Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274111

RESUMO

Mechanical energy harvesters made from soft and flexible materials can be employed as energy sources for wearable and implantable devices. However, considering how human organs and joints expand and bend in many directions, the energy generated in response to a mechanical stimulus in only one direction limits the applicability of mechanical energy harvesters. Here, we report carbon nanotube (CNT) sheets/an elastomer bilayer harvesting electrode (CBHE) that converts two-axis mechanical stimulation into electrical energy. The novel microwinkled structure of the CBHE successfully demonstrates an electrochemical double-layer (EDL) capacitance change from biaxial mechanical stimulation, thereby generating electrical power (0.11 W kg-1). Additionally, the low modulus (0.16 MPa) and high deformability due to the elastomeric substrate suggest that the CBHE can be applied to the human body.

2.
Small Methods ; : e2400474, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39108201

RESUMO

In recent years, 1D nanostructure-based devices have achieved widespread usage in various fields, such as sensors, energy harvesters, transistors, and electrodes owing to their exceptional and distinct properties. The pioneering work of Dr. R. S. Wagner at Bell Laboratories in 1964 introduced the vapor-liquid-solid (VLS) process, a powerful synthesis method. Since then, numerous synthesis techniques, including sol-gel, hydrothermal, chemical vapor deposition (CVD), physical vapor deposition (PVD), and more, have been developed. These methods have enabled researchers to effectively control the shape (length and diameter) and material properties of nanowires. However, it was only about two decades ago that nanowires started to be widely utilized as key components in functional devices, primarily due to the lack of proper integration methods. Although dozens of integration techniques have been developed, none have emerged as a predominant choice, with each method presenting its own set of advantages and limitations. Therefore, this work aims to categorize these methods based on their working principles and provide a comprehensive summary of their pros and cons. Additionally, state-of-the-art devices that capitalize on the integration of 1D nanomaterials are introduced.

3.
J Nanobiotechnology ; 22(1): 497, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164735

RESUMO

In recent years, wearable sensor devices with exceptional portability and the ability to continuously monitor physiological signals in real time have played increasingly prominent roles in the fields of disease diagnosis and health management. This transformation has been largely facilitated by materials science and micro/nano-processing technologies. However, as this technology continues to evolve, the demand for multifunctionality and flexibility in wearable devices has become increasingly urgent, thereby highlighting the problem of stable and sustainable miniaturized power supplies. Here, we comprehensively review the current mainstream energy technologies for powering wearable sensors, including batteries, supercapacitors, solar cells, biofuel cells, thermoelectric generators, radio frequency energy harvesters, and kinetic energy harvesters, as well as hybrid power systems that integrate multiple energy conversion modes. In addition, we consider the energy conversion mechanisms, fundamental characteristics, and typical application cases of these energy sources across various fields. In particular, we focus on the crucial roles of different materials, such as nanomaterials and nano-processing techniques, for enhancing the performance of devices. Finally, the challenges that affect power supplies for wearable electronic products and their future developmental trends are discussed in order to provide valuable references and insights for researchers in related fields.


Assuntos
Fontes de Energia Elétrica , Dispositivos Eletrônicos Vestíveis , Humanos , Energia Solar , Fontes de Energia Bioelétrica , Nanoestruturas/química , Nanotecnologia/métodos , Eletrônica , Desenho de Equipamento
4.
Adv Mater ; : e2404492, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935237

RESUMO

Wearable and implantable active medical devices (WIMDs) are transformative solutions for improving healthcare, offering continuous health monitoring, early disease detection, targeted treatments, personalized medicine, and connected health capabilities. Commercialized WIMDs use primary or rechargeable batteries to power their sensing, actuation, stimulation, and communication functions, and periodic battery replacements of implanted active medical devices pose major risks of surgical infections or inconvenience to users. Addressing the energy source challenge is critical for meeting the growing demand of the WIMD market that is reaching valuations in the tens of billions of dollars. This review critically assesses the recent advances in energy harvesting and storage technologies that can potentially eliminate the need for battery replacements. With a key focus on advanced materials that can enable energy harvesters to meet the energy needs of WIMDs, this review examines the crucial roles of advanced materials in improving the efficiencies of energy harvesters, wireless charging, and energy storage devices. This review concludes by highlighting the key challenges and opportunities in advanced materials necessary to achieve the vision of self-powered wearable and implantable active medical devices, eliminating the risks associated with surgical battery replacement and the inconvenience of frequent manual recharging.

5.
Adv Mater ; : e2400657, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719210

RESUMO

The growing demand for wearable devices has sparked a significant interest in ferroelectret films. They possess flexibility and exceptional piezoelectric properties due to strong macroscopic dipoles formed by charges trapped at the interface of their internal cavities. This review of ferroelectrets focuses on the latest progress in fabrication techniques for high temperature resistant ferroelectrets with regular and engineered cavities, strategies for optimizing their piezoelectric performance, and novel applications. The charging mechanisms of bipolar and unipolar ferroelectrets with closed and open-cavity structures are explained first. Next, the preparation and piezoelectric behavior of ferroelectret films with closed, open, and regular cavity structures using various materials are discussed. Three widely used models for predicting the piezoelectric coefficients (d33) are outlined. Methods for enhancing the piezoelectric performance such as optimized cavity design, utilization of fabric electrodes, injection of additional ions, application of DC bias voltage, and synergy of foam structure and ferroelectric effect are illustrated. A variety of applications of ferroelectret films in acoustic devices, wearable monitors, pressure sensors, and energy harvesters are presented. Finally, the future development trends of ferroelectrets toward fabrication and performance optimization are summarized along with its potential for integration with intelligent systems and large-scale preparation.

6.
ACS Appl Mater Interfaces ; 16(23): 29491-29520, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38739105

RESUMO

Piezoelectric energy harvesters have gained significant attention in recent years due to their ability to convert ambient mechanical vibrations into electrical energy, which opens up new possibilities for environmental monitoring, asset tracking, portable technologies and powering remote "Internet of Things (IoT)" nodes and sensors. This review explores various aspects of piezoelectric energy harvesters, discussing the structural designs and fabrication techniques including inorganic-based energy harvesters (i.e., piezoelectric ceramics and ZnO nanostructures) and organic-based energy harvesters (i.e., polyvinylidene difluoride (PVDF) and its copolymers). The factors affecting the performance and several strategies to improve the efficiency of devices have been also explored. In addition, this review also demonstrated the progress in flexible energy harvesters with integration of flexibility and stretchability for next-generation wearable technologies used for body motion and health monitoring devices. The applications of the above devices to harvest various forms of mechanical energy are explored, as well as the discussion on perspectives and challenges in this field.

7.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610523

RESUMO

This work presents a miniaturized electromagnetic energy harvester (EMEH) based on two coils moving in a head-to-head permanent magnet tower. The two coils are separated by a set distance so that the applied force moves the EMEH from one equilibrium position to another. In this configuration, the harvester produces energy in two different working modes: when a force is applied to the moving part or when an external random acceleration is applied to the whole system. A custom test bench has been designed to characterize the behavior of this energy harvester under a variety of conditions encountered in wearable applications. Notably, at 10 Hz and 1.32 g RMS acceleration, our inertial EMEH demonstrates its capability to sustain a consistent output power of 1696 µW within a total volume of 22.39 cm3, showcasing its efficiency in environments with erratic stimuli typical of wearable and biomedical applications. The presented EMEH is compared with reported inertial EMEH structures to extract its design limitations as well as future improvements, situating the present work in a comprehensive state-of-the-art and defining a generic performance target for biomedical and wearable applications.


Assuntos
Aceleração , Dispositivos Eletrônicos Vestíveis , Cultura
8.
Heliyon ; 10(5): e26000, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434262

RESUMO

For bridges with high automobile traffic, a large amount of vibration is generated daily due to cars driving over imperfectly level roads, and a vibration energy harvester can convert this energy into electrical energy, thus providing energy for devices such as bridge health sensors. However, the traditional single degree of freedom magnetic levitation vibration energy harvester (SMEH) has the disadvantage of low output power, so this research designs an improved dual degree of freedom magnetic levitation vibration energy harvester (DMEH), and a mathematical model of the energy harvester is built for simulation tests and an optimization model based on NSGA-II algorithm is developed for optimizing the structural parameters of the energy harvester. The experimental results show that the maximum total output power of DMEH and SMEH on CSSBB1, CSSBB2 and CSSBB3 are 48.7 mW, 36.8 mW, 25.4 mW and 27.2 mW, 21.5 mW, 14.9 mW, respectively, and the minimum total magnet volumes of both on CSSBB1, CSSBB2 and CSSBB3 are 268 cm3, 132 cm3, 219 cm3, 214 cm3, 86.2 cm3, 156 cm3. Based on the experimental data, it is found that the maximum output power of the optimal solution of DMEH is larger than that of SMEH for the selected simply supported girder bridge project, and the volume of the former is also larger than that of the latter, but the degree of increase can still be adapted to the application environment. The research results have some reference significance for improving the energy harvesting efficiency of bridge vibration energy harvesters.

9.
Pacing Clin Electrophysiol ; 47(4): 542-550, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38407386

RESUMO

The incidence and prevalence of cardiovascular diseases (CVD) have risen over the last few decades worldwide, resulting in a cost burden to healthcare systems and increasingly complex procedures. Among many strategies for treating heart diseases, treating arrhythmias using cardiac implantable electronic devices (CIEDs) has been shown to improve quality of life and reduce the incidence of sudden cardiac death. The battery-powered CIEDs have the inherent challenge of regular battery replacements depending upon energy usage for their programmed tasks. Nanogenerator-based  energy harvesters have been extensively studied, developed, and optimized continuously in recent years to overcome this challenge owing to their merits of self-powering abilities and good biocompatibility. Although these nanogenerators and others currently used in energy harvesters, such as biofuel cells (BFCs) exhibit an infinite spectrum of uses for this novel technology, their demerits should not be dismissed. Despite the emergence of Qi wireless power transfer (WPT) has revolutionized the technological world, its application in CIEDs has yet to be studied well. This review outlines the working principles and applications of currently employed energy harvesters to provide a preliminary exploration of CIEDs based on Qi WPT, which may be a promising technology for the next generation of functionalized CIEDs.


Assuntos
Desfibriladores Implantáveis , Humanos , Qi , Qualidade de Vida , Coração , Eletrônica
10.
Adv Mater ; 36(6): e2308197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37842933

RESUMO

Fluid-based triboelectric nanogenerators (FB-TENGs) are at the forefront of promising energy technologies, demonstrating the ability to generate electricity through the dynamic interaction between two dissimilar materials, wherein at least one is a fluidic medium (such as gas or liquid). By capitalizing on the dynamic and continuous properties of fluids and their interface interactions, FB-TENGs exhibit a larger effective contact area and a longer-lasting triboelectric effect in comparison to their solid-based counterparts, thereby affording longer-term energy harvesting and higher-precision self-powered sensors in harsh conditions. In this review, various fluid-based mechanical energy harvesters, including liquid-solid, gas-solid, liquid-liquid, and gas-liquid TENGs, have been systematically summarized. Their working mechanism, optimization strategies, respective advantages and applications, theoretical and simulation analysis, as well as the existing challenges, have also been comprehensively discussed, which provide prospective directions for device design and mechanism understanding of FB-TENGs.

11.
Small ; : e2308531, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047546

RESUMO

Conventional triboelectric nanogenerators (TENGs) face challenges pertaining to low output current density at low working frequencies and high internal impedance. While strategies, such as surface modification to enhance surface charge density, permittivity regulation of materials, and circuit management, have partially mitigated these issues. However, they have also resulted in increased complexity in the fabrication process. Therefore, there is an urgent demand for a universal and simplified approach to address these challenges. To fulfill this need, this work presents a free-standing electrode and fixed surface tiny electrode implemented triboelectric nanogenerator (FFI-TENG). It is fabricated by a straightforward yet effective method: introducing a tiny electrode onto the surface of the tribo-negative material. This approach yields substantial enhancements in performance, notably a more than tenfold increase in output current density, a reduction in effective working frequencies, and a decrease in matching resistance as compared to vertical contact-separation TENGs (CS-TENGs) or single-electrode TENGs (SE-TENGs). Simultaneously, a comprehensive examination and proposition regarding the operational mechanism of FFI-TENG, highlighting its extensive applicability are also offered. Significantly, FFI-TENG excels in mechanical energy harvesting even under ultra-low working frequencies (0.1 Hz), outperforming similar contact-separation models. This innovation positions it as a practical and efficient solution for the development of low-entropy energy harvesters.

12.
ACS Nano ; 17(24): 25625-25637, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096441

RESUMO

Implantable neural stimulation devices are becoming prevalent in bioelectronic medicine for the precise treatment of various clinical diseases. Nevertheless, the limited lifespan and buckling size of the implanted devices remain significant obstacles for chronic clinical application. In this study, we developed an ultrasound-driven battery-free neurostimulator based on a high-performance mini-sized nanogenerator and demonstrated its successful application for the deep-brain-stimulation (DBS) therapy of Parkinson's disease in a rat model. This soft piezoelectric-triboelectric hybrid nanogenerators (PTNG) are made of porous thin-films of molecular piezoelectric materials, which have great advantages of facile, scalable, low-temperature, and flexible processing. Without any bucky accessory control circuits, the subcutaneously implanted soft PTNG can function as a wirelessly powered neurostimulator, allowing for the adjustment of stimulation parameters through external programmable ultrasound pulses. This DBS electroceutical application of energy-harvesting thin-film devices based on molecular piezoelectric materials provides valuable insight into the development of a soft high-performance bioelectronic device.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Animais , Ratos , Ultrassonografia , Fontes de Energia Elétrica , Porosidade
13.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896279

RESUMO

Triboelectric nanogenerators (TENGs) are a kind of mechanical energy harvester with a larger force sensing range and good energy conversion, which is often applied to human kinetic energy collection and motion sensing devices. Polymer materials are the most commonly used materials in TENGs' triboelectric layers due to their high plasticity and good performance. Regarding the application of TENGs in insoles, research has often used brittle Teflon for high output performance together with hard materials, such as springs, for the mechanism to maintain its stability. However, these combined materials increase the weight and hardness of the insoles. Here, we propose a polyethylene terephthalate (PET)-based TENG with a micro-needle polydimethylsiloxane (PDMS) elastomer, referred to as MN-PDMS-TENG, to enhance performance and maintain comfort flexibility, and structural stability. Compared with a flat PDMS, the TENG with a microstructure enhances the output open-circuit voltage (Voc) from 54.6 V to 129.2 V, short-circuit current (Isc) from 26.16 µA to 64.00 µA, power from 684 µW to 4.1 mW, and ability to light up from 70 to 120 LEDs. A special three-layer TENG insole mechanism fabricated with the MN-PDMS-TENG and elastic materials gives the TENG insole high stability and the ability to maintain sufficient flexibility to fit in a shoe. The three-layer TENG insole transforms human stepping force into electric energy of 87.2 V, which is used as a self-powered force sensor. Moreover, with the calibration curve between voltage and force, it has a sensitivity of 0.07734 V/N with a coefficient of determination of R2 = 0.91 and the function between force and output voltage is derived as F = 12.93 V - 92.10 under human stepping force (300~550 N). Combined with a micro-control unit (MCU), the three-layer TENG insole distinguishes the user's motion force at different parts of the foot and triggers a corresponding device, which can potentially be applied in sports and on rehabilitation fields to record information or prevent injury.

14.
Materials (Basel) ; 16(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834542

RESUMO

The rapid development of smart devices and electronic products puts forward higher requirements for power supply components. As a promising solution, hybrid energy harvesters that are based on a triboelectric nanogenerator (HEHTNG) show advantages of both high energy harvesting efficiency and multifunctionality. Aiming to systematically elaborate the latest research progress of a HEHTNG, this review starts by introducing its working principle with a focus on the combination of triboelectric nanogenerators with various other energy harvesters, such as piezoelectric nanogenerators, thermoelectric/pyroelectric nanogenerators, solar cells, and electromagnetic nanogenerators. While the performance improvement and integration strategies of HEHTNG toward environmental energy harvesting are emphasized, the latest applications of HEHTNGs as multifunctional sensors in human health detection are also illustrated. Finally, we discuss the main challenges and prospects of HEHTNGs, hoping that this work can provide a clear direction for the future development of intelligent energy harvesting systems for the Internet of Things.

15.
Materials (Basel) ; 16(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903231

RESUMO

High-quality, uniaxially oriented, and flexible PbZr0.52Ti0.48O3 (PZT) films were fabricated on flexible RbLaNb2O7/BaTiO3 (RLNO/BTO)-coated polyimide (PI) substrates. All layers were fabricated by a photo-assisted chemical solution deposition (PCSD) process using KrF laser irradiation for photocrystallization of the printed precursors. The Dion-Jacobson perovskite RLNO thin films on flexible PI sheets were employed as seed layers for the uniaxially oriented growth of PZT films. To obtain the uniaxially oriented RLNO seed layer, a BTO nanoparticle-dispersion interlayer was fabricated to avoid PI substrate surface damage under excess photothermal heating, and the RLNO has been orientedly grown only at around 40 mJ·cm-2 at 300 °C. The prepared RLNO seed layer on the BTO/PI substrate showed very high (010)-oriented growth with a very high Lotgering factor (F(010) = 1.0). By using the flexible (010)-oriented RLNO film on BTO/PI, PZT film crystal growth was possible via KrF laser irradiation of a sol-gel-derived precursor film at 50 mJ·cm-2 at 300 °C. The obtained PZT film showed highly (001)-oriented growth on the flexible plastic substrates with F(001) = 0.92 without any micro-cracks. The RLNO was only uniaxial-oriented grown at the top part of the RLNO amorphous precursor layer. The oriented grown and amorphous phases of RLNO would have two important roles for this multilayered film formation: (1) triggering orientation growth of the PZT film at the top and (2) the stress relaxation of the underneath BTO layer to suppress the micro-crack formation. This is the first time that PZT films have been crystallized directly on flexible substrates. The combined processes of photocrystallization and chemical solution deposition are a cost-effective and highly on-demand process for the fabrication of flexible devices.

16.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850428

RESUMO

Piezoelectric Vibration converters are nowadays gaining importance for supplying low-powered sensor nodes and wearable electronic devices. Energy management interfaces are thereby needed to ensure voltage compatibility between the harvester element and the electric load. To improve power extraction ability, resonant interfaces such as Parallel Synchronized Switch Harvesting on Inductor (P-SSHI) have been proposed. The main challenges for designing this type of energy management circuits are to realise self-powered solutions and increase the energy efficiency and adaptability of the interface for low-power operation modes corresponding to low frequencies and irregular vibration mechanical energy sources. In this work, a novel Self-Powered (SP P-SSHI) energy management circuit is proposed which is able to harvest energy from piezoelectric converters at low frequencies and irregular chock like footstep input excitations. It has a good power extraction ability and is adaptable for different storage capacitors and loads. As a proof of concept, a piezoelectric shoe insole with six integrated parallel piezoelectric sensors (PEts) was designed and implemented to validate the performance of the energy management interface circuit. Under a vibration excitation of 1 Hz corresponding to a (moderate walking speed), the maximum reached efficiency and power of the proposed interface is 83.02% and 3.6 mW respectively for the designed insole, a 10 kΩ resistive load and a 10 µF storage capacitor. The enhanced SP-PSSHI circuit was validated to charge a 10 µF capacitor to 6 V in 3.94 s and a 1 mF capacitor to 3.2 V in 27.64 s. The proposed energy management interface has a cold start-up ability and was also validated to charge a (65 mAh, 3.1 V) maganese dioxide coin cell Lithium battery (ML 2032), demonstrating the ability of the proposed wearable piezoelectric energy harvesting system to provide an autonomous power supply for wearable wireless sensors.

17.
ACS Appl Bio Mater ; 5(12): 5706-5715, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36473275

RESUMO

A triboelectric nanogenerator (TENG) is an energy generator that converts mechanical energy into electrical energy using triboelectricity at a nanoscale. Given their potential application as power sources in electronic devices, various attempts have been made to improve their output performance. Here, we present an eco-friendly, low-cost, and facile fabrication method to enhance TENG characteristics with keratin protein additives. Keratin sources, human and cat hair, are processed into powder and added to the friction layer, which increases their positive charge affinity, thereby boosting the output performance of the TENG. The output performances of the keratin-added TENG (K-TENG) are measured in the vertical contact-separation mode, with both additives having the highest output values at 5 wt % load. The K-TENG generates more output voltage and current values than the pristine TENG by 90 and 208%, respectively. Hence, we conclude that this method would potentially promote TENG as a strong candidate for a competitive "green" energy harvesting device in future electronics applications.


Assuntos
Queratinas , Polímeros , Humanos , Citoesqueleto , Fontes de Energia Elétrica , Eletrônica
18.
Micromachines (Basel) ; 13(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295972

RESUMO

Triboelectric nanogenerators can convert wave energy into the electrical energy required by ocean sensors, but the problem of the low electrical output performance of triboelectric nanogenerators has always been a concern. In this paper, an annular triboelectric nanogenerator (A-TENG) composed of an annular outer shell and an inner ball is proposed to improve the electrical output performance of the triboelectric nanogenerator by optimizing the structural parameters and wave parameters. Using the control variables, the effects of structural parameters (structure size, number of electrodes, electrode spacing, inner ball diameter, and number of inner balls) and wave parameters (wave frequency and wave amplitude) on the electrical output performance of the A-TENG were studied by combining COMSOL simulation and experimental research. The experimental results show that increasing the diameter and number of inner spheres can improve the open-circuit voltage between electrodes; the multi-electrode structure can improve the electron transfer rate and efficiently collect wave energy in all directions; and within the range of fixed sea conditions, there is an optimal annular size, which has the advantages of good electrical output performance and small size. The electrical output performance of the A-TENG can be greatly improved by optimizing the structural parameters. There are optimal wave parameters, such that the A-TENG can maximize the ocean wave energy conversion. This low-cost, long-life, efficient, and reliable energy harvesting system is ideal for powering ocean sensors.

19.
Adv Funct Mater ; 32(27)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36176721

RESUMO

The practical applications of skin-interfaced sensors and devices in daily life hinge on the rational design of surface wettability to maintain device integrity and achieve improved sensing performance under complex hydrated conditions. Various bio-inspired strategies have been implemented to engineer desired surface wettability for varying hydrated conditions. Although the bodily fluids can negatively affect the device performance, they also provide a rich reservoir of health-relevant information and sustained energy for next-generation stretchable self-powered devices. As a result, the design and manipulation of the surface wettability are critical to effectively control the liquid behavior on the device surface for enhanced performance. The sensors and devices with engineered surface wettability can collect and analyze health biomarkers while being minimally affected by bodily fluids or ambient humid environments. The energy harvesters also benefit from surface wettability design to achieve enhanced performance for powering on-body electronics. In this review, we first summarize the commonly used approaches to tune the surface wettability for target applications toward stretchable self-powered devices. By considering the existing challenges, we also discuss the opportunities as a small fraction of potential future developments, which can lead to a new class of skin-interfaced devices for use in digital health and personalized medicine.

20.
Materials (Basel) ; 15(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35806547

RESUMO

Energy harvesting devices made of piezoelectric material are highly anticipated energy sources for power wireless sensors. Tremendous efforts have been made to improve the performance of piezoelectric energy harvesters (PEHs). Noticeably, topology optimization has shown an attractive potential to design PEHs with enhanced energy conversion efficiency. In this work, an alternative yet more practical design objective was considered, where the open-circuit voltage of PEHs is enhanced by topologically optimizing the through-thickness piezoelectric material distribution of plate-type PEHs subjected to harmonic excitations. Compared to the conventional efficiency-enhanced designs, the open-circuit voltage of PEHs can be evidently enhanced by the proposed method while with negligible sacrifice on the energy conversion efficiency. Numerical investigations show that the voltage cancellation effect due to inconsistent voltage phases can be effectively ameliorated by optimally distributed piezoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA