Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Mater Today Bio ; 28: 101208, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39290468

RESUMO

Artificial tracheal substitutes encounter significant challenges during long-segmental tracheal defects (LSTD) reconstruction, notably early postoperative anastomotic stenosis and tracheal chondromalacia. Mitigating early anastomotic stenosis by creating a compliant sutureless substitute is pivotal. Enhancing its chondrogenic capacity is equally critical for sustained healthy tracheal cartilage regeneration. This study proposes a self-healing hydrogel for sutureless tracheal anastomosis to mitigate anastomotic stenosis, enriched with kartogenin (KGN) and transforming growth factor-ß1 (TGFß1) to bolster chondrogenic properties. Initially, two precursor solutions were prepared: 1) aldehyde-modified hyaluronic acid with sulfonation and ß-cyclodextrin-CHO loaded with KGN; 2) hydrazide-grafted gelatin loaded with TGFß1. Coextrusion of these solutions resulted in a gelated G + TGFß1/sH-CD + KGN hydrogel, characterized by a robust covalent bonding network of acylhydrazones between hydrazide and aldehyde groups, imparting excellent self-healing properties. The G + TGFß1/sH-CD + KGN hydrogels, showcasing favorable cytocompatibility, excellent injectability, and rapid gelation, were loaded with bone marrow stem cells. These were customized into O-shaped rings and assembled into a malleable tracheal substitute using our established ring-to-tube method. This resultant compliant substitute facilitated sutureless anastomosis of LSTD in a rabbit model, attributed to the Schiff base reaction between the hydrogel's carbonyl group and the tissue's amino group. Notably, the tracheal substitute reduced early postoperative anastomotic stenosis, maintained tracheal patency, alleviated sputum blockage, promoted reepithelization, and increased the survival rate of the experimental rabbits. The sustained release of chondrocytokines resulted in excellent tracheal cartilage regeneration. Employing chondrocytokines-loaded hydrogels with self-healing properties represents a significant advancement in sutureless tracheal anastomosis and tracheal cartilage regeneration, holding promising potential in inhibiting early postoperative anastomotic stenosis and tracheal chondromalacia when treating LSTD.

2.
Curr Drug Deliv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39230001

RESUMO

BACKGROUND: Combining Doxorubicin (DOX) with sorafenib (SF) is a promising strategy for treating Hepatocellular Carcinoma (HCC). However, strict dosage control is required for both drugs, and there is a lack of target selectivity. OBJECTIVE: This study aims to develop a novel nano-drug delivery system for the combined use of DOX and SF, aiming to reduce their respective dosages, enhance therapeutic efficacy, and improve target selectivity. METHODS: DOX/SF co-loaded liposomes (LPs) were prepared using the thin-film hydration method. The liposomes were modified with 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine (DSPE)- polyethylene glycol (PEG2000), DSPE-PEG1000-cell penetrating peptide TAT, and Glycyrrhetinic Acid (GA). The basic properties of the liposomes were characterized. CCK-8 cell viability assays were conducted using HepG2, MHCC97-H, and PLC cell models, and apoptosis experiments were performed using HepG2 cells to determine if this delivery system could reduce the respective dosages of DOX and SF and enhance HCC cytotoxicity. Liposome uptake experiments were performed using HepG2 cells to validate the target selectivity of this delivery system. RESULTS: A GA/TAT-DOX/SF-LP liposomal nano drug delivery system was successfully constructed, with a particle size of 150 nm, a zeta potential of -7.9 mV, a DOX encapsulation efficiency of 92%, and an SF encapsulation efficiency of 88.7%. Cellular experiments demonstrated that this delivery system reduced the required dosages of DOX and SF, exhibited stronger cytotoxicity against liver cancer cells, and showed better target selectivity. CONCLUSION: A simple and referenceable liposomal nano drug delivery system has been developed for the combined application of DOX and SF in hepatocellular carcinoma treatment.

3.
Int J Biol Macromol ; 279(Pt 2): 134978, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182860

RESUMO

Stem cell-based therapies show promise for clinically addressing circumferential tracheal defects (CTD) through tissue engineering. However, creating a tissue-engineered tracheal tube possesses a healthy cartilage matrix and intact tube structure remains a challenge. A solution lies in the use of an injectable hydrogel with shape adaptability and chondrogenic capacity, serving as a practical and dependable platform for tubular tracheal cartilage regeneration. In this study, we developed an injectable hydrogel using modified natural polymers-hydrazide-grafted gelatin (Gelatin-ADH) and aldehyde-modified hyaluronic acid with sulfated groups (HA-CHO-SO3) via Schiff Base interaction. Additionally, aldehyde-modified ß-cyclodextrin (ß-CD-CHO) was introduced into the network during hydrogel formation. The negative sulfated groups and hydrophobic cavities of ß-cyclodextrin facilitated the efficient encapsulation and sustained release of transforming growth factor-ß1 (TGF-ß1) and kartogenin (KGN) within our hydrogel. This synergistically promoted the chondrogenesis of loaded bone marrow stem cells (BMSCs). Subsequently, we employed this TGF-ß1, KGN, and BMSCs loaded hydrogel to form a cartilage ring. This ring was then assembled into an engineered tracheal cartilage tube using our previously reported ring-to-tube strategy. Our results demonstrated that the engineered tracheal cartilage tube effectively repaired CTD in a rabbit model. Hence, this study introduces a novel hydrogel with significant clinical application potential for tracheal tissue engineering.

4.
Int J Pharm ; 662: 124483, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029636

RESUMO

Single and dual bioactive linear poly(ionic liquid)s (PIL) were synthesized for use as nanocarriers in drug delivery systems (DDS). These PILs were obtained through the (co)polymerization of the choline-based monomeric ionic liquids (MIL) with pharmaceutical anions possessing antibacterial properties, specifically [2-(methacryloyloxy)ethyl]trimethyl-ammonium with ampicillin and p-aminosalicylate (TMAMA/AMP and TMAMA/PAS). The copolymers exhibited varying chain lengths defined by a degree of polymerization (DPn = 122-370), and differing contents of ionic fraction and drugs (TMAMA 61-92 %, AMP 61-93 % and PAS 16-21 %). These parameters were adjustable by the monomer conversion (33-92 %) and the initial ratio of comonomers. In aqueous solution, the polymer particles reached nanosizes, i.e. 190-328 nm for AMP systems and 200-235 nm for AMP/PAS systems. In the release process, the pharmaceutical anions were released through exchange by phosphate anions in PBS at pH 7.4 at 37 °C. Depending on the copolymer composition the release of AMP was attained in 72-100 % (11.1-19.5 µg/mL) within 26 h by the single drug systems, while the dual drug systems released 61-100 % of AMP (14.8-24.7 µg/mL) and 82-100 % of PAS (3.1-4.8 µg/mL) within 72 h. The effectiveness in the drug delivery of the designed TMAMA polymers seems to be promising for future applications in antibiotic therapy and the combined therapy.


Assuntos
Ampicilina , Antibacterianos , Portadores de Fármacos , Liberação Controlada de Fármacos , Líquidos Iônicos , Nanopartículas , Polímeros , Ampicilina/química , Ampicilina/administração & dosagem , Líquidos Iônicos/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Portadores de Fármacos/química , Polímeros/química , Nanopartículas/química , Ácido Aminossalicílico/química , Ácido Aminossalicílico/administração & dosagem , Sistemas de Liberação de Medicamentos , Polimerização
5.
Euroasian J Hepatogastroenterol ; 14(1): 86-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022196

RESUMO

Gastroesophageal reflux disease (GERD) has a pooled prevalence of 15.2% in India with varying presentation in different subset of patients. The approach towards the management of GERD includes use of monotherapy or a combination of OTCs like antacids and/or prescription drugs like H2 receptor antagonists and proton pump inhibitors (PPI). Better efficacy and safety profile of PPIs have contributed to its wide spread use as compared with other drugs for the same indication. Among PPIs, most of the healthcare professionals prefer to prescribe pantoprazole in India. Standard dose of Pantoprazole (40 mg) is unable to meet the needs in case of extraesophageal symptoms, partial responders, patients with concomitant use of non-steroidal anti-inflammatory drugs (NSAIDs), or severe presentation in cases of overweight/obese patients. Multiple guidelines recommend doubling the dose of PPI in such cases. Twice daily dosing of PPI may reduce compliance. Thus, there is a need for a higher dose of Pantoprazole (80 mg) to be prescribed once daily in these cases so that improved compliance leads to better outcomes. The use of dual release Pantoprazole 80 mg may help to improve compliance and also enhance the time for which acid suppression takes place. In this review, we discuss the use of higher dose PPI based on scientific evidence and experience of clinicians for the same. How to cite this article: Upadhyay R, Soni NK, Kotamkar AA, et al. High Dose Pantoprazole for Gastroesophageal Reflux Disease: Need, Evidence, Guidelines and Our Experience. Euroasian J Hepato-Gastroenterol 2024;14(1):86-91.

6.
Int J Pharm ; 661: 124407, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955239

RESUMO

This study aimed to develop a 3D-printed fixed-dose combination tablet featuring differential release of two drugs using double-melt extrusion (DME). The hot-melt extrusion (HME) process was divided into two steps to manufacture a single filament containing the two drugs. In Step I, a sustained-release matrix of acetaminophen (AAP) was obtained through HME at 190 °C using Eudragit® S100, a pH-dependent polymer with a high glass transition temperature. In Step II, a filament containing both sustained-release AAP from Step I and solubilized ibuprofen (IBF) was fabricated via HME at 110 °C using a mixture of hydroxy propyl cellulose (HPC-LF) and Eudragit® EPO, whose glass transition temperatures make them suitable for use in a 3D printer. A filament manufactured using DME was used to produce a cylindrical 3D-printed fixed-dose combination tablet with a diameter and height of 9 mm. To evaluate the release characteristics of the manufactured filament and 3D-printed tablet, dissolution tests were conducted for 10 h under simulated gastrointestinal tract conditions using the pH jump method with the United States Pharmacopeia apparatus II paddle method at 37 ± 0.5 °C and 50 rpm. Dissolution tests confirmed that both the sustained-release and solubilized forms of AAP and IBF within the filament and 3D-printed tablet exhibited distinct drug-release behaviors. The physicochemical properties of the filament and 3D-printed tablet were confirmed by thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. HME transforms crystalline drugs into amorphous forms, demonstrating their physicochemical stability. Scanning electron microscopy and confocal laser scanning microscopy indicated the presence of sustained AAP granules within the filament, confirming that the drugs were independently separated within the filament and 3D-printed tablets. Finally, sustained-release AAP and solubilized IBF were independently incorporated into the filaments using DME technology. Therefore, a dual-release 3D-printed fixed-dose combination was prepared using the proposed filament.


Assuntos
Acetaminofen , Celulose , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Ibuprofeno , Impressão Tridimensional , Solubilidade , Comprimidos , Ibuprofeno/química , Ibuprofeno/administração & dosagem , Preparações de Ação Retardada/química , Acetaminofen/química , Acetaminofen/administração & dosagem , Celulose/química , Celulose/análogos & derivados , Combinação de Medicamentos , Ácidos Polimetacrílicos/química , Tecnologia de Extrusão por Fusão a Quente/métodos , Composição de Medicamentos/métodos , Concentração de Íons de Hidrogênio
7.
Front Bioeng Biotechnol ; 12: 1398730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938981

RESUMO

Combination therapy with oral administration of several active ingredients is a popular clinical treatment for cancer. However, the traditional method has poor convenience, less safety, and low efficiency for patients. The combination of traditional pharmaceutical techniques and advanced material conversion methods can provide new solutions to this issue. In this research, a new kind of hybrid film was created via coaxial electrospraying, followed by a casting process. The films were composed of Reglan and 5-fluorouracil (5-FU)-loaded cellulose acetate (CA) core-shell particles in a polyvinylpyrrolidone (PVP) film matrix. Microscopic observations of these films demonstrated a solid cross section loaded with core-shell particles. X-ray diffraction and Fourier-transform infrared tests verified that the Reglan and 5-FU loaded in the films showed amorphous states and fine compatibilities with the polymeric matrices, i.e., PVP and CA, respectively. In vitro dissolution tests indicated that the films were able to provide the desired asynchronous dual-drug delivery, fast release of Reglan, and sustained release of 5-FU. The controlled release mechanisms were shown to be an erosion mechanism for Reglan and a typical Fickian diffusion mechanism for 5-FU. The protocols reported herein pioneer a new approach for fabricating biomaterials loaded with multiple drugs, each with its own controlled release behavior, for synergistic cancer treatment.

8.
ACS Appl Mater Interfaces ; 16(22): 28245-28262, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38770930

RESUMO

Engineering bulk covalent organic frameworks (COFs) to access specific morphological structures holds paramount significance in boosting their functions in cancer treatment; nevertheless, scant effort has been dedicated to exploring this realm. Herein, silica core-shell templates and multifunctional COF-based reticulated hollow nanospheres (HCOFs) are novelly designed as a versatile nanoplatform to investigate the simultaneous effect of dual-drug chemotherapy and photothermal ablation. Taking advantage of the distinct structural properties of the template, the resulting two-dimensional (2D) HCOF, featuring large internal voids and a peripheral interconnected mesoporous shell, presents intriguing benefits over its bulk counterparts for cancer treatment, including a well-defined morphology, an outstanding drug loading capability (99.6%) attributed to its ultrahigh surface area (2087 m2/g), great crystallinity, improved tumor accumulation, and an adjustable drug release profile. After being loaded with hydrophilic doxorubicin with a remarkable loading capacity, the obtained drug-loaded HCOFs were coated with gold nanoparticles (Au NPs) to confer them with three properties, including pore entrance blockage, active-targeting capability, and improved biocompatibility via secondary modification, besides high near infrared (NIR) absorption for efficient photothermal hyperthermia cancer suppression. The resultant structure was functionalized with mono-6-thio-ß-cyclodextrin (ß-CD) as a second pocket to load docetaxel as the hydrophobic anticancer agent (combination index = 0.33). The dual-drug-loaded HCOF displayed both pH- and near-infrared-responsive on-demand drug release. In vitro and in vivo evaluations unveiled the prominent synergistic performance of coloaded HCOF in cancer elimination upon NIR light irradiation. This work opens up a new avenue for exciting applications of structurally engineered HCOFs as hydrophobic/hydrophilic drug carriers as well as multimodal treatment agents.


Assuntos
Doxorrubicina , Estruturas Metalorgânicas , Terapia Fototérmica , Animais , Doxorrubicina/química , Doxorrubicina/farmacologia , Camundongos , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Ouro/química , Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Portadores de Fármacos/química , Feminino , Liberação Controlada de Fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Dióxido de Silício/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-38696092

RESUMO

Cataract surgery is followed by post-operative eye drops for a duration of 4-6 weeks. The multitude of ocular barriers, coupled with the discomfort experienced by both the patient and their relatives in frequently administering eye drops, significantly undermines patient compliance, ultimately impeding the recovery of the patient. This study aimed to design and develop an ocular drug delivery system as an effort to achieve a drop-free post-operative care after cataract surgery. An implant was prepared containing a biodegradable polymer Poly-lactic-co-glycolic acid (PLGA), Dexamethasone (DEX) as an anti-inflammatory drug, and Moxifloxacin(MOX) as an antibiotic. Implant characterization and drug loading analysis were conducted. In vitro drug release profile showed that the release of the two drugs are correlated with the clinical prescription for post operative eye drops. In vivo study was conducted on New Zealand albino rabbits where one eye underwent cataract surgery, and the drug delivery implant was inserted into the capsular bag after placement of the synthetic intraocular lens (IOL). Borderline increase in the intraocular pressure (IOP) was noted in the test sample group. Slit-lamp observations revealed no significant anterior chamber reaction in all study groups. Histopathology study of the operated eye revealed no significant pathology in the test samples. This work aims at developing the intra ocular drug delivery implant which will replace the post-operative eye drops and help the patient with the post-operative hassle of eye drops.

10.
ACS Appl Mater Interfaces ; 16(15): 18643-18657, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564504

RESUMO

Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.


Assuntos
Nanopartículas , Tendinopatia , Animais , Humanos , Camundongos , Polímeros , RNA Interferente Pequeno/genética , Budesonida , Macrófagos , Inflamação , Lipídeos , Fibrose
11.
ACS Appl Mater Interfaces ; 16(13): 16861-16879, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507790

RESUMO

The endotracheal tube (ETT) affords support for intubated patients, but the increasing incidence of ventilator-associated pneumonia (VAP) is jeopardizing its application. ETT surfaces promote (poly)microbial colonization and biofilm formation, with a heavy burden for VAP. Devising safe, broad-spectrum antimicrobial materials to tackle the ETT bioburden is needful. Herein, we immobilized ciprofloxacin (CIP) and/or chlorhexidine (CHX), through polydopamine (pDA)-based functionalization, onto poly(vinyl chloride) (PVC) surfaces. These surfaces were characterized regarding physicochemical properties and challenged with single and polymicrobial cultures of VAP-relevant bacteria (Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis) and fungi (Candida albicans). The coatings imparted PVC surfaces with a homogeneous morphology, varied wettability, and low roughness. The antimicrobial immobilization via pDA chemistry was still evidenced by infrared spectroscopy. Coated surfaces exhibited sustained CIP/CHX release, retaining prolonged (10 days) activity. CIP/CHX-coated surfaces evidencing no A549 lung cell toxicity displayed better antibiofilm outcomes than CIP or CHX coatings, preventing bacterial attachment by 4.1-7.2 Log10 CFU/mL and modestly distressingC. albicans. Their antibiofilm effectiveness was endured toward polymicrobial consortia, substantially inhibiting the adhesion of the bacterial populations (up to 8 Log10 CFU/mL) within the consortia in dual- and even inP. aeruginosa/S. aureus/C. albicans triple-species biofilms while affecting fungal adhesion by 2.7 Log10 CFU/mL (dual consortia) and 1 Log10 CFU/mL (triple consortia). The potential of the dual-drug coating strategy in preventing triple-species adhesion and impairing bacterial viability was still strengthened by live/dead microscopy. The pDA-assisted CIP/CHX co-immobilization holds a safe and robust broad-spectrum antimicrobial coating strategy for PVC-ETTs, with the promise laying in reducing VAP incidence.


Assuntos
Anti-Infecciosos , Pneumonia Associada à Ventilação Mecânica , Cloreto de Vinil , Humanos , Clorexidina/farmacologia , Ciprofloxacina , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Intubação Intratraqueal , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Bactérias , Biofilmes , Pseudomonas aeruginosa
12.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474177

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) can cause a variety of malignancies. Ganciclovir (GCV) is one of the most efficient drugs against KSHV, but its non-specificity can cause other side effects in patients. Nucleic acid miR-34a-5p can inhibit the transcription of KSHV RNA and has great potential in anti-KSHV therapy, but there are still problems such as easy degradation and low delivery efficiency. Here, we constructed a co-loaded dual-drug nanocomplex (GCV@ZIF-8/PEI-FA+miR-34a-5p) that contains GCV internally and adsorbs miR-34a-5p externally. The folic acid (FA)-coupled polyethyleneimine (PEI) coating layer (PEI-FA) was shown to increase the cellular uptake of the nanocomplex, which is conducive to the enrichment of drugs at the KSHV infection site. GCV and miR-34a-5p are released at the site of the KSHV infection through the acid hydrolysis characteristics of ZIF-8 and the "proton sponge effect" of PEI. The co-loaded dual-drug nanocomplex not only inhibits the proliferation and migration of KSHV-positive cells but also decreases the mRNA expression level of KSHV lytic and latent genes. In conclusion, this co-loaded dual-drug nanocomplex may provide an attractive strategy for antiviral drug delivery and anti-KSHV therapy.


Assuntos
Herpesvirus Humano 8 , MicroRNAs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Ganciclovir/farmacologia , MicroRNAs/genética , Sarcoma de Kaposi/genética
13.
Redox Biol ; 70: 103051, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38301594

RESUMO

The significant regulatory role of palmitoylation modification in cancer-related targets has been demonstrated previously. However, the biological functions of Nrf2 in stomach cancer and whether the presence of Nrf2 palmitoylation affects gastric cancer (GC) progression and its treatment have not been reported. Several public datasets were used to look into the possible link between the amount of palmitoylated Nrf2 and the progression and its outcome of GC in patients. The palmitoylated Nrf2 levels in tumoral and peritumoral tissues from GC patients were also evaluated. Both loss-of-function and gain-of-function via transgenic experiments were performed to study the effects of palmitoylated Nrf2 on carcinogenesis and the pharmacological function of 2-bromopalmitate (2-BP) on the suppression of GC progression in vitro and in vitro. We discovered that Nrf2 was palmitoylated in the cytoplasmic domain, and this lipid posttranslational modification causes Nrf2 stabilization by inhibiting ubiquitination, delaying Nrf2 destruction via the proteasome and boosting nuclear translocation. Importantly, we also identify palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 2 (DHHC2) as the primary acetyltransferase required for the palmitoylated Nrf2 and indicate that the suppression of Nrf2 palmitoylation via 2-bromopalmitate (2-BP), or the knockdown of DHHC2, promotes anti-cancer immunity in vitro and in mice model-bearing xenografts. Of note, based on the antineoplastic mechanism of 2-BP, a novel anti-tumor drug delivery system ground 2-BP and oxaliplatin (OXA) dual-loading gold nanorods (GNRs) with tumor cell membrane coating biomimetic nanoparticles (CM@GNRs-BO) was established. In situ photothermal therapy is done using near-infrared (NIR) laser irradiation to help release high-temperature-triggered drugs from the CM@GNRs-BO reservoir when needed. This is done to achieve photothermal/chemical synergistic therapy. Our findings show the influence and linkage of palmitoylated Nrf2 with tumoral and peritumoral tissues in GC patients, the underlying mechanism of palmitoylated Nrf2 in GC progression, and novel possible techniques for addressing Nrf2-associated immune evasion in cancer growth. Furthermore, the bionic nanomedicine developed by us has the characteristics of dual drugs delivery, homologous tumor targeting, and photothermal and chemical synergistic therapy, and is expected to become a potential platform for cancer treatment.


Assuntos
Antineoplásicos , Carcinoma , Nanopartículas , Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fator 2 Relacionado a NF-E2/genética , Biônica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química , Aciltransferases/genética , Aciltransferases/metabolismo
14.
Int J Biol Macromol ; 263(Pt 1): 130266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368982

RESUMO

Recently, a significantly greater clinical benefit has been reported with a combination of glucosamine sulfate and nonsteroidal anti-inflammatory drugs (NSAIDs) compared to either treatment alone for the growing osteoarthritis (OA) disease. So, this study introduces hydrogels using O-carboxymethyl chitosan (O-CMC, structurally akin glucosamine glycan), and Gelatin type A (GA) in a 1:2 ratio with ß-glycerophosphate (ßGPh) at varying percentages (5 %, 12.5 %, and 15 %). We show that hydrogel properties, adaptable for drug delivery or tissue engineering, can be fine-tuned based on OCMC:ßGPh ratio. CMC/GA/ßGPh-12.5 exhibited a swelling rate of 189 %, compressive stress of 164 kPa, and compressive modulus of 3.4 kPa. The self-healing hydrogel also exhibited excellent injectability through a 21-gauge needle, requiring only 5 N of force. Ibuprofen and Naproxen release from CMC/GA/ßGPh-12.5 and CMC/GA/ßGPh-15 of designed dimensions (bi-layer structures of different diameter and height) were measured, and drug release kinetics were estimated using mathematical equations (MATLAB and polyfit program). CMC/GA/ßGPh-12.5 demonstrated significant antibacterial effects against E. coli and S. aureus, a high cell survival rate of 89 % against L929 fibroblasts, and strong cell adhesion, all indicating biocompatibility. These findings underscore potential of these hydrogels as promising candidates for treating inflammatory diseases such as osteoarthritis.


Assuntos
Quitosana , Quitosana/análogos & derivados , Osteoartrite , Humanos , Ibuprofeno/farmacologia , Naproxeno , Gelatina/química , Hidrogéis/química , Escherichia coli , Staphylococcus aureus , Quitosana/química , Antibacterianos/química
15.
Int J Biol Macromol ; 262(Pt 2): 130038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336323

RESUMO

Frequent administrations are often needed during the treatment of ocular diseases due to the low bioavailability of the existing eye drops owing to inadequate corneal penetration and rapid drug washout. Herein, sodium alginate polymannuronate (SA) nanocarriers were developed using ionic gelation method that can provide better bioavailability through mucoadhesivity and sustained drug release by binding to the ocular mucus layer. This study disproves the common belief that only the G block of SA participates in the crosslinking reaction during ionic gelation. Self-assembly capability due to the linear flexible structure of the M block, better biocompatibility than G block along with the feasibility of controlling physicochemical characteristics postulate a high potential for designing efficient ocular drug delivery systems. Initially, four crosslinkers of varied concentrations were investigated. Taguchi design of experiment revealed the statistically significant effect of the crosslinker type and concentration on the particle size and stability. The best combination was detected by analyzing the particle size and zeta potential values that showed the desired microstructural properties for ocular barrier penetration. The desired combination was SA-Ca-1 that had particle size within the optimal corneal penetration range, that is 10-200 nm (135 nm). The drug carriers demonstrated excellent entrapment efficiency (∼89 % for Ciprofloxacin and ∼96 % for Dexamethasone) along with a sustained and simultaneous release of dual drug for at least 2 days. The nanoparticles also showed biocompatibility (4 ± 0.6 % hemolysis) and high mucoadhesivity (73 ± 2 % for 0.25 g) which was validated by molecular docking analysis. The prepared formulation was able to reduce the scleral inflammation of the rabbit uveitis models significantly within 3 days. Thus, the eye drop showed remarkable potential for efficient drug delivery leading to faster recovery.


Assuntos
Quitosana , Nanopartículas , Animais , Coelhos , Alginatos/química , Simulação de Acoplamento Molecular , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Inflamação , Córnea , Administração Oftálmica , Nanopartículas/química , Tamanho da Partícula , Quitosana/química , Soluções Oftálmicas
16.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279291

RESUMO

Previously reported amphiphilic linear and graft copolymers, derived from the ionic liquid [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA_Cl‾), along with their conjugates obtained through modification either before or after polymerization with p-aminosalicylate anions (TMAMA_PAS‾), were employed as matrices in drug delivery systems (DDSs). Based on the counterion type in TMAMA units, they were categorized into single drug systems, manifesting as ionic polymers with chloride counterions and loaded isoniazid (ISO), and dual drug systems, featuring ISO loaded in self-assembled PAS conjugates. The amphiphilic nature of these copolymers was substantiated through the determination of the critical micelle concentration (CMC), revealing an increase in values post-ion exchange (from 0.011-0.063 mg/mL to 0.027-0.181 mg/mL). The self-assembling properties were favorable for ISO encapsulation, with drug loading content (DLC) ranging between 15 and 85% in both single and dual systems. In vitro studies indicated ISO release percentages between 16 and 61% and PAS release percentages between 20 and 98%. Basic cytotoxicity assessments using the 2,5-diphenyl-2H-tetrazolium bromide (MTT) test affirmed the non-toxicity of the studied systems toward human non-tumorigenic lung epithelial cell line (BEAS-2B) cell lines, particularly in the case of dual systems bearing both ISO and PAS simultaneously. These results confirmed the effectiveness of polymeric carriers in drug delivery, demonstrating their potential for co-delivery in combination therapy.


Assuntos
Líquidos Iônicos , Polímeros , Humanos , Polímeros/química , Portadores de Fármacos/química , Cloretos , Sistemas de Liberação de Medicamentos , Micelas
17.
Mol Pharm ; 21(2): 633-650, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38164788

RESUMO

Asymmetric geometry (aspect ratio >1), moderate stiffness (i.e., semielasticity), large surface area, and low mucoadhesion of nanoparticles are the main features to reach the brain by penetrating across the nasal mucosa. Herein, a new application has been presented for the use of multifunctional Janus nanoparticles (JNPs) with controllable geometry and size as a nose-to-brain (N2B) delivery system by changing proportions of Precirol ATO 5 and polycaprolactone compartments and other operating conditions. To bring to light the N2B application of JNPs, the results are presented in comparison with polymer and solid lipid nanoparticles, which are frequently used in the literature regarding their biopharmaceutical aspects: mucoadhesion and permeability through the nasal mucosa. The morphology and geometry of JPs were observed via cryogenic-temperature transmission electron microscopy images, and their particle sizes were verified by dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Although all NPs showed penetration across the mucus barrier, the best increase in penetration was observed with asymmetric and semielastic JNPs, which have low interaction ability with the mucus layer. This study presents a new and promising field of application for a multifunctional system suitable for N2B delivery, potentially benefiting the treatment of brain tumors and other central nervous system diseases.


Assuntos
Lipossomos , Nanopartículas Multifuncionais , Nanopartículas , Animais , Polímeros , Larva , Sistemas de Liberação de Medicamentos/métodos , Encéfalo , Mucosa Nasal , Muco , Elasticidade , Lipídeos
18.
J Liposome Res ; 34(3): 489-506, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38269490

RESUMO

Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.


Assuntos
Neoplasias da Mama , Bufanolídeos , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Lipossomos , Células-Tronco Neoplásicas , Trastuzumab , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Bufanolídeos/farmacologia , Bufanolídeos/administração & dosagem , Bufanolídeos/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Lipossomos/química , Feminino , Trastuzumab/farmacologia , Trastuzumab/administração & dosagem , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptor ErbB-2/metabolismo , Sobrevivência Celular/efeitos dos fármacos
19.
Nanotechnology ; 35(14)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37992401

RESUMO

Creating a scaffold for bone tissue engineering that is bioactive and capable of acting as a local-dual delivery system, releasing bioactive molecules and regulating the bone remodeling process to achieve balanced bone resorption and formation, is a significant challenge. The objective of this research is to create a composite scaffold using chitosan/gelatin (CHS/Gel) and the calcium (Ca)-alendronate (ALN) metal-organic frameworks (MOFs). The scaffold will act as a dual-delivery system, releasing Ca ions and ALN to regulate bone formation. Ca-ALN MOF nanoparticles (NPs) were prepared in mild conditions and studied by FTIR, XRD, FESEM, and TGA. Ca-ALN NPs-loaded CHS/Gel scaffolds were opportunely fabricated through freeze-drying approach. Physicochemical features of the scaffolds after incorporating NPs equated by CHS/Gel scaffold changed, therefore, the attendance of NPs caused a decreasing porosity, decreased swelling, and low rate of degradation. The release profile results showed that the NPs-loaded CHS/Gel scaffolds were able to simultaneously release ALN and Ca ions due to the decomposition of NPs. Additionally, the loading of NPs in the CHS/Gel scaffold led to an increment in alkaline phosphatase (ALP) activity and the quantity of deposited Ca along with osteogenesis gene markers. These findings suggest that the NPs-loaded CHS/Gel scaffold has the potential to enhance the differentiation of human adipose tissue-derived mesenchymal stem cells, making it a promising approach for bone repair.


Assuntos
Quitosana , Estruturas Metalorgânicas , Humanos , Engenharia Tecidual/métodos , Gelatina/química , Quitosana/química , Cálcio , Alicerces Teciduais/química , Osteogênese , Alendronato , Íons , Porosidade
20.
ACS Appl Mater Interfaces ; 16(1): 153-165, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150182

RESUMO

Drugs against bacteria and abnormal cells, such as antibiotics and anticancer drugs, may save human lives. However, drug resistance is becoming more common in the clinical world. Nowadays, a synergistic action of multiple bioactive compounds and their combination with smart nanoplatforms has been considered an alternative therapeutic strategy to fight drug resistance in multidrug-resistant cancers and microorganisms. The present study reports a one-step fabrication of innovative pH-responsive Janus nanofibers loaded with two active compounds, each in separate polymer compartments for synergistic combination therapy. By dissolving one of the compartments from the nanofibers, we could clearly demonstrate a highly yielded anisotropic Janus structure with two faces by scanning electron microscopy (SEM) analysis. To better understand the distinctive attributes of Janus nanofibers, several analytical methods, such as X-ray diffraction (XRD), FTIR spectroscopy, and contact angle goniometry, were utilized to examine and compare them to those of monolithic nanofibers. Furthermore, a drug release test was conducted in pH 7.4 and 6.0 media since the properties of Janus nanofibers correlate significantly with different environmental pH levels. This resulted in the on-demand sequential codelivery of octenidine (OCT) and curcumin (CUR) to the corresponding pH stimulus. Accordingly, the antibacterial properties of Janus fibers against Escherichia coli and Staphylococcus aureus, tested in a suspension test, were pH-dependent, i.e., greater in pH 6 due to the synergistic action of two active compounds, and Eudragit E100 (EE), and highly satisfactory. The biocompatibility of the Janus fibers was confirmed in selected tests.


Assuntos
Nanofibras , Humanos , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Liberação Controlada de Fármacos , Controle de Infecções , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA