cataract may bias results when evaluating RMDA using RIT.


Assuntos
Opacificação da Cápsula , Extração de Catarata , Catarata , Humanos , Idoso , Adaptação à Escuridão , Acuidade Visual , Catarata/complicações
15.
Ophthalmol Retina ; 7(4): 307-317, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36403926

RESUMO

PURPOSE: To analyze presence of hyperreflective foci (HRF) across different age-related macular degeneration (AMD) severities and examine its correlation with other structural and functional AMD features. DESIGN: Longitudinal, single-center, case-control study. PARTICIPANTS: One hundred and fifty-eight participants aged > 50 years old with varying AMD severities (including no AMD). METHODS: Color fundus imaging was used to assess AMD severity and hyperpigmentation (PGM) presence. Subretinal drusenoid deposits (SDD) and HRF were detected on OCT volumes. The correlations of HRF with additional AMD features were evaluated using linear and logistic mixed-effects models. One study eye per participant underwent dark adaptation (DA) testing to measure rod intercept time (RIT) for structure function associations. Eyes were followed longitudinally and changes in AMD severity and RIT were measured relative to HRF presence. MAIN OUTCOME MEASURES: The primary outcome was presence of HRF, which was compared with presence of other AMD features and DA impairment. RESULTS: One hundred and fifty-eight participants (median baseline age of 73.1 [interquartile range (IQR) = 66-79] years) contributing 1277 eye visits were included. Hyperreflective foci (HRF) were detected more frequently in higher AMD severities. Hyperreflective-foci presence was significantly associated with PGM presence (odds ratio 832.9, P < 0.001) and SDD presence (odds ratio 9.42, P = 0.017). Eyes with HRF demonstrated significantly longer DA (median 27.1 [IQR = 16-40] minutes) than those without HRF (13.5 [10-22] minutes) but less than eyes with SDD only (40 [28-40] minutes). Highest RIT values were found in eyes with both HRF and SDD (40.0 [40-40] minutes). Age and HRF explained a similar proportion of RIT variability as age and SDD. Eyes that developed HRF demonstrated baseline RITs closer to eyes with HRF at baseline, compared with eyes that never developed HRF (29.1 [16-40], 38.5 [22-40] versus 13.1 [10-22] minutes; Kruskal-Wallis P < 0.001). CONCLUSIONS: The progressively increased presence of HRF in higher AMD severities, and its correlation with previously associated AMD biomarkers, suggests HRF is an important OCT feature adding to the understanding of disease progression. Hyperreflective foci presence was associated with delays in DA, indicating HRF is a marker for visual cycle impairment. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Assuntos
Degeneração Macular , Drusas Retinianas , Humanos , Pessoa de Meia-Idade , Idoso , Estudos de Casos e Controles , Tomografia de Coerência Óptica/métodos , Gravidade do Paciente
16.
Ophthalmic Genet ; 44(2): 175-181, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34353225

RESUMO

PURPOSE: To report a rare case of Birt-Hogg-Dubé Syndrome (BHD) with progressive chorioretinopathy. METHODS: Case report. RESULTS: A 55-year-old woman presented with longstanding nyctalopia attributed to a congenital retinal dystrophy, but no prior genetic testing. Her posterior pole examination demonstrated retinal pigment epithelium (RPE) mottling with extensive macular drusen and paracentral chorioretinal atrophy, consistent with a fleck retinopathy. Her past medical history was remarkable for nephrectomy for unilateral renal malignancy, parotid tumors and thyroid nodules. Dark adaptation time was prolonged, and electroretinography (ERG) revealed abnormal waveforms with depressed amplitudes. Genetic testing confirmed a deletion mutation in the folliculin (FLCN) gene and was negative for other relevant mutations, including EFEMP1 responsible for autosomal dominant macular and peripapillary drusen in Doyne honeycomb retinal dystrophy and TIMP3 responsible for Sorsby Fundus Dystrophy. CONCLUSION: BHD is a rare autosomal-dominant disorder with multi-systemic clinical manifestations caused by a mutation in the FLCN gene. Affected individuals are prone to renal and pulmonary cysts, renal cancer, and fibrofolliculomas. Reports on ocular manifestations of BHD include eyelid fibrofolliculomas, flecked chorioretinopathy, choroidal melanoma, choroidal melanoma with sector melanocytosis, and retinal pigment epithelial micro-detachments. In this case of BHD, we note a fleck retinopathy with bilateral chorioretinal atrophy, displaying a phenotype of extensive chorioretinopathy associated with impaired dark adaptation and ERG abnormalities. ABBREVIATIONS: BHD: Birt-Hogg-Dubé syndrome; FLCN: Folliculin. RPE: retinal pigment epithelium; OD: Oculus dexter (right eye); OS: Oculus sinister (left eye). OU: Oculus uterque (both eyes); ERG: electroretinogram; mfERG: multifocal electroretinography. ffERG: full-field electroretinography; FAF: fundus autofluorescence; OCT: optical coherence tomography; FA: fluorescein angiography; DA: dark-adapted; LA: light-adapted; mTOR: mammalian target of rapamycin; EFEMP1: epithelial growth factor-containing fibulin-like extracellular matrix protein 1; VPS13B: Vacuolar Protein Sorting 13 Homolog B; AGBL5: AATP/GTP-Binding Protein Like 5; ALMS1: Alstrom Syndrome 1; COL1BA1: Collagen Type I Beta, Alpha Chain 1; PDE6A: Rod Phosphodiesterase 6-alpha; USH2A: Usherin 2a; VCAN: Versican; RP: Retinitis pigmentosa; AR: Autosomal recessive.


Assuntos
Síndrome de Birt-Hogg-Dubé , Coriorretinopatia Serosa Central , Cegueira Noturna , Humanos , Feminino , Pessoa de Meia-Idade , Síndrome de Birt-Hogg-Dubé/complicações , Cegueira Noturna/complicações , Coriorretinopatia Serosa Central/complicações
17.
Protein & Cell ; (12): 603-617, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010766

RESUMO

Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.


Assuntos
Animais , Camundongos , Adaptação à Escuridão , Luz , Retina , Células Fotorreceptoras Retinianas Cones/metabolismo , Adaptação Ocular , Neuroglia/fisiologia , Comunicação Celular , Hormônios Tireóideos
18.
Ophthalmol Sci ; 2(4): 100204, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36531574

RESUMO

Purpose: To assess the differences in rod-mediated dark adaptation (RMDA) between different grades of age-related macular degeneration (AMD) severity using an OCT-based criterion compared with those of AMD severity using the Beckman color fundus photography (CFP)-based classification and to assess the association between the presence of subretinal drusenoid deposits (SDDs) and RMDA at different grades of AMD severity using an OCT-based classification. Design: Cross-sectional study. Participants: Participants from the Northern Ireland Sensory Ageing study (Queen's University Belfast). Methods: Complete RMDA (rod-intercept time [RIT]) data, CFP, and spectral-domain OCT images were extracted. Participants were stratified into 4 Beckman groups (omitting late-stage AMD) and 3 OCT-based groups. The presence and stage of SDDs were identified using OCT. Main Outcome Measures: Rod-intercept time data (age-corrected). Results: Data from 459 participants (median [interquartile range] age, 65 [59-71] years) were stratified by both the classifications. Subretinal drusenoid deposits were detected in 109 eyes. The median (interquartile range) RMDA for the Beckman classification (Beckman 0-3, with 3 being intermediate age-related macular degeneration [iAMD]) groups was 6.0 (4.5-8.7), 6.6 (4.7-10.5), 5.7 (4.4-7.4), and 13.2 (6-21.1) minutes, respectively. OCT classifications OCT0-OCT2 yielded different median (interquartile range) values: 5.8 (4.5-8.5), 8.4 (5.2-13.3), and 11.1 (5.3-20.1) minutes, respectively. After correcting for age, eyes in Beckman 3 (iAMD) had statistically significantly worse RMDA than eyes in the other Beckman groups (P ≤ 0.005 for all), with no statistically significant differences between the other Beckman groups. Similarly, after age correction, eyes in OCT2 had worse RMDA than eyes in OCT0 (P ≤ 0.001) and OCT1 (P < 0.01); however, there was no statistically significant difference between eyes in OCT0 and eyes in OCT1 (P = 0.195). The presence of SDDs was associated with worse RMDA in OCT2 (P < 0.01) but not in OCT1 (P = 0.285). Conclusions: Eyes with a structural definition of iAMD have delayed RMDA, regardless of whether a CFP- or OCT-based criterion is used. In this study, after correcting for age, the RMDA did not differ between groups of eyes defined to have early AMD or normal aging, regardless of the classification. The presence of SDDs has some effect on RMDA at different grades of AMD severity.

19.
Ophthalmol Sci ; 2(3): 100173, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36245764

RESUMO

Purpose: To evaluate visual function (VF) changes in early and intermediate age-related macular degeneration (eAMD and iAMD) over 24 months. Design: Prospective, observational natural history study. Participants: Participants were enrolled at the Duke Eye Center. Methods: A total of 101 subjects (33 with eAMD, 47 with iAMD, and 21 normal controls) were recruited. Visual function (VF) tests included best-corrected visual acuity (BCVA), low- luminance visual acuity (LLVA), microperimetry (MP), cone contrast tests (CCTs), and dark adaptation (DA). Mixed-effect model repeated measures based on absolute values and change from baseline identified VF tests differentiating AMD from controls and revealing longitudinal VF decline when controlling for covariates (baseline value, age, coronary artery disease, dry eye, and phakic status). Nine AMD genetic risk variants, combinations of these (genetic burden score), reticular pseudodrusen (RPD), and hyperreflective foci (HRF) were tested as predictors of diagnosis and VF performance. Main Outcome Measures: Longitudinal changes in VF metrics over 24 months. Results: A total of 70 subjects completed the 2-year visit (22 with eAMD, 31 with iAMD, and 17 controls). Percent reduced threshold (PRT) on MP and CCT red significantly distinguished iAMD versus controls after 12 and 24 months, respectively. Cone contrast test red, PRT, and absolute threshold (AT) on MP showed significant longitudinal deterioration of VF in iAMD versus baseline at 12 months and onward, however, with a reduced rate of worsening. The DA data confirmed a preexisting functional deficit in iAMD at baseline and revealed an increasing proportion of poorly performing iAMD subjects in DA over the study period. None of the other VF measures showed consistent significant changes among the normal, early, and intermediate groups or over time. The genetic burden score was significantly associated with AMD diagnosis (relative risk for iAMD = 1.64, P < 0.01) and DA (r = 0.42, P = 0.00005). Reticular pseudodrusen and HRF showed moderate associations with DA and weak to moderate associations with MP variables. Conclusions: In iAMD, MP variables, CCT red, and DA revealed slow and nonlinear functional decline over 24 months. A structure-function relationship in eAMD and iAMD stages was demonstrated among HRF, RPD, and DA, possibly modified by genetic risk factors. These structural and functional features represent potential end points for clinical trials in iAMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA