Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123900

RESUMO

Nanotechnology has ushered in significant advancements in drug design, revolutionizing the prevention, diagnosis, and treatment of various diseases. The strategic utilization of nanotechnology to enhance drug loading, delivery, and release has garnered increasing attention, leveraging the enhanced physical and chemical properties offered by these systems. Polyamidoamine (PAMAM) dendrimers have been pivotal in drug delivery, yet there is room for further enhancement. In this study, we conjugated PAMAM dendrimers with chitosan (CS) to augment cellular internalization in tumor cells. Specifically, doxorubicin (DOX) was initially loaded into PAMAM dendrimers to form DOX-loaded PAMAM (DOX@PAMAM) complexes via intermolecular forces. Subsequently, CS was linked onto the DOX-loaded PAMAM dendrimers to yield CS-conjugated PAMAM loaded with DOX (DOX@CS@PAMAM) through glutaraldehyde crosslinking via the Schiff base reaction. The resultant DOX@CS@PAMAM complexes were comprehensively characterized using Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Notably, while the drug release profile of DOX@CS@PAMAM in acidic environments was inferior to that of DOX@PAMAM, DOX@CS@PAMAM demonstrated effective acid-responsive drug release, with a cumulative release of 70% within 25 h attributed to the imine linkage. Most importantly, DOX@CS@PAMAM exhibited significant selective cellular internalization rates and antitumor efficacy compared to DOX@PAMAM, as validated through cell viability assays, fluorescence imaging, and flow cytometry analysis. In summary, DOX@CS@PAMAM demonstrated superior antitumor effects compared to unconjugated PAMAM dendrimers, thereby broadening the scope of dendrimer-based nanomedicines with enhanced therapeutic efficacy and promising applications in cancer therapy.


Assuntos
Quitosana , Dendrímeros , Doxorrubicina , Dendrímeros/química , Quitosana/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Poliaminas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
2.
Eur J Med Chem ; 277: 116730, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111015

RESUMO

In this paper we report the discovery of structurally novel and highly potent programmed cell death-ligand 1 (PD-L1) inhibitors targeting surface and intracellular PD-L1. A ring fusion design utilizing dimethoxyphenyl indazole derivatives was used, followed by structural extension, which further improved potency by inducing the formation of additional symmetrical interactions within the PD-L1 binding site, leading to the discovery of novel and highly active tetra-aryl-scaffold inhibitors. Key optimizations involved polar tail chain modifications that improve potency and minimize cell cytotoxicity. In addition, druggability issues that exist outside the rule-of-five chemical space were addressed. CB31, a representative compound, was found to exhibit outstanding activity in blocking programmed cell death-1 (PD-1)/PD-L1 interactions (IC50 = 0.2 nM) and enhancing T-cell functions, with minimal cell cytotoxicity. CB31 also displayed favorable oral pharmacokinetic properties, consistent with its high passive permeability and insusceptibility to efflux transporters, as well as its high metabolic stability. Additionally, CB31 demonstrated mechanistically differentiated features from monoclonal antibodies by inducing PD-L1 internalization, intracellular retention of PD-L1 with altered glycosylation pattern, and PD-L1 degradation. It also demonstrated greater effects on tumor size reduction and tumor cell killing, with enhanced T-cell infiltration, in a 3D tumor spheroid model. Overall, results show that CB31 is a promising small-molecule PD-L1 inhibitor that can inhibit PD-1/PD-L1 interactions and promote PD-L1 degradation.


Assuntos
Antígeno B7-H1 , Desenho de Fármacos , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Administração Oral , Camundongos , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Ensaios de Seleção de Medicamentos Antitumorais , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
3.
Acta Pharm Sin B ; 14(7): 3232-3250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027260

RESUMO

Insufficient therapeutic strategies for acute kidney injury (AKI) necessitate precision therapy targeting its pathogenesis. This study reveals the new mechanism of the marine-derived anti-AKI agent, piericidin glycoside S14, targeting peroxiredoxin 1 (PRDX1). By binding to Cys83 of PRDX1 and augmenting its peroxidase activity, S14 alleviates kidney injury efficiently in Prdx1-overexpression (Prdx1-OE) mice. Besides, S14 also increases PRDX1 nuclear translocation and directly activates the Nrf2/HO-1/NQO1 pathway to inhibit ROS production. Due to the limited druggability of S14 with low bioavailability (2.6%) and poor renal distribution, a pH-sensitive kidney-targeting dodecanamine-chitosan nanoparticle system is constructed to load S14 for precise treatment of AKI. l-Serine conjugation to chitosan imparts specificity to kidney injury molecule-1 (Kim-1)-overexpressed cells. The developed S14-nanodrug exhibits higher therapeutic efficiency by improving the in vivo behavior of S14 significantly. By encapsulation with micelles, the AUC0‒t , half-life time, and renal distribution of S14 increase 2.5-, 1.8-, and 3.1-fold, respectively. The main factors contributing to the improved druggability of S14 nanodrugs include the lower metabolic elimination rate and UDP-glycosyltransferase (UGT)-mediated biotransformation. In summary, this study identifies a new therapeutic target for the marine-derived anti-AKI agent while enhancing its ADME properties and druggability through nanotechnology, thereby driving advancements in marine drug development for AKI.

4.
Chem Biodivers ; : e202401165, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973453

RESUMO

Bisindole compounds constitute a significant class of natural compounds distinguished by their characteristic bisindole structure and renowned for their anticancer properties. Over the past four decades, researchers have isolated 229 animal-derived bisindole compounds (ADBCs) from various animals. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of ADBCs. This review also summarizes the structureactivity relationship (SAR) studies associated with the cytotoxicity of these compounds and explores the druggability of these compounds. In summary, our objective is to provide an overview of the research progress concerning ADBCs, with the aim of fostering their continued development and utilization.

5.
Microorganisms ; 12(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38930455

RESUMO

Extensive research has been conducted to identify key proteins governing stress responses, virulence, and antimicrobial resistance, as well as to elucidate their interactions within Listeria monocytogenes. While these proteins hold promise as potential targets for novel strategies to control L. monocytogenes, given their critical roles in regulating the pathogen's metabolism, additional analysis is needed to further assess their druggability-the chance of being effectively bound by small-molecule inhibitors. In this work, 535 binding pockets of 46 protein targets for known drugs (mainly antimicrobials) were first analyzed to extract 13 structural features (e.g., hydrophobicity) in a ligand-protein docking platform called Molsoft ICM Pro. The extracted features were used as inputs to develop a logistic regression model to assess the druggability of protein binding pockets, with a value of one if ligands can bind to the protein pocket. The developed druggability model was then used to evaluate 23 key proteins from L. monocytogenes that have been identified in the literature. The following proteins are predicted to be high-potential druggable targets: GroEL, FliH/FliI complex, FliG, FlhB, FlgL, FlgK, InlA, MogR, and PrfA. These findings serve as an initial point for future research to identify specific compounds that can inhibit druggable target proteins and to design experimental work to confirm their effectiveness as drug targets.

6.
Kidney Int Rep ; 9(6): 1817-1835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899167

RESUMO

Introduction: Current therapeutic management of lupus nephritis (LN) fails to induce long-term remission in over 50% of patients, highlighting the urgent need for additional options. Methods: We analyzed differentially expressed genes (DEGs) in peripheral blood from patients with active LN (n = 41) and active nonrenal lupus (n = 62) versus healthy controls (HCs) (n = 497) from the European PRECISESADS project (NTC02890121), and dysregulated gene modules in a discovery (n = 26) and a replication (n = 15) set of active LN cases. Results: Replicated gene modules qualified for correlation analyses with serologic markers, and regulatory network and druggability analysis. Unsupervised coexpression network analysis revealed 20 dysregulated gene modules and stratified the active LN population into 3 distinct subgroups. These subgroups were characterized by low, intermediate, and high interferon (IFN) signatures, with differential dysregulation of the "B cell" and "plasma cells/Ig" modules. Drugs annotated to the IFN network included CC-motif chemokine receptor 1 (CCR1) inhibitors, programmed death-ligand 1 (PD-L1) inhibitors, and irinotecan; whereas the anti-CD38 daratumumab and proteasome inhibitor bortezomib showed potential for counteracting the "plasma cells/Ig" signature. In silico analysis demonstrated the low-IFN subgroup to benefit from calcineurin inhibition and the intermediate-IFN subgroup from B-cell targeted therapies. High-IFN patients exhibited greater anticipated response to anifrolumab whereas daratumumab appeared beneficial to the intermediate-IFN and high-IFN subgroups. Conclusion: IFN upregulation and B and plasma cell gene dysregulation patterns revealed 3 subgroups of LN, which may not necessarily represent distinct disease phenotypes but rather phases of the inflammatory processes during a renal flare, providing a conceptual framework for precision medicine in LN.

7.
Elife ; 122024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833384

RESUMO

The term 'druggability' describes the molecular properties of drugs or targets in pharmacological interventions and is commonly used in work involving drug development for clinical applications. There are no current analogues for this notion that quantify the drug-target interaction with respect to a given target variant's sensitivity across a breadth of drugs in a panel, or a given drug's range of effectiveness across alleles of a target protein. Using data from low-dimensional empirical fitness landscapes composed of 16 ß-lactamase alleles and 7 ß-lactam drugs, we introduce two metrics that capture (i) the average susceptibility of an allelic variant of a drug target to any available drug in a given panel ('variant vulnerability'), and (ii) the average applicability of a drug (or mixture) across allelic variants of a drug target ('drug applicability'). Finally, we (iii) disentangle the quality and magnitude of interactions between loci in the drug target and the seven drug environments in terms of their mutation by mutation by environment (G x G x E) interactions, offering mechanistic insight into the variant variability and drug applicability metrics. Summarizing, we propose that our framework can be applied to other datasets and pathogen-drug systems to understand which pathogen variants in a clinical setting are the most concerning (low variant vulnerability), and which drugs in a panel are most likely to be effective in an infection defined by standing genetic variation in the pathogen drug target (high drug applicability).


Assuntos
Antibacterianos , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Aptidão Genética , Mutação , beta-Lactamas/farmacologia , Alelos , Evolução Molecular
8.
Bioorg Chem ; 149: 107506, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833989

RESUMO

Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.


Assuntos
Janus Quinase 1 , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Estrutura Molecular , Animais , Relação Dose-Resposta a Droga
10.
Mol Biol Rep ; 51(1): 627, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717532

RESUMO

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Doenças Respiratórias/genética , Doenças Respiratórias/terapia , Doenças Respiratórias/metabolismo , Asma/genética , Asma/terapia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar Idiopática/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
11.
3 Biotech ; 14(6): 152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38742229

RESUMO

In the early stages of antibody drug development, it is imperative to conduct a comprehensive assessment and enhancement of the druggability attributes of potential molecules by considering their fundamental physicochemical properties. This study specifically concentrates on the surface-exposed hydrophobic region of the candidate antibody aPDL1-WT and explores the effectiveness of the L309K mutation strategy. The resulting aPDL1-LK variant demonstrates a notable enhancement over the original antibody in addressing the issue of aggregation and formation of large molecular impurities under accelerated high-temperature conditions. The mutated molecule, aPDL1-LK, exhibits excellent physicochemical properties such as hydrophilicity, conformational stability, charge variant stability, post-translational modifications, and serum stability. In terms of biological function, aPDL1-LK maintains the same glycosylation pattern as the original antibody and shows no significant difference in affinity for antigen hPDL1 protein, CD16a-F158, CD64, CD32a-H131, and complement C1q, compared to aPDL1-WT. The L309K mutation results in an approximately twofold reduction in its affinity for CD16a-V158 and CD32a-R131. In vitro biological assays, including antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), reveal that the L309K mutation may decrease CD16a-V158-mediated ADCC activity due to the mutation-induced decrease in ligand affinity, while not affect CD32a-R131-mediated ADCP activity. In conclusion, the L309K mutation offers a promising strategy to enhance the druggability properties of candidate antibodies.

12.
Eur J Med Chem ; 273: 116520, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788299

RESUMO

The absence of effective active pockets makes traditional molecularly targeted drug strategies ineffective against 80 % of human disease-related proteins. The PROTAC technology effectively makes up for the deficiency of traditional molecular targeted drugs, which produces drug activity by degrading rather than inhibiting the target protein. The degradation of PROTAC is not only affected by POI ligand and E3 ligand, but by the selection of suitable linker which can play an important role in the efficiency and selectivity of the degradation. In the early exploring stage of the PROTAC, flexible chains were priorly applied as the linker of PROTAC. Although PROTAC with flexible chains as linkers sometimes perform well in vitro bioactivity evaluations, the introduction of lipophilic flexible chains reduces the hydrophilicity of these molecules, resulting in generally poor pharmacokinetic characteristics and pharmacological activities in vivo. In addition, recent reports have also shown that some PROTAC with flexible chains have some risks to causing hemolysis in vivo. Therefore, PROTAC with flexible chains show less druggability and large difficulty to entering the clinical trial stage. On the other hand, the application of nitrogen heterocycles in the design of PROTAC linkers has been widely reported in recent years. More and more reports have shown that the introduction of nitrogen heterocycles in the linker not only can effectively improves the metabolism of PROTAC in vivo, but also can enhance the degradation efficiency and selectivity of PROTAC. These PROTAC with nitrogen heterocycle linkers have attracted much attention of pharmaceutical chemists. The introduction of nitrogen heterocycles in the linker deserves priority consideration in the primary design of the PROTAC based on various druggabilities including pharmacokinetic characteristics and pharmacological activity. In this work, we summarized the optimization process and progress of nitrogen heterocyclic rings as the PROTAC linker in recent years. However, there were still limited understanding of how to discover, design and optimize PROTAC. For example, the selection of the types of nitrogen heterocycles and the optimization sites of this linker are challenges for researchers, choosing between four to six-membered nitrogen heterocycles, selecting from saturated to unsaturated ones, and even optimizing the length and extension angle of the linker. There is a truly need for theoretical explanation and elucidation of the PROTAC to guide the developing of more effective and valuable PROTAC.


Assuntos
Compostos Heterocíclicos , Nitrogênio , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Humanos , Nitrogênio/química , Estrutura Molecular , Animais , Ligantes
13.
J Comput Aided Mol Des ; 38(1): 22, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753096

RESUMO

Although the size of virtual libraries of synthesizable compounds is growing rapidly, we are still enumerating only tiny fractions of the drug-like chemical universe. Our capability to mine these newly generated libraries also lags their growth. That is why fragment-based approaches that utilize on-demand virtual combinatorial libraries are gaining popularity in drug discovery. These à la carte libraries utilize synthetic blocks found to be effective binders in parts of target protein pockets and a variety of reliable chemistries to connect them. There is, however, no data on the potential impact of the chemistries used for making on-demand libraries on the hit rates during virtual screening. There are also no rules to guide in the selection of these synthetic methods for production of custom libraries. We have used the SAVI (Synthetically Accessible Virtual Inventory) library, constructed using 53 reliable reaction types (transforms), to evaluate the impact of these chemistries on docking hit rates for 40 well-characterized protein pockets. The data shows that the virtual hit rates differ significantly for different chemistries with cross coupling reactions such as Sonogashira, Suzuki-Miyaura, Hiyama and Liebeskind-Srogl coupling producing the highest hit rates. Virtual hit rates appear to depend not only on the property of the formed chemical bond but also on the diversity of available building blocks and the scope of the reaction. The data identifies reactions that deserve wider use through increasing the number of corresponding building blocks and suggests the reactions that are more effective for pockets with certain physical and hydrogen bond-forming properties.


Assuntos
Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Descoberta de Drogas/métodos , Ligantes , Desenho de Fármacos , Humanos
14.
Cancer Metastasis Rev ; 43(3): 1075-1093, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38592427

RESUMO

The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Animais , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Linfócitos T/imunologia
15.
J Ethnopharmacol ; 330: 118222, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38663778

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cinnamomum cassia Presl (Cinnamomum cassia) is a common traditional Chinese medicine, which can promote the secretion and digestion of gastric juice, improve the function of gastrointestinal tract. Cinnamaldehyde (CA) is a synthetic food flavoring in the Chinese Pharmacopoeia. AIM OF THE STUDY: This study aimed to search for the active ingredient (CA) of inhibiting H. pylori from Cinnamomum cassia, and elucidate mechanism of action, so as to provide the experimental basis for the treatment of H. pylori infection with Cinnamomum cassia. MATERIALS AND METHODS: It's in vitro and in vivo pharmacological properties were evaluated based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and an acute gastric inflammation model in mice infected with H. pylori. Drug safety was evaluated using the CCK8 method and high-dose administration in mice. The advantageous characteristics of CA in inhibiting H. pylori were confirmed using acidic conditions and in combination with the antibiotics. The mechanism underlying the action of CA on H. pylori was explored using scanning electron microscopy (SEM), adhesion experiments, biofilm inhibition tests, ATP and ROS release experiments, and drug affinity responsive target stability (DARTS) screening of target proteins. The protein function and target genes were verified by molecular docking and Real-Time quantitative reverse transcription PCR (qRT-PCR). RESULTS: The results demonstrated that CA was found to be the main active ingredient against H. pylori in Cinnamomum cassia in-vitro tests, with a MIC of 8-16 µg/mL. Moreover, CA effectively inhibited both sensitive and resistant H. pylori strains. The dual therapy of PPI + CA exhibited remarkable in vivo efficacy in the acute gastritis mouse model, superior to the standard triple therapy. DARTS, molecular docking, and qRT-PCR results suggested that the target sites of action were closely associated with GyrA, GyrB, AtpA, and TopA, which made DNA replication and transcription impossible, then leading to inhibition of bacterial adhesion and colonization, suppression of biofilm formation, and inhibition ATP and enhancing ROS. CONCLUSIONS: This study demonstrated the suitability of CA as a promising lead drug against H. pylori, The main mechanisms can target GyrA ect, leading to reduce ATP and produce ROS, which induces the apoptosis of bacterial.


Assuntos
Acroleína , Antibacterianos , Cinnamomum aromaticum , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Animais , Acroleína/análogos & derivados , Acroleína/farmacologia , Helicobacter pylori/efeitos dos fármacos , Cinnamomum aromaticum/química , Antibacterianos/farmacologia , Camundongos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Masculino , Simulação de Acoplamento Molecular , Biofilmes/efeitos dos fármacos
16.
Curr Stem Cell Res Ther ; 19(9): 1195-1209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523514

RESUMO

Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Humanos , Animais
17.
OMICS ; 28(3): 148-161, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38484298

RESUMO

Breast cancer is the lead cause of cancer-related deaths among women globally. Breast cancer metastasis is a complex and still inadequately understood process and a key dimension of mortality attendant to breast cancer. This study reports dysregulated genes across metastatic stages and tissues, shedding light on their molecular interplay in disease pathogenesis and new possibilities for drug discovery. Comprehensive analyses of gene expression data from primary breast tumor, circulating tumor cells, and distant metastatic sites in the brain, lung, liver, and bone were conducted. Genes dysregulated across multiple stages and tissues were identified as metastatic cascade genes, and are further classified based on functional associations with metastasis-related mechanisms. Their interactions with HUB genes in interactome networks were scrutinized, followed by pathway enrichment analysis. Validation for their potential as targets included assessments for survival, druggability, prognostic marker status, secretome annotation, protein expression, and cell type marker association. Results displayed critical genes in the metastatic cascade and those specific to metastatic sites, revealing the involvement of the collagen degradation and assembly of collagen fibrils and other multimeric structure pathways in driving metastasis. Notably, pivotal cascade genes FABP4, CXCL12, APOD, and IGF1 emerged with high metastatic potential, linked to significant druggability and survival scores, establishing them as potential molecular targets. The significance of this research lies in its potential to uncover novel biomarkers for early detection, therapeutic targets, and a deeper understanding of the molecular mechanisms underpinning the metastatic cascade in breast cancer, and with an eye to precision/personalized medicine.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transcriptoma/genética , Biologia de Sistemas , Fígado , Colágeno/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
18.
Eur J Med Chem ; 269: 116327, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38547733

RESUMO

We report the design and synthesis of a series of proline-derived quinoline formamide compounds as human urate transporter 1 (URAT1) inhibitors via a ligand-based pharmacophore approach. Structure-activity relationship studies reveal that the replacement of the carboxyl group on the polar fragment with trifluoromethanesulfonamide and substituent modification at the 6-position of the quinoline ring greatly improve URAT1 inhibitory activity compared with lesinurad. Compounds 21c, 21e, 24b, 24c, and 23a exhibit potent activities against URAT1 with IC50 values ranging from 0.052 to 0.56 µM. Furthermore, compound 23a displays improved selectivity towards organic anion transporter 1 (OAT1), good microsomal stability, low potential for genotoxicity and no inhibition of the hERG K+ channel. Compounds 21c and 23a, which have superior pharmacokinetic properties, also demonstrate significant uric acid-lowering activities in a mouse model of hyperuricemia. Notably, 21c also exhibits moderate anti-inflammatory activity related to the gout inflammatory pathway. Compounds 21c and 23a with superior druggability are potential candidates for the treatment of hyperuricemia and gout.


Assuntos
Gota , Hiperuricemia , Transportadores de Ânions Orgânicos , Quinolinas , Camundongos , Animais , Humanos , Ácido Úrico/metabolismo , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Quinolinas/farmacologia
19.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 507-516, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369837

RESUMO

Since the approval of OKT3 as the first therapeutic monoclonal antibody in 1986, there has been rapid development in antibody technology and antibody drugs. Monoclonal antibodies, antibody fragments, bi (multi) specific antibodies, fusion proteins, nanobodies, and antibody-drug conjugates (ADCs) have been introduced and play a significant role in the treatment of oncology, hematology, immunology, respiratory, metabolic and other related diseases. The process of antibody drug discovery involves multiple rounds of biological function and druggability assessments to identify the best candidate sequences that are safe, effective, stable, and scalable. This lays the foundation for the efficiency and success of drug development and clinical studies. In the phase of antibody drug discovery, "druggability screening and evaluation" has received increasing attention. It involves drug discovery and design, screening and optimization of lead molecules as well as the validation of candidate molecules, with the aim of detecting potential physicochemical risk factors and evaluating controllability to ensure the quality stability of the subsequent drug development process. This paper classifies and defines the process of druggability screening and evaluation in the antibody discovery phase, covering monoclonal antibodies, bispecific antibodies, nanobodies, ADCs and other related technologies and drug forms. It also summarizes the quality attributes and high-throughput detection technology that should be emphasized in the druggability screening and evaluation. The systematic elaboration of the druggability development process and strategy provides a reference for the druggability screening and evaluation of emerging innovative drugs, significantly improving the efficiency and success rate of antibody drug development.


Assuntos
Anticorpos Biespecíficos , Imunoconjugados , Anticorpos de Domínio Único , Anticorpos de Domínio Único/uso terapêutico , Anticorpos Monoclonais , Imunoconjugados/uso terapêutico , Imunoconjugados/química
20.
In Silico Pharmacol ; 12(1): 10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327876

RESUMO

Neisseria gonorrhoeae, a World Health Organization (WHO) declared superbug and the second-most frequent cause of bacterial sexually transmitted infections worldwide is responsible for gonorrhea. Hypothetical proteins are gene products that are predicted to be encoded by a particular gene based on the DNA sequence, but their specific functions and characteristics have not been experimentally determined or verified. In the context of this research, annotating hypothetical proteins is crucial for identifying their potential as therapeutic targets. Without proper annotation, these proteins would remain vague, hindering efforts to understand their roles in disease. The methodology used aims to bridge this gap by employing algorithm-based tools and software to annotate hypothetical proteins and assess their suitability as therapeutic targets based on factors such as essentiality, virulence, subcellular localization, and druggability. Out of 716 N. gonorrhoeae hypothetical proteins reported in UniProt, assessment of crucial pathogenic factors, including essentiality, virulence, subcellular localization, and druggability, effectively filtered and prioritized the hypothetical proteins for further therapeutic exploration and lead to 5 proteins being chosen as targets. The molecular docking studies conducted identified 10 hits targeting the five targets. Conclusively, this study aided in identification of targets and hit compounds for therapeutic targeting of gonorrhea disease. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00186-w.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA