Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.964
Filtrar
1.
J Colloid Interface Sci ; 674: 951-958, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38959740

RESUMO

HYPOTHESIS: Our hypothesis is that dynamic interfacial tension values as measured by the partitioned-Edge-based Droplet GEneration (EDGE) tensiometry can be connected to those obtained with classical techniques, such as the automated drop tensiometer (ADT), expanding the range of timescales towards very short ones. EXPERIMENTS: Oil-water and air-water interfaces are studied, with whey protein isolate solutions (WPI, 2.5 - 10 wt%) as the continuous phase. The dispersed phase consists of pure hexadecane or air. The EDGE tensiometer and ADT are used to measure the interfacial (surface) tension at various timescales. A comparative assessment is carried out to identify differences between protein concentrations as well as between oil-water and air-water interfaces. FINDINGS: The EDGE tensiometer can measure at timescales down to a few milliseconds and up to around 10 s, while the ADT provides dynamic interfacial tension values after at least one second from droplet injection and typically is used to also cover hours. The interfacial tension values measured with both techniques exhibit overlap, implying that the techniques provide consistent and complementary information. Unlike the ADT, the EDGE tensiometer distinguishes differences in protein adsorption dynamics at protein concentrations as high as 10 wt% (which is the highest concentration tested) at both oil-water and air-water interfaces.

2.
Int J Biol Macromol ; 275(Pt 1): 133676, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971134

RESUMO

Stimuli-responsive antioxidant Pickering emulsions play crucial role in many industrial areas. This study demonstrated for the first time oil-in-water Pickering emulsions with outstanding antioxidation and responsive demulsification stabilized by functionalized cellulose nanocrystals (CNCs). Dialdehyde cellulose nanocrystals (DACs) were first prepared through the oxidation of CNCs with periodate, followed by the grafting of p-aminophenols (PAPs) onto their surfaces through Schiff base reaction, affording PAP grafted DACs (DAC-g-PAP) via dynamic covalent linkage. The degree of the oxidation (DO) of DACs had a significant effect on the yield of the targeting DAC-g-PAP nanoparticles. High DO (≥40 %) potentially led to the degradation of DACs during the grafting of PAP. The introduced PAP endowed DACs with excellent radical scavenging capability, thereby providing antioxidant properties while improving the hydrophobicity. DAC-g-PAP nanoparticles were then applied as Pickering emulsifiers to prepare oil-in-water Pickering emulsions. The resultant Pickering emulsions indicated exceptional antioxidant and pH-responsiveness together with good freezing-thaw stability. The structures of DAC-g-PAP nanoparticles were thoroughly characterized in this study.

3.
Acta Trop ; 257: 107290, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909722

RESUMO

Mosquito borne diseases are impeding to human health due to their uncontrolled proliferation. Various commercial insecticides currently used become ineffective due to the resistance acquired by mosquitoes. It is necessary and a priority to combat mosquito population. Plant-based products are gaining interest over the past few decades due to their environment friendliness and their effectiveness in controlling mosquitoes along with their lack of toxicity. Essential oil nanoemulsions are found to be highly effective when compared to their bulk counterparts. Due to their nano size, they can effectively interact and yield 100 % mortality with the mosquito larvae and encounter with minimal concentrations. This is the main advantage of the nano-sized particles due to which they find application in various disciplines and have also received the attention of researchers globally. There are various components present in essential oils that have been analysed using GC-MS. These findings reflect the challenge to mosquitoes to gain resistance against each component and therefore it requires time. Commercially used repellants are synthesised using materials like DEET are not advisable for topical application on human skin and essential oil nanoemulsions could be an ideal non toxic candidate that can be used against mosquito adults and larvae. However, there are other synthesis, optimisation parameters, and toxicity towards non-target organisms that have to be taken into account when essential oil nanoemulsions are considered for commercial applications. Here we review the strategies used by the nanoemulsions against the mosquito population. Apart from the positive effects, their minor drawbacks also have to be scrutinised in the future.

4.
Chem Phys Lipids ; 263: 105418, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944410

RESUMO

Cholesterol-rich nanoemulsion (LDE) can carry chemotherapeutic agents in the circulation and can concentrate those agents in the neoplastic and inflammatory tissues. This method improves the biodistribution of the drug and reduces toxicity. However, the structural stability of LDE particles, without or with associated drugs, has not been extensively investigated. The aim of the present study is to investigate the structural stability of LDE and LDE associated to paclitaxel, etoposide or methotrexate in aqueous solution over time by small-angle X-ray scattering (SAXS and Ultra SAXS) and dynamic light scattering (DLS). The results show that LDE and LDE associated with those chemotherapeutic agents had reproducible and stable particle diameter, physical structure, and aggregation behavior over 3-month observation period. As estimated from both DLS and Ultra-SAXS methods, performed at pre-established intervals, the average particle diameter of LDE alone was approx. 32 nm, of LDE-paclitaxel was 31 nm, of LDE-methotrexate was 35 nm and of LDE-etoposide was 36 nm. Ultra-SAXS analysis showed that LDE nanoparticles were quasi-spherical, and SAXS showed that drug molecules inside the particles showed a layered-like organization. Formulations of LDE with associated PTX, ETO or MTX were successfully tested in animal experiments and in patients with cancer or with cardiovascular disease, showing markedly low toxicity, good tolerability and possible superior pharmacological action. Our results may be useful for ensuing clinical trials of this novel Nanomedicine tool, by strengthening the knowledge of the structural aspects of those LDE formulations.

5.
Food Chem ; 458: 140243, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38944931

RESUMO

Dual-compartmental emulsions, containing multiple chambers, possess great advantages in co-encapsulation of different cargoes. Herein, we reported a stable dual-compartmental emulsion by regulating the ratio of Marsupenaeus japonicus ferritin (MF) and chitooligosaccharide (COS), enabling efficient co-encapsulation of different compounds. The adsorption behavior of MF/COS complex over droplet interface varied at different ratios, thereby exerting an influence on the emulsion properties. Remarkably, emulsions stabilized by MF/COS complex at a ratio of 2:1 exhibited superior stability, as evidenced by no significant creaming or demulsification during storage or heat treatment. The mechanism is that MF/COS2:1 complex can enhance the formation of thicker interfacial layer and dense continuous phase network structure. Additionally, curcumin and quercetin can be co-encapsulated into the emulsions and their retention rates were significantly improved than those in oils, implying the potential of the resulting dual-compartmental emulsions in co-encapsulation and delivery of bioactive compounds.

6.
Int J Biol Macromol ; 274(Pt 1): 133295, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914398

RESUMO

The stability and bioavailability of green tea polyphenols, crucial for their health benefits, are compromised by environmental sensitivity, limiting their use in functional foods and supplements. This study introduces a novel water-in-oil-in-water double emulsion technique with microwave-assisted extraction, significantly enhancing the stability and bioavailability of these compounds. The primary objective of this study was to assess the effectiveness of several encapsulating agents, such as gum Arabic as control and native and modified starches, in improving encapsulated substances' stability and release control. Native and modified starches were chosen for their outstanding film-forming properties, improving encapsulation efficiency and protecting bioactive compounds from oxidative degradation. The combination of maltodextrin and tapioca starch improved phenolic content retention, giving 46.25 ± 2.63 mg/g in tapioca starch microcapsules (GTTA) and 41.73 ± 3.24 mg/g in gum arabic microcapsules (GTGA). Besides the control, modified starches also had the most potent antioxidant activity, with a 45 % inhibition (inh%) in the DPPH analysis. Oat oil was utilized for its superior viscosity and nutritional profile, boosting emulsion stability and providing the integrity of the encapsulated polyphenols, as indicated by the microcapsules' narrow span index (1.30 ± 0.002). The microcapsules' thermal behavior and structural integrity were confirmed using advanced methods such as Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR). This study highlights the critical role of choosing appropriate wall materials and extraction techniques. It sets a new standard for microencapsulation applications in the food industry, paving the way for future innovations.

7.
Int J Biol Macromol ; 275(Pt 1): 133457, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945335

RESUMO

Essential oils show several biological properties, such as antimicrobial activity, but have limitations regarding their availability and stability. To maximize their antimicrobial effect and protection against environmental conditions, Pickering-type emulsions were used to vehiculate oregano essential oil (OEO) using cellulose nanofibers (CNF) as emulsion stabilizer. Enzymatic hydrolysis was used to produce CNF from a food industry waste (cassava peel), obtaining an environmentally sustainable emulsion stabilizer. It was evaluated how the different properties of the nanofibers affected the stability of the emulsions. Furthermore, the composition of the dispersed phase was varied (different ratios of OEO and sunflower oil-SO) in view of the target application in biodegradable active coatings. Even at very low concentration (0.01 % w/w), CNF was able to form kinetically stable emulsions with small droplet sizes using oil mixtures (OEO + SO). The stabilization mechanism was not purely Pickering, as there was a reduction in interfacial tension. Excellent antimicrobial activity was observed against bacteria and the fungus Alternaria alternata, demonstrating the ability to apply these emulsions in active systems such as coatings and films. An improvement in the stability of emulsions was observed when using a mixture of oils, which is extremely advantageous considering costs and stability to heat treatments, since the desired antimicrobial activity is maintained for the final application.

8.
Int J Biol Macromol ; 273(Pt 1): 132964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852719

RESUMO

There is a growing interest in developing highly viscous lipid foods using plant protein and polysaccharide gum-based emulsion technology. However, gaps remain in understanding the rheological, microstructural, and digestive properties of plant proteins like soybean protein isolate (SPI) in combination with various gums. This study investigates how combining SPI and peach gum (PG) affects rheology and lipolysis of oil-in-water (O/W) emulsions containing 20 wt% soybean oil. Emulsions with varying SPI and PG compositions including SPI-PG single and SPI/PG mixed droplet systems were prepared. Heating induced alterations in viscosity (e.g., SPI-PG from 14.88 to 90.27 Pa·s and SPI/PG from 9.66 to 85.32 Pa·s) and microstructure revealing aggregate formation at oil-water interface. The viscosity decreased significantly from the oral to intestinal phase (SPI-PG: 28.10 to 0.19 Pa·s, SPI/PG: 21.27 to 0.10 Pa·s). These changes affected lipid digestion, notably in SPI-PG and SPI/PG emulsions where a compact interface hindered lipolysis during digestion. Interestingly, free fatty acid (FFA) release during small intestinal phase followed a different order: SPI (82.51 %) > SPI-PG (70.77 %) > SPI/PG (63.60 %) > PG (56.09 %). This study provides insights into creating highly viscous O/W spreads with improved rheology, stability, and delayed lipid digestion, offering potential benefits in food product formulation.


Assuntos
Emulsões , Microesferas , Gomas Vegetais , Reologia , Proteínas de Soja , Água , Emulsões/química , Proteínas de Soja/química , Água/química , Gomas Vegetais/química , Viscosidade , Óleo de Soja/química , Lipólise
9.
Food Chem ; 455: 139679, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38823125

RESUMO

This study involved the preparation of nanoparticles by combining oxidized starch (OS) with xanthan gum (XG), and emulsions were prepared from this nanoparticle. The physical and chemical characteristics, as well as the emulsification properties of oxidized starch-xanthan gum composite nanoparticles (OGNP), were analyzed. The findings revealed that the OGNP retained spherical shape after the addition of XG, although their diameter increased from approximately 50-150 to 200-400 nm. Zeta potential decreased with XG content. Moreover, emulsions prepared from OGNP exhibited outstanding thermal stability, also showing enhanced storage stability. In addition, emulsions had different rheological properties at different pH values. The apparent viscosity and shear stress of emulsions under alkaline conditions were lower than that of neutral conditions. NaCl increased the apparent viscosity of OGNP-stabilized emulsions while reducing their thermal stability. The nanoparticles prepared in this study have efficient emulsification properties and can extend the application of OS.

10.
Food Res Int ; 188: 114399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823854

RESUMO

In the context of replacing animal proteins in food matrices, rice proteins (RP) become promised because they come from an abundant plant source, are hypoallergenic, and have high digestibility and nutritional value. However, commercial protein isolates obtained by spray drying have low solubility and poor functionality, especially in their isoelectric point. One way to modify these properties is through interaction with polysaccharides, such as gum arabic (GA). Therefore, this work aims to evaluate the effects of pH and GA concentration on the interaction and emulsifying activity of RP:GA coacervates. First, the effects of pH (2.5 to 7.0) and GA concentrations (0.2 to 1.0 wt%, giving rise to RP:GA mass ratios of 1:0.2 to 1:1.0) in RP:GA blends were evaluated. The results demonstrated that biopolymers present opposite net charges at pH between 2.5 and 4.0. At pH 3.0, insoluble coacervates with complete charge neutralization were formed by electrostatic interactions, while at pH 5.0 it was observed that the presence of GA prevented the RP massive aggregation. Second, selected blends with 0.4 or 1.0 wt% of GA (RP:GA mass ratios of 1:0.4 or 1:1.0) at pH 3.0 or 5.0 were tested for their ability to stabilize oil-in-water emulsions. The emulsions were characterized for 21 days. It was observed that the GA increased the stability of RP emulsions, regardless of the pH and polysaccharide concentration. Taken together, our results show that it is possible to combine RP and GA to improve the emulsifying properties of these plant proteins at pH conditions close to their isoelectric point, expanding the possibility of implementation in food systems.


Assuntos
Emulsões , Goma Arábica , Oryza , Proteínas de Plantas , Polissacarídeos , Água , Goma Arábica/química , Emulsões/química , Concentração de Íons de Hidrogênio , Proteínas de Plantas/química , Oryza/química , Polissacarídeos/química , Água/química , Emulsificantes/química , Solubilidade
11.
Int J Biol Macromol ; 272(Pt 2): 132937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848834

RESUMO

Over the past decade, Pickering emulsions (PEs) stabilized by protein particles have been the focus of researches. The characteristics of protein particles at the oil-water interface are crucial for stabilizing PEs. The unique adsorption behaviors of protein particles and various modification methods enable oil-water interface to exhibit controllable regulation strategies. However, from the perspective of the interface, studies on the regulation of PEs by the adsorption behaviors of protein particles at oil-water interface are limited. Therefore, this review provides an in-depth study on oil-water interfacial adsorption of protein particles and their regulation on PEs. Specifically, the formation of interfacial layer and effects of their interfacial characteristics on PEs stabilized by protein particles are elaborated. Particularly, complicated behaviors, including adsorption, arrangement and deformation of protein particles at the oil-water interface are the premise of affecting the formation of interfacial layer. Moreover, the particle size, surface charge, shape and wettability greatly affect interfacial adsorption behaviors of protein particles. Importantly, stabilities of protein particles-based PEs also depend on properties of interfacial layers, including interfacial layer thickness and interfacial rheology. This review provides useful insights for the development of PEs stabilized by protein particles based on interfacial design.


Assuntos
Emulsões , Óleos , Proteínas , Água , Emulsões/química , Adsorção , Água/química , Óleos/química , Proteínas/química , Tamanho da Partícula , Propriedades de Superfície , Reologia , Molhabilidade
12.
Front Nutr ; 11: 1418120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887503

RESUMO

Composite natural emulsifiers such as whey protein isolate (WPI) and chitosan (CS) are commonly used in Pickering emulsions to address the effect of thermal deformation of proteins before complexation with CS and heating after complexation. In this study, the properties of WPI and CS composites were investigated by complexing CS with either unmodified WPI or thermally denatured WPI (DWPI). Three types of composite particles were prepared, WPI-CS, DWPI-CS, and D(WPI-CS). Atomic force microscopy revealed that the composite particles formed larger aggregates with increased contour size and surface roughness compared to CS and WPI, whereas the interfacial tension decreased, indicating improved emulsifying abilities. Fourier-transform infrared analysis revealed differences in the hydrogen bonds between CS and WPI/DWPI. All three composite particles formed stable emulsions with droplet sizes of 20.00 ± 0.15, 27.80 ± 0.35, and 16.77 ± 0.51 µm, respectively. Thermal stability experiments revealed that the curcumin emulsion stabilized with WPI-CS and DWPI-CS exhibited relatively better thermal stability than that stabilized with D(WPI-CS). In vitro experiments results indicated that the bioaccessibility of the curcumin emulsion stabilized with WPI-CS was 61.18 ± 0.16%, significantly higher than that of the emulsions prepared with the other two composite particles (p < 0.05). This study will enable the customized design of WPI composite-based Pickering emulsions for application in the food and nutrition industries.

13.
Carbohydr Polym ; 340: 122293, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858005

RESUMO

A few protein- and polysaccharide-based particles have shown promising potential as stabilizers in multi-phase food systems. By incorporating polymer-based particles and modifying the wettability of colloidal systems, it is possible to create particle-stabilized emulsions with excellent stability. A Pickering emulsifier (AGMs) with better emulsifying properties was obtained by the Maillard reaction between acid-hydrolysed agar and gelatin. Laser confocal microscopy imaging revealed that AGMs particles can be used as solid emulsifiers to produce a typical O/W Pickering emulsion, with AGMs adsorbing onto the droplet surface to form a dense interfacial layer. Cryo-scanning electron microscopy analysis showed that AGMs self-assembled into a three-dimensional network structure, which prevented droplets aggregation through strong spatial site resistance, contributing to emulsion stabilization. These emulsions exhibited stability within a pH range of 1 to 11, NaCl concentrations not exceeding 300 mM, and at temperatures below 80 °C. The most stable emulsion oil-water ratio was 6:4 at a particle concentration of 0.75 % (w/v). AGMs-stabilized Pickering emulsion was utilized to create a semi-solid mayonnaise as a replacement for hydrogenated oil. Rheological analysis demonstrated that low-fat mayonnaise stabilized with AGMs exhibited similar rheological behavior to traditional mayonnaise, offering new avenues for the application of Pickering emulsions in the food industry.


Assuntos
Ágar , Emulsificantes , Emulsões , Gelatina , Reação de Maillard , Gelatina/química , Ágar/química , Emulsões/química , Emulsificantes/química , Reologia , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Temperatura
14.
Carbohydr Polym ; 340: 122300, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858007

RESUMO

The chemical modification of biopolymers to enhance their functional properties in the food, cosmetic, and pharmaceutical industries is an area of particular interest today. In this study, different molecular weight dextrans were chemically modified for the first time with octenyl succinic anhydride (OSA). This reaction involves an esterification process wherein the hydroxy groups of dextran are partially substituted by a carbonaceous chain, imparting hydrophobic properties to dextran molecules and, consequently, an amphiphilic nature. To assess and quantify the incorporation of OSA into the dextran structure, reaction products were analysed using NMR and FTIR. Additionally, the thermal properties, the Z-potential and the foaming and emulsifying capacity of both native and modified dextrans were examined. The introduction of OSA groups to dextran molecules, with degrees of substitution between 0.028 and 0.058, increased the zeta potential and the thermal stability of the polymer. Furthermore, the chemical modification of dextran backbone with this radical conferred a hydrophobic nature to the biopolymer, which enhance its foaming and emulsifying capacity. Therefore, these results demonstrate that the incorporation of hydrophobic moieties into dextran polymers improves their functional properties and broadens their potential applications in the industry.

15.
Food Chem ; 457: 140095, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38905829

RESUMO

In this study, vitamins C and E were simultaneously encapsulated in water-in-oil-in-water (W/O/W) emulsion-filled sodium alginate (SA) hydrogel beads, as well as the effects of SA concentrations (0.5%, 1.0%, 1.5%, and 2.0%) on the structures and lipolysis the of hydrogel beads were investigated. With increasing SA concentration, the beads showed larger sizes, denser structures and better textures. The droplets tightly penetrated the gel network at high SA concentrations. Digestion behavior revealed the disintegrated intramolecular structure at low SA concentrations. The beads with 0.5% SA were fragmented, losing the initial shape during digestion in the intestinal fluid. Additionally, lipid phases were released as W/O/W and O/W emulsion droplets after digestion. However, the high SA concentration-containing beads exhibited a well-preserved morphological structure after digestion, and the release profiles of lipid phase were mainly O/W emulsion droplets. Furthermore, vitamins C and E encapsulated in the beads exhibited high bioaccessibility (vitamin C: 90.20% and vitamin E: 95.19%).

16.
Food Chem ; 456: 139938, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38870806

RESUMO

A novel curcumin (CUR) delivery system was developed using soybean whey protein (SWP)-based emulsions, enhanced by pH-adjustment and gum arabic (GA) modification. Modulating electrostatic interactions between SWP and GA at oil/water interface, pH provides favorable charging conditions for stable distribution between droplets. GA facilitated the SWP form a stable interfacial layer that significantly enhanced the emulsifying properties and CUR encapsulation efficiency of the system at pH 6.0, which were 90.15 ± 0.67%, 870.53 ± 3.22 m2/g and 2157.62 ± 115.31%, respectively. Duncan's test revealed significant improvements in thermal, UV, oxidative, and storage stabilities of CUR (P < 0.05). At pH 6.0, GA effectively protected CUR by inhibiting SWP degradation during gastric digestion and promoting the release of CUR by decreasing steric hindrance with oil droplets during intestinal digestion, achieving the highest CUR bioaccessibility (69.12% ± 0.28%) based on Duncan's test. The SWP-GA-CUR emulsion delivery system would be a novel carrier for nutrients.

17.
Food Chem ; 456: 140033, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870822

RESUMO

Myosin from bighead carp (Aristichthys nobilis) as a main type of fish protein possesses a good emulsifying ability. However, whether bighead carp myosin (BCM) could construct stable Pickering emulsions is still unclear. Therefore, myosin particles and Pickering emulsions stabilized by bighead carp myosin (BCMPEs) were analyzed. The surface structure of BCM particles at 0.6 mol/L NaCl treatment was uniform and compact with a contact angle of 86.4 ± 2.7°, exhibiting the potential ability to construct O/W Pickering emulsions. The size and flocculation index (FI) of BCMPEs decreased with the increase in BCM concentrations of 1%-4% (w/v). Reversely, the size of BCMPEs increased with the increase in oil-water ratios. BCM particles could uniformly distribute at the oil-water interface to stabilize BCMPEs at a BCM concentration of 4% (w/v) and an oil-water ratio of 6:4 (v/v). This study could help explore fish proteins to construct Pickering emulsions for the deep processing of fish products.

18.
Cureus ; 16(5): e60981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910727

RESUMO

There is a surge in the skincare industry marketing the use of natural ingredients as efficacious agents. Although this has been popular in the Eastern hemisphere for a while, Western countries are starting to put more emphasis on naturally derived products. This paper chose to analyze the current research available on tallow, which is a solid fat derived from animals. Tallow has long been used as a neutral cooking fat, ingredient in soaps, biofuel product, and now ingredient in skincare products. The purpose of this scoping review was to look at the current research pertaining to the therapeutic benefits of tallow on the skin. Using the PRISMA Extension for Scoping Reviews (PRISMA-ScR) guidelines, a scoping review was conducted using two databases: EMBASE and PubMed as sources of evidence. The searches for studies were conducted using the following key terms: (tallow) AND (skin or dermatology or dermatitis or emulsion or cosmetics or eczema). Papers were excluded if they were not in English, if they did not mention the effects of tallow on the skin, and if they did not use tallow rendered from an animal. Date ranges and geographical locations for articles were not part of our inclusion or exclusion criteria. We focused on the following five research questions: Does the composition of tallow make it better suitable for use on skin? What is the benefit of using tallow on skin? Does tallow have therapeutic properties for skin conditions? What side effects does tallow have on the skin? Is tallow reef-safe? While there is much evidence supporting the use of tallow as an ingredient in animal feed, cooking, soaps, and biofuels, there are significant research gaps in how it can be used on human skin. Our search on PubMed and EMBASE resulted in a total of 147 studies being screened with 19 fitting our specific criteria. Of the 19 studies, there were comparative studies, basic science studies, and animal studies. After reviewing the studies to answer the objectives in this paper, we were able to find information that supported the first three objectives; however, more research is still needed. Specifically, more research is needed that is geared towards tallow as a cosmetic product in humans. The fourth objective, which was to answer the side effects of topical tallow, had the most discrepancies between the sources. The fifth objective also found supporting information; however, only two sources were found. Overall, there needs to be more research with controlled variables on the side effects of topical tallow. Different research designs that could be explored include case studies, randomized controlled trials, cross-sectional studies, and qualitative studies.

19.
Int J Biol Macromol ; : 133406, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925201

RESUMO

Biodegradable and biocompatible polymer-based nanoparticles (NPs) hold great promise for various industries. We report the first development of composite NPs consisting of starch (St) and polyvinyl alcohol (PVA) using the nanoprecipitation technique with ethanol as an antisolvent. We varied the St:PVA ratios in the precursor solutions to evaluate their impact on the structure and properties of the composite NPs. The ratios used were 4:1, 1:1, and 1:4. Characterization by X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis revealed distinct XRD and TGA patterns for the composite St/PVANPs compared to their corresponding physical blends. This indicated the presence of mixed St/PVA crystallites within their structures. Additionally, the crystallinity of St/PVANPs increased with rising St content. Dynamic light scattering and scanning electron microscopy showed that nanoparticle sizes increased with higher PVA proportions. The St/PVANPs showed superior performance as stabilizers in Pickering emulsions, forming denser continuous networks in the gel-like structure of the emulsions. Additionally, increasing the PVA content in the composition of St/PVANPs strengthened the structure of Pickering emulsions. The emulsion stabilized by St20/PVA80NPs showed exceptional stability for one month. These findings highlight the potential of St/PVANPs as innovative materials for various applications, including emulsion stabilization.

20.
Food Chem ; 457: 140032, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38936117

RESUMO

The aim of the presented study was to evaluate the release of the enzymatically initiated production of hexanal from double emulsion electrospun bio-active membranes at a temperature of fruit storage. Among different formulations of water-in-oil (W1/O) primary emulsions, the emulsion composed of 12% w/v Tween20 and 0.1 M NaCl in water (W1) and 6% of poly(glycerol) poly(ricinoleate) dissolved in sunflower oil (O) using W1/O ratio of 80/20 (w/w) (Tween20-NaCl/6% PGPR) was selected, for further incorporation of enzymes, based on the lowest average droplet size (391.0 ± 15.6 nm), low polydispersity index (0.255 ± 0.07), and good gravitational stability also after 14 days. Both enzymes, lipase and lipoxygenase are needed to produce hexanal (up to 58 mg/L). Additionally, double emulsions were prepared with sufficient conductivity and viscosity using different W1/O to W2 ratios for electrospinning. From the selected electrospun membrane, up to 4.5 mg/L of hexanal was released even after 92 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...