Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Sens ; 8(6): 2375-2382, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37253195

RESUMO

The electrical vapor sensor based on carbon nanotubes (CNTs) has attracted wide attention due to its excellent conductivity, stable interfacial structure, and low dimensional quantum effects. However, the conductivity and contact interface activity were still limited by the random distribution of coated CNTs, which led to limited performance. We developed a new strategy to unify the CNT directions with image fractal designing of the electrode system. In such a system, directional aligned CNTs were gained under a well-modulated electric field, leading to microscale CNT exciton highways and molecule-scale host-guest site activation. The carrier mobility of the aligned CNT device is 20-fold higher than that of the random network CNT device. With excellent electrical properties, such modulated CNT devices based on fractal electrodes behave as an ultrasensitive vapor sensor for methylphenethylamine, a mimic of illicit drug methamphetamine. The detection limit reached as low as 0.998 ppq, 6 orders of magnitude sensitive than the reported 5 ppb record based on interdigital electrodes with random distributed CNTs. Since the device is easily fabricated in wafer-level and compatible with the CMOS process, such a fractal design strategy for aligned CNT preparation will be widely applied in a variety of wafer-level electrical functional devices.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Fractais , Eletrodos , Condutividade Elétrica , Gases
2.
Artigo em Inglês | MEDLINE | ID: mdl-36908056

RESUMO

The electric-field-modulation (E-modulation) of photoluminescence (PL) properties in bulk ceramics has attracted tremendous interest due to its potential application in optical data storage and communication devices. One promising approach of reversibly and largely modulating the PL intensity has been proposed in rare-earth Er3+-doped Pb0.96La0.04Zr0.9Ti0.1O3 (PLZT) antiferroelectrics (AFEs) based on the unique E-dependent antiferroelectric-ferroelectric (AFE-FE) phase transition. However, the AFE phase stability of PLZT doped with various Er contents and their E-modulated PL properties have not been systematically investigated. In this paper, the intrinsic AFE phase of PLZT-Er is found to be stabilized in the high-temperature and high-E regions with increasing Er3+ content. The enhanced AFE nature caused by increasing Er doping leads to a larger E-dependent PL tunability (∼35%). Moreover, the ceramics exhibit the characteristics of both upconversion and downconversion PL (UCPL and DCPL) effects. Based on the excellent E-dependent dual-mode PL tunability, an optoelectronic device named the optical latch is demonstrated, where an electric signal can be used to trigger a notable intensity change in both the UCPL and DCPL modes. This reversible E-dependent dual-mode capability in PLZT-Er sheds light on a feasible approach to optoelectronic applications.

3.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890725

RESUMO

Polymer nanocomposites can serve as promising electrostatic shielding materials; however, the underlying physical mechanisms governing the carrier transport properties between nanofillers and polymers remain unclear. Herein, the structural and electronic properties of two polyethylene/graphene (PE/G) interfaces, i.e., type-H and type-A, have been systematically investigated under different electric fields using first principle calculations. The results testify that the bandgaps of 128.6 and 67.8 meV are opened at the Dirac point for type-H and type-A PE/G interfaces, respectively, accompanied by an electron-rich area around the graphene layer, and a hole-rich area around the PE layer. Moreover, the Fermi level shifts towards the valence band maximum (VBM) of the PE layer, forming a p-type Schottky contact at the interface. Upon application of an electric field perpendicular to the PE/G interface, the Schottky contact can be transformed into an Ohmic contact via the tuning of the Schottky barrier height (SBH) of the PE/G interface. Compared with the A-type PE/G interfaces, the H-type requires a lower electric field to induce an Ohmic contact. All these results can provide deeper insights into the conduction mechanism of graphene-based polymer composites as field-shielding materials.

4.
Micromachines (Basel) ; 13(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35744457

RESUMO

In this paper, a novel high voltage superjunction lateral double diffused MOSFETs (SJ-LDMOS) using a variable high permittivity (VHK) dielectric trench is presented. A relatively high HK dielectric is in the upper trench, which is connected with the drain electrode to suppress the high electric field (E-field) peak under the drain by the dielectric reduced surface field (RESURF) effect. In addition, a relatively low HK dielectric is at the bottom of the trench. On the one hand, the substrate is effectively depleted by a suitable HK dielectric layer, and the vertical depletion region of the substrate is greatly expanded. On the other hand, the overall vertical bulk E-field distribution is modulated by the E-field peaks generated at the position of varying K dielectric. A more uniform bulk E-field distribution is obtained for VHK SJ-LDMOS, leading to a high breakdown voltage (BV). Compared to the conventional SJ-LDMOS, the blocking voltage per micron of the drift region of VHK SJ-LDMOS has increased by 41.2%. Besides, compared with the SJ-LDMOS with a uniform-K, the BV of VHK SJ-LDMOS is improved by about 9.5%. The condition of the optimal range of the variable high permittivity is also presented. Meanwhile, the proposed VHK SJ-LDMOS has good conduction characteristics and heat dissipation.

5.
Fundam Res ; 2(4): 629-634, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38934000

RESUMO

In this study, the physical properties of F ion-implanted GaN were thoroughly studied, and the related electric-field modulation mechanisms in ion-implanted edge termination were revealed. Transmission electron microscopy results indicate that the ion-implanted region maintains a single-crystal structure even with the implantation of high-energy F ions, indicating that the high resistivity of the edge termination region is not induced by amorphization. Alternately, ion implantation-induced deep levels could compensate the electrons and lead to a highly resistive layer. In addition to the bulk effect, the direct bombardment of high-energy F ions resulted in a rough and nitrogen-deficient surface, which was confirmed via atomic force microscopy (AFM) and X-ray photoelectron spectroscopy. The implanted surface with a large density of nitrogen vacancies can accommodate electrons, and it is more conductive than the bulk in the implanted region, which is validated via spreading resistance profiling and conductive AFM measurements. Under reverse bias, the implanted surface can spread the potential in the lateral direction, whereas the acceptor traps capture electrons acting as space charges, shifting the peak electric field into the bulk region in the vertical direction. As a result, the Schottky barrier diode terminated with high-energy F ion-implanted regions exhibits a breakdown voltage of over 1.2 kV.

6.
Nano Lett ; 21(24): 10230-10237, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34859670

RESUMO

Herein, we demonstrate a highly tunable enhancement and switching of nonlinear emission from all-inorganic metal halide perovskites based on an asymmetrically biased metal-insulator-semiconductor (MIS) structure. We achieve 2 orders of magnitude enhancement of the two-photon-pumped photoluminescence (TPL) from CsPbBr3 microplates with the MIS structure, due to comprehensive effects including localized field effect, trap-filling effect, and collection enhancement. In particular, taking advantage of electric-field-induced passivation/activation of Br vacancies, we realize highly tunable TPL enhancement, ranging from ∼61.2-fold to ∼370.3-fold. Moreover, we demonstrate an efficient modulation of the two-photon-pumped lasing from the MIS structure, which exhibits electric field induced switching with a high on/off ratio of 67:1. This work has opened new avenues for steering carrier transport and nonlinear emission in lead halide perovskites, which shows great promise for realizing high-efficiency and tunable nonlinear nanophotonic devices.

7.
ACS Appl Mater Interfaces ; 12(10): 12238-12245, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32052958

RESUMO

Heterostructures composed of superconductor and ferroelectrics (SC/FE) are very important for manipulating the superconducting property and applications. However, growth of high-quality superconducting iron chalcogenide films is challenging because of their volatility and FE substrate with rough surface and large lattice mismatch. Here, we report a two-step growth approach to get high-quality FeSe0.5Te0.5 (FST) films on FE Pb(Mg1/3Nb2/3)0.7Ti0.3O3 with large lattice mismatch, which show superconductivity at only around 10 nm. Through a systematic study of structural and electric transport properties of samples with different thicknesses, a mechanism to grow high-quality FST is discovered. Moreover, electric-field-induced remarkable change of Tc (superconducting transition temperature) is demonstrated in a 20 nm FST film. This work paves the way to grow high-quality films which contain volatile element and have large lattice mismatch with the substrate. It is also helpful for manipulating the superconducting property in SC/FE heterostructures.

8.
ACS Appl Mater Interfaces ; 9(12): 10855-10864, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28266829

RESUMO

We report electric-field control of magnetism of (Co/Pt)3 multilayers involving perpendicular magnetic anisotropy with different Co-layer thicknesses grown on Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) FE substrates. For the first time, electric-field control of the interface magnetic anisotropy, which results in the spin reorientation transition, was demonstrated. The electric-field-induced changes of the bulk and interface magnetic anisotropies can be understood by considering the strain-induced change of magnetoelastic energy and weakening of Pt 5d-Co 3d hybridization, respectively. We also demonstrate the role of competition between the applied magnetic field and the electric field in determining the magnetization of the sample with the coexistence phase. Our results demonstrate electric-field control of magnetism by harnessing the strain-mediated coupling in multiferroic heterostructures with perpendicular magnetic anisotropy and are helpful for electric-field modulations of Dzyaloshinskii-Moriya interaction and Rashba effect at interfaces to engineer new functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA