Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999194

RESUMO

Dextransucrases play a crucial role in the production of dextran from economical sucrose; therefore, there is a pressing demand to explore novel dextransucrases with better performance. This study characterized a dextransucrase enzyme, LmDexA, which was identified from the Leuconostoc mesenteroides NN710. This bacterium was isolated from the soil of growing dragon fruit in Guangxi province, China. We successfully constructed six different N-terminal truncated variants through sequential analysis. Additionally, a truncated variant, ΔN190LmDexA, was constructed by removing the 190 amino acids fragment from the N-terminal. This truncated variant was then successfully expressed heterologously in Escherichia coli and purified. The purified ΔN190LmDexA demonstrated optimal hydrolysis activity at a pH of 5.6 and a temperature of 30 °C. Its maximum specific activity was measured to be 126.13 U/mg, with a Km of 13.7 mM. Results demonstrated a significant improvement in the heterologous expression level and total enzyme activity of ΔN190LmDexA. ΔN190LmDexA exhibited both hydrolytic and transsaccharolytic enzymatic activities. When sucrose was used as the substrate, it primarily produced high-molecular-weight dextran (>400 kDa). However, upon the addition of maltose as a receptor, it resulted in the production of a significant amount of oligosaccharides. Our results can provide valuable information for enhancing the characteristics of recombinant dextransucrase and potentially converting sucrose into high-value-added dextran and oligosaccharides.


Assuntos
Clonagem Molecular , Glucosiltransferases , Leuconostoc mesenteroides , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Leuconostoc mesenteroides/enzimologia , Leuconostoc mesenteroides/genética , Dextranos/química , Dextranos/biossíntese , Dextranos/metabolismo , Hidrólise , Concentração de Íons de Hidrogênio , Escherichia coli/genética , Mutação , Especificidade por Substrato , Sacarose/metabolismo , Cinética , Temperatura
2.
Front Biosci (Elite Ed) ; 16(2): 17, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38939916

RESUMO

Dextran is an exopolysaccharide synthesized in reactions catalyzed by enzymes obtained from microbial agents of specific species and strains. Products of dextran polysaccharides with different molecular weights are suitable for diverse pharmaceutical and clinical uses. Dextran solutions have multiple characteristics, including viscosity, solubility, rheological, and thermal properties; hence, dextran has been studied for its commercial applications in several sectors. Certain bacteria can produce extracellular polysaccharide dextran of different molecular weights and configurations. Dextran products of diverse molecular weights have been used in several industries, including medicine, cosmetics, and food. This article aims to provide an overview of the reports on dextran applications in blood transfusion and clinical studies and its biosynthesis. Information has been summarized on enzyme-catalyzed reactions for dextran biosynthesis from sucrose and on the bio-transformation process of high molecular weight dextran molecules to obtain preparations of diverse molecular weights and configurations.


Assuntos
Dextranos , Dextranos/química , Dextranos/biossíntese , Humanos , Transfusão de Sangue , Peso Molecular
3.
World J Microbiol Biotechnol ; 40(4): 114, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418710

RESUMO

Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 µg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.


Assuntos
Leuconostoc mesenteroides , Animais , Ovinos , Dextranos/metabolismo , Dextranase/química , Dextranase/metabolismo , Manitol/metabolismo , Mali , Glucosiltransferases/metabolismo , Oligossacarídeos/química , Sacarose/metabolismo , Vitaminas/metabolismo , Leuconostoc/metabolismo
4.
J Med Microbiol ; 72(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289487

RESUMO

Introduction. Dextransucrase produced by Streptococcus mutans plays a vital role in the formation of dental caries by synthesizing exopolysaccharides from sucrose, which helps in the attachment of microbes to the tooth surface, causing caries. Exploring antibody production against S. mutans antigens could be an effective method to protect against dental caries.Hypothesis. Dextransucrase antibodies may help in the prevention of caries formation by inhibiting essential cariogenic factors.Aims. The aim of this study was to investigate the effects of dextransucrase antibodies on biofilm formation and certain associated cariogenic factors of S. mutans.Methodology. Dextransucrase was purified from culture of S. mutans. The antisera against the enzyme were raised in rabbits. The effect of dextransucrase antibodies on biofilm formation was studied using scanning electron microscopy, fluorescence microscopy and quantitative real-time polymerase chain reaction. The effects of the antibodies on associated cariogenic factors were examined using established methods. The cross-reactivity of antibodies with human lung, liver, heart, thyroid and kidney tissues was evaluated by immunohistochemistry.Results. Our findings showed impaired biofilm formation in S. mutans in the presence of dextransucrase antibodies. Genes associated with biofilm formation such as gtfB, gtfC, brpA, relA, Smu.630 and vicK were downregulated (50-97 %) by dextransucrase antibodies in S. mutans. The adherence of S. mutans to glass surface was reduced by 58 % and hydrophobicity was reduced by 55.2 % in the presence of the antibodies compared to the controls. Immunohistochemistry studies revealed no cross-reactivity of human tissues with dextransucrase antibodies.Conclusions. These findings suggest that antibodies raised against dextransucrase exhibit a profound inhibitory effect on biofilm formation and vital cariogenic factors of S. mutans, which supports the contention that dextransucrase could be a promising antigen to study for its anticariogenic potential.


Assuntos
Cárie Dentária , Streptococcus mutans , Animais , Humanos , Coelhos , Streptococcus mutans/genética , Biofilmes , Cárie Dentária/prevenção & controle , Glucosiltransferases
5.
J Agric Food Chem ; 70(38): 12107-12116, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124907

RESUMO

The dextransucrase Gtf-DSM has 99.3% sequence identity with the reuteransucrase GtfO, and only 11 out of 1045 residues are different between their N-terminally truncated recombinant forms. Gtf-DSM is capable of synthesizing a dextran with 1% (α1 → 2), 6% (α1 → 4), 24% (α1 → 3), and 69% (α1 → 6) linkages, while GtfO produces a reuteran with 21% (α1 → 6) and 79% (α1 → 4) linkages. In this work, using recombinant Gtf-DSM and GtfO as templates, parallel substitutions targeting these 11 distinguishing residues were performed to investigate their linkage specificity determinants. The combinatorial mutation (I937L/D977A/D1083V/Q1086K/K1087G) at the acceptor binding subsites +1 and +2 nearly converted the linkage specificity of Gtf-DSM to that of GtfO. Surprisingly, all of the individual or combinatorial mutations in four residues from domains IV and V of Gtf-DSM significantly altered the linkage specificity of Gtf-DSM. Additionally, all mutations in the 11 distinguishing residues of Gtf-DSM resulted in a dramatically reduced transferase/hydrolysis activity ratio, which was closer to that of GtfO. These mutation results suggested that the linkage specificity differences between Gtf-DSM and GtfO are determined by the distinct micro-physicochemical environments, formed by the concerted action of a series of residues not only from the acceptor binding subsites +1 and +2 but also from domains IV and V.


Assuntos
Dextranos , Glucosiltransferases , Dextranos/química , Glucosiltransferases/química , Hidrólise , Mutação , Especificidade por Substrato
6.
Enzyme Microb Technol ; 161: 110111, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35961060

RESUMO

Fisetin (7,3',4'-flavon-3-ol) is a flavonol found in plants, fruits, and vegetables. It exhibits diverse biological activities, including antioxidant, anti-inflammatory, and anti-cancer effects. However, the low water solubility and bioavailability of fisetin restrict its pharmaceutical applications. In this work, we synthesized a novel fisetin-4'-O-α-D-glucopyranoside (FST-G1) using transglucosylation with sucrose, fisetin, and dextransucrase from Leuconostoc mesenteroides NRRL B-1299CB4. The water solubility of FST-G1 (109.8 ± 6.3 mg/L) was enhanced compared to fisetin (13.6 ± 1.3 mg/L). The antioxidant activities of FST-G1 in non-cellular assays, including ORAC, ABTS•+, and FRAP assays, were lower compared to fisetin. However, FST-G1 exhibited higher nitric oxide inhibition (62.5 µM; 92.3 %) in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells compared to fisetin (81.4 %). Anti-lipid accumulation in mouse 3T3-L1 cells treated with FST-G1 was similar to that in cells treated with fisetin. Taken together, the novel synthesized FST-G1 is expected to become a promising functional material for using in the pharmaceutical industry.


Assuntos
Leuconostoc mesenteroides , Animais , Antioxidantes/farmacologia , Flavonóis , Glucosídeos/química , Glucosiltransferases/química , Leuconostoc , Camundongos , Solubilidade , Água
7.
Gels ; 8(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323284

RESUMO

Dextransucrases released by certain lactic acid bacteria form glucose polymers with predominantly α-1,6-linkages and may be exploited biotechnologically for the tailored production of polysaccharides with application potential. Despite releasing two closely related dextransucrases, previous studies showed that water kefir borne Liquorilactobacillus (L.) hordei TMW 1.1822 and L. nagelii TMW 1.1827 produce different amounts of polysaccharides with distinct particle sizes (molecular weight and radius of gyration) and molecular architectures. To investigate where these differences originate and thus to provide deeper insights into the functionally diverse nature of polysaccharide formation during water kefir fermentation, we constructed two variants of the L. nagelii dextransucrase-a full-length enzyme and a truncated variant, devoid of a C-terminal glucan-binding domain that reflects the domain architecture of the L. hordei dextransucrase-and applied them at various enzyme concentrations to form dextran over 24 h. The full-length enzyme exhibited a high activity, forming constant amounts of dextran until a four-fold dilution, whereas the truncated variant showed a gradual decrease in activity and dextran formation at an increasing dilution. The application of the full-length enzyme resulted in higher average particle sizes compared to the truncated variant. However, the dilution of the enzyme extracts also led to a slight increase in the average particle size in both enzymes. Neither the domain architecture nor the enzyme concentration had an impact on the structural architecture of the dextrans. The presented results thus suggest that the comparatively higher processivity of the L. nagelii dextransucrase is predominantly caused by the additional C-terminal glucan-binding domain, which is absent in the L. hordei dextransucrase. The average particle size may be influenced, to some extent, by the applied reaction conditions, whereas the structural architecture of the dextrans is most likely caused by differences in the amino acid sequence of the catalytic domain.

8.
Food Chem ; 366: 130623, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320438

RESUMO

Stevioside (ST) is currently considered as a highly-demanded natural and zero-caloric replacer of sucrose with several health-promoting properties. Nonetheless, its bitter aftertaste limits its use in the food industry. Herein, glucosyl steviosides were synthesized using primarily a food-grade lactic acid bacteria, Leuconostoc kimchii dextransucrase and conversion yield (%) was 40.3%. A glucose moiety was transferred stereo-selectively to ST by α-1,6-linkage and this is the first report about obtaining rebaudioside A (Reb-A) like glucosyl stevioside-2 (STG-2). Glucosyl steviosides revealed greatly improved stability up to 120 °C and remained stable over 32.1% and 58.12% in the pH (1.4) compared with 30.55% of ST. Moreover, the glucosylated steviosides improved the stability, reaching 95% after 30 days and Reb-A like compound (STG-2) especially exhibited higher stability in commercial beverages. Furthermore, the glucosyl steviosides showed over 1.92- and 2.24-fold decreases than that of enzymatically modified ST in the glucose generation rate test.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Glucosiltransferases/genética , Leuconostoc/genética , Edulcorantes
9.
Enzyme Microb Technol ; 153: 109955, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826778

RESUMO

Non-digestible isomaltooligosaccharides (NDIMOS) are functional food and beverage ingredients that contributed to human health benefits through metabolism of gastrointestinal microorganism. In this study, NDIMOS were synthesized by combine dextransucrase from Leuconostoc mesenteroides B512F/KM and alternansucrase from L. mesenteroides NRRL 1355CF10/KM using sucrose as substrate and maltose as acceptor. Their digestibility was confirmed by using digestive enzymes including α-amylase and amyloglucosidase. NDIMOS inhibited insoluble glucan formation through mutansucrase from Streptococcus mutans. The bifidogenic effect of NDIMOS was investigated by growth of four strains of Bifidobacterium in MRS broth containing NDIMOS, compared with MRS broth contain glucose and negative control. Additionally, Bifidobacterium bifidum or Bifidobacterium adolescentis inhibited the growth of Salmonella enterica serovar typhimurium when they were co-cultivation in MRS broth containing NDIMOS. These results suggested that NDIMOS is potential functional ingredient for food, beverage, and pharmaceutical application.


Assuntos
Placa Dentária , Glucosiltransferases , Glicosiltransferases , Humanos , Sacarose
10.
Enzyme Microb Technol ; 151: 109919, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649690

RESUMO

Improving enzyme stability is very important for enzyme applications. Structural modification is a reliable and effective method to improve the characteristics of protein. By artificially extending the C-terminus, 6 domain modification variants of different sizes were constructed, and a new enzyme species with high stability was obtained. Experimental results affirmed that high stability can be achieved by decreasing the degree of domain freedom. The optimum temperatures of domain modification variants were improved by 10 °C compared with the original enzyme. Specifically, compared with the original enzyme, the half-life of the variant dexYG-fdx (D-F) was increased to 280% under 35 °C and 200% under 45 °C, and the pH tolerance range was wider. Further structural simulations and molecular docking studies provided a reasonable explanation (The increased domain reduced the degree of freedom of the enzyme terminal to some extent) for this variant to increase stability and produce dextran. This study can provide valuable information for increasing the characteristics of recombinant dextransucrase.


Assuntos
Glucosiltransferases , Estabilidade Enzimática , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Simulação de Acoplamento Molecular , Temperatura
11.
Front Bioeng Biotechnol ; 9: 747602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568303

RESUMO

Iron dextran is a common anti-anemia drug, and it requires low molar mass dextran as substrate. In this work, we selected 11 amino acid residues in domain A/B of DSR-MΔ2 within a 5-angstrom distance from sucrose for site-directed mutagenesis by molecular docking. Mutation of Q634 did not affect the enzyme catalytic activity, but showed an obvious impact on the ratio of low molecular weight dextran (L-dextran, 3,000-5,000 Da) and relatively higher molecular weight dextran (H-dextran, around 10,000 Da). L-dextran was the main product synthesized by DSR-MΔ2 Q634A, and its average molecular weight was 3,951 Da with a polydispersity index <1.3. The structural characterization of this homopolysaccharide revealed that it was a dextran, with 86.0% α(1→6) and 14.0% α(1→4) glycosidic linkages. Moreover, L-dextran was oxidized with NaOH and chelated with ferric trichloride, and an OL-dextran-iron complex was synthesized with a high iron-loading potential of 33.5% (w/w). Altogether, mutation of amino acids near the sucrose binding site of dextransucrase can affect the chain elongation process, making it possible to modulate dextran size.

12.
J Agric Food Chem ; 69(20): 5774-5782, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978404

RESUMO

Bioglycosylation is an efficient strategy to improve biological activities and physicochemical properties of natural compounds to develop structural modifications of drugs. In this study, an N555 residue was identified as a candidate for site-directed mutagenesis through sequence alignment with GTF180ΔN. Caffeic acid phenethyl ester (CAPE) was used as an acceptor substrate. Two generated mutants, N555Q and N555E, demonstrated significant specificity of distribution of products. Under identical conditions, the conversion rates of diglycoside products (CAPE-2G) generated by the N555E (80.8%) and N555Q (84.5%) mutants were 3.30- and 3.46-fold higher than those generated by the original enzyme (24.4%). The structural simulation results demonstrated that a new hydrogen bond was formed between the N555 residue and CAPE, and the N555 residue was closely related to substrate elongation. These results provide a reference for subsequent studies. Suitable mutants for transfer of diglycosides have important application potential in the food and pharmaceutical industries.


Assuntos
Álcool Feniletílico , Ácidos Cafeicos , Glucosiltransferases , Mutação , Álcool Feniletílico/análogos & derivados
13.
Food Res Int ; 143: 110296, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992395

RESUMO

A standard level of sugar addition to bread is 2% (flour base) but sweet baked goods including hamburger buns, hot dog buns and some sandwich bread contain more than 10% sucrose. This study aimed to provide an integrated assessment of different strategies for sugar-reduced bread by using isomaltooligosaccharides (IMO) as bulk sweetening agent, polysaccharide hydrolases to generate sugars from flour polysaccharides, and sourdough. Trained panel sensory analyses of the intensity of sour and sweet tastes were compared to the concentration of organic acids and the sugar concentration of bread. Sourdough fermentation reduced the sweet taste intensity of bread produced with 9% sucrose. This effect was more pronounced with Leuconostoc mesenteroides, which converts fructose to mannitol with concomitant production of acetate. Addition of up to 20% sourdough fermented with Weissella cibaria 10 M, which does not produce mannitol and less acetate when compared to L. mesenteroides, did not substantially reduce the sweet taste intensity. Bread produced with 9% IMO tasted less sweet than bread prepared with 9% sucrose but partial replacement of sucrose with IMO maintained the sweet taste intensity. Addition of 4.5% IMO in combination with W. cibaria sourdough, amyloglucosidase and the fructosidase FruA enabled production of bread with 50% reduced sucrose addition while maintaining the sweet taste intensity. In conclusion, the single use of a sweet bulking agent, of amyloglucosidase or fructanases or the use of sourdough alone, did not maintain the sweet taste intensity of sugar-reduced bread, however, a combination of the three approaches allowed a reduction of sucrose addition without reducing the sweet taste intensity.


Assuntos
Pão , Weissella , Farinha , Açúcares
14.
Biochem Biophys Rep ; 26: 100980, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33748439

RESUMO

Plant polyphenols have been extensively studied for their chemopreventive properties for human health. Dextransucrase plays an essential role in synthesizing exopolysaccharides from its exclusive substrate sucrose in Streptococcus mutans. In the present study, the effect of polyphenols gallic acid and tannic acid was investigated on the dextransucrase activity. The enzyme was purified by ethanol precipitation followed by column chromatography by Sephadex G-200 gel chromatography, followed by PEG-400 treatment. The purified enzyme exhibited 52 fold enrichment with 17.5% yield and specific activity of 3.54 Units/mg protein. On SDS-PAGE enzyme protein gave a single band with a molecular weight of 160 kDa. Dextransucrase activity was inhibited 80-90% by 0.04 mM tannic acid (TA) or 0.4 mM gallic acid (GA) suggesting that tannic acid has 10- fold more inhibitory potential than gallic acid on the activity of dextransucrase. CD/ORD studies revealed modifications in the tertiary structure of enzyme protein in presence of tannic acid and gallic acid, which were further confirmed by fluorescence spectra of the protein in presence of tannic acid. These results suggest that inhibition of dextransucrase activity in S. mutans by polyphenols may have potential applications in the prevention and control of dental caries.

15.
Enzyme Microb Technol ; 143: 109724, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33375966

RESUMO

Dextrans are α-(1,6)-linked glucose polymers, which are exclusively produced by lactic acid bacteria from sucrose via extracellular dextransucrases. Previous studies suggested that the environmental pH and the presence of sucrose can impact the release and activity of these enzymes. To get deeper insight into this phenomenon, the dextransucrase expressed by water kefir borne Liquorilactobacillus (L.) nagelii TMW 1.1827 (formerly Lactobacillus nagelii) was recovered in supernatants of buffered cell suspensions that had been incubated with or without sucrose and at different pH. The obtained secretomes were used to time-dependently produce and recover dextrans, whose molecular and macromolecular structures were determined by methylation analysis and AF4-MALS-UV measurements, respectively. The initial pH of the buffered cell suspensions had solely a minor influence on the released dextransucrase activity. When sucrose was present during incubation, the secretomes contained significantly higher dextransucrase activities, although the amounts of totally released proteins obtained with or without sucrose were comparable. However, the dextransucrase appeared to be released in lower amounts into the environment if sucrose was not present. The amount of isolable dextran increased up to 24 h of production, although the total sucrose was consumed within the first 10 min of incubation. Furthermore, the sucrose isomer leucrose had been formed after 10 min, while its concentrations decreased over time and the portions of longer isomaltooligosaccharides (IMOs) increased. This indicated that leucrose can be used by L. nagelii TMW 1.1827 to produce more elongated and branched dextran molecules from presynthesized IMOs, while disproportionation reactions on short IMOs may appear additionally. This leads to increasing amounts of high molecular weight dextran in a state of sucrose depletion. These findings reveal new insights into the pH- and sucrose-dependent kinetics of extracellular dextran formation and may be useful for optimization of fermentative and enzymatic dextran production processes.


Assuntos
Glucosiltransferases , Sacarose , Dextranos , Lactobacillus
16.
Appl Biochem Biotechnol ; 193(1): 96-110, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32820351

RESUMO

The properties of the glucopolymer dextran are versatile and linked to its molecular size, structure, branching, and secondary structure. However, suited strategies to control and exploit the variable structures of dextrans are scarce. The aim of this study was to delineate structural and functional differences of dextrans, which were produced in buffers at different conditions using the native dextransucrase released by Liquorilactobacillus (L.) hordei TMW 1.1822. Rheological measurements revealed that dextran produced at pH 4.0 (MW = 1.1 * 108 Da) exhibited the properties of a viscoelastic fluid up to concentrations of 10% (w/v). By contrast, dextran produced at pH 5.5 (MW = 1.86 * 108 Da) was gel-forming already at 7.5% (w/v). As both dextrans exhibited comparable molecular structures, the molecular weight primarily influenced their rheological properties. The addition of maltose to the production assays caused the formation of the trisaccharide panose instead of dextran. Moreover, pre-cultures of L. hordei TMW 1.1822 grown without sucrose were substantial for recovery of higher dextran yields, since the cells stored the constitutively expressed dextransucrase intracellularly, until sucrose became available. These findings can be exploited for the controlled recovery of functionally diverse dextrans and oligosaccharides by the use of one dextransucrase type.


Assuntos
Proteínas de Bactérias/metabolismo , Glucanos/biossíntese , Glucosiltransferases/metabolismo , Lactobacillaceae/metabolismo , Dextranos/biossíntese
17.
Food Res Int ; 137: 109438, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233119

RESUMO

High insoluble dietary fibre content causes challenges with structure and texture in extrusion. This paper focused on studying the structure of extrudate enriched with rye bran modified in different ways. Fermentation of rye bran with dextran-producing Weissella confusa (with 10 g/100 g, 5 g/100 g and 0 g/100 g added sucrose as substrate for dextran production), in situ enzymatic production of dextran in the bran and chemical acidification of bran with lactic acid were compared in extrusion trials. Endosperm rye flour was the base in extrusion, of which 32 g/100 g was substituted for rye bran. Fermentation with dextran production showed similar improvement in extrudate expansion as chemically acidified bran samples (489 and 493%), in comparison with native bran (420%). Similarly, these treatments decreased extrudate hardness and increased crispiness index (CI) (16 N, 0.06 and 14 N, 0.071 respectively) compared to the control (39 N, 0.008). Enzymatically produced dextran did not affect expansion, although it decreased hardness (26 N) and increased CI compared to the control (0.023). Chemical changes in the fermented and acidified rye bran included reduction in insoluble dietary fibre (DF) (19 g/100 g â†’ 17 g/100 g) and increase in soluble DF (5.17 g/100 g â†’ 5.51-7.19 g/100 g), as well as soluble protein (8 g/100 g â†’ 11 g/100 g) content. Lactic acid bacteria fermentation or acidification is therefore a promising method to increase the functionality of rye bran in extrusion.


Assuntos
Dextranos , Secale , Fibras na Dieta , Concentração de Íons de Hidrogênio , Weissella
18.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916950

RESUMO

Leuconostoc mesenteroides DRP105 isolated from Chinese sauerkraut juice is an intensive producer of dextran. We report the complete genome sequence of Leu. mesenteroides DRP105. This strain contains a dextransucrase gene (dsr) involved in the production of dextran, possibly composed of glucose monomers. To explore the dextran synthesis mechanism of Leu. mesenteroides DRP105, we constructed a dsr-deficient strain derived from Leu. mesenteroides DRP105 using the Cre-loxP recombination system. The secondary structure prediction results showed that Leu. mesenteroides DRP105 dextransucrase (Dsr) was coded by dsr and contained 17.07% α-helices, 29.55% ß-sheets, 10.18% ß-turns, and 43.20% random coils. We also analyzed the dextran yield, monosaccharide change, organic acid, and amino-acid content of Leu. mesenteroides DRP105 and Leu. mesenteroides DRP105-Δdsr. The result showed that the lack of dsr changed the Leu. mesenteroides DRP105 sugar metabolism pathway, which in turn affected the production of metabolites.


Assuntos
Glucosiltransferases/genética , Leuconostoc mesenteroides/genética , Metabolismo dos Carboidratos , Genoma Bacteriano , Leuconostoc mesenteroides/enzimologia
19.
Enzyme Microb Technol ; 140: 109630, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912690

RESUMO

Crocin, one of the major carotenoid pigments of Crocus sativus (saffron), is responsible for antioxidant activity, neuroprotection, and the inhibition of tumor cell proliferation. In order to improve the functionality of crocin, α-glucosyl-(1→6)-trans-crocins (C-Gs) were synthesized using sucrose and dextransucrase from Leuconostoc mesenteroides. High hydrostatic pressure (HHP) technique was applied to the synthesis process of C-Gs in order to improve its transglucosylation yield. A 100 MPa HHP condition enhanced the production yield of C-Gs by 1.95 times compared to that of 0.1 MPa atmospheric pressure. Novel C-Gs were purified by HPLC, and their chemical structures were determined using NMR analysis. Novel C-Gs increased water solubility 4.6-5.7 times and antioxidant activity 1.5-2.6 times, respectively, compared to crocin, and their neuroprotections (cell viability 92.5-100.4 %) on HT22 mouse hippocampal neuronal cells were significantly higher than that of crocin (cell viability 84.6 %). This advanced neuroprotection of novel C-Gs could be highly associated with their enhanced antioxidant activity. Thus, the enhanced water solubility and functionality of novel C-Gs can induce better clinical efficacy of neuroprotection than trans-crocin.


Assuntos
Antioxidantes/metabolismo , Carotenoides/metabolismo , Glucosiltransferases/metabolismo , Neuroproteção/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Carotenoides/química , Carotenoides/farmacologia , Linhagem Celular , Glicosilação , Pressão Hidrostática , Leuconostoc mesenteroides/enzimologia , Camundongos , Estrutura Molecular , Solubilidade , Sacarose/metabolismo , Água/química
20.
J Agric Food Chem ; 68(33): 8907-8914, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32806122

RESUMO

Exopolysaccharides (EPSs) produced by lactic acid bacteria improve the quality of bread; however, their functionality in steamed bread is unknown. This study aimed to compare the impact of EPS produced during sourdough fermentation on the quality of bread and steamed bread. Sourdoughs were fermented with EPS-producing Fructilactobacillus sanfranciscensis, Weissella cibaria, and Leuconostoc mesenteroides; Latilactobacillus sakei LS8 and chemically acidified sourdough were prepared as controls. EPS production generally enhanced the specific volume, improved the texture, and reduced the staling rate of bread. The effect of EPS on steamed bread quality was more pronounced when compared to its effect on bread quality. Remarkably, the beneficial effects of F. sanfranciscensis bread quality were largely independent of EPS formation and may relate to gluten modifications rather than EPS production. In conclusion, the direct comparison of sourdough and EPS functionality in steaming and baking provides novel insights for the optimization of commercial (steamed) bread production.


Assuntos
Pão/microbiologia , Culinária/métodos , Lactobacillales/metabolismo , Polissacarídeos Bacterianos/química , Triticum/microbiologia , Pão/análise , Fermentação , Temperatura Alta , Lactobacillales/química , Lactobacillales/classificação , Polissacarídeos Bacterianos/metabolismo , Triticum/química , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA