Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.514
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 399, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951177

RESUMO

Dehydroepiandrosterone (DHEA) has a promising market due to its capacity to regulate human hormone levels as well as preventing and treating various diseases. We have established a chemical esterification coupled biocatalytic-based scheme by lipase-catalyzed 4-androstene-3,17-dione (4-AD) hydrolysis to obtain the intermediate product 5-androstene-3,17-dione (5-AD), which was then asymmetrically reduced by a ketoreductase from Sphingomonas wittichii (SwiKR). Co-enzyme required for KR is regenerated by a glucose dehydrogenase (GDH) from Bacillus subtilis. This scheme is more environmentally friendly and more efficient than the current DHEA synthesis pathway. However, a significant amount of 4-AD as by-product was detected during the catalytic process. Focused on the control of by-products, we investigated the source of 4-AD and identified that it is mainly derived from the isomerization activity of SwiKR and GDH. Increasing the proportion of glucose in the catalytic system as well as optimizing the catalytic conditions drastically reduced 4-AD from 24.7 to 6.5% of total substrate amount, and the final yield of DHEA achieved 40.1 g/L. Furthermore, this is the first time that both SwiKR and GDH have been proved to be promiscuous enzymes with dehydrogenase and ketosteroid isomerase (KSI) activities, expanding knowledge of the substrate diversity of the short-chain dehydrogenase family enzymes. KEY POINTS: • A strategy of coupling lipase, ketoreductase, and glucose dehydrogenase in producing DHEA from 4-AD • Both SwiKR and GDH are identified with ketosteroid isomerase activity. • Development of catalytic strategy to control by-product and achieve highly selective DHEA production.


Assuntos
Desidroepiandrosterona , Lipase , Sphingomonas , Desidroepiandrosterona/metabolismo , Lipase/metabolismo , Sphingomonas/enzimologia , Sphingomonas/metabolismo , Biocatálise , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Glucose 1-Desidrogenase/metabolismo , Glucose 1-Desidrogenase/genética , Androstenodiona/metabolismo , Androstenodiona/biossíntese , Hidrólise
2.
Cureus ; 16(4): e58532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38957833

RESUMO

Introduction Cancer exerts a substantial influence on the body's metabolism through varied mechanisms, instigating a metabolic reprogramming that maintains the unchecked growth and survival of cancer cells, consequently perturbing diverse metabolic parameters. The introduction of positron emission tomography-computed tomography (PET/CT), delivering detailed insights into both metabolic and morphological aspects, has brought about a revolutionary shift in modern cancer detection. Exploring the potential connection between PET-CT metabolic features and the metabolic parameters of liver enzymes in an individual can unveil novel avenues for cancer diagnosis and prognosis. Materials and methods This study conducted a retrospective analysis of patient records from our institution, covering the period from January 2021 to September 2023, focusing on individuals with various malignancies. The data included information on gender, age, clinical history, and liver serum parameters, which were compiled into tables. Additionally, inflammatory indicators such as ALT (alanine transaminase), ALP (alkaline phosphatase), total protein (TP), ALT/AST ratio, and SUVmax were collected and plotted. The study used Pearson correlation analysis to assess the relationship between each inflammatory variable and SUV (max) as determined by PET-CT. Results In breast cancer, there was a statistically significant positive correlation (R2=0.0651) between serum ALP levels and SUVmax as determined by regression analysis. Hodgkin lymphoma, on the other hand, showed a statistically significant negative correlation between the ALT-to-AST ratio (ALT/AST) and SUVmax (r = -0.45, R2 = 0.204). In non-Hodgkin lymphoma patients, total protein (TP) was negatively correlated with SUVmax (R2=-0.081, r= -0.28), while in lung cancer patients, there was a significant positive correlation with regression correlation coefficients (R2 = 0.026, 0.024, 0.024, and 0.018 for ALT/AST, TP, ALP, albumin, and ALT, respectively). Conclusion Aligning with these results, it can be a recent addition to acknowledge that both the tumor metabolic parameter (SUVmax) and the levels of liver serum enzymes exhibit a potential for predicting patient prognosis in various cancers.

3.
Adv Protein Chem Struct Biol ; 141: 495-538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960484

RESUMO

The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-ß-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.


Assuntos
Microbioma Gastrointestinal , Metaloproteínas , Espécies Reativas de Oxigênio , Xenobióticos , Xenobióticos/metabolismo , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Adv Sci (Weinh) ; : e2403197, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946671

RESUMO

Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.

5.
Small ; : e2402655, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949408

RESUMO

Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.

6.
Talanta ; 278: 126467, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968657

RESUMO

The combination of CRISPR technology and electrochemical sensors has sparked a paradigm shift in the landscape of point-of-care (POC) diagnostics. This review explores the dynamic convergence between CRISPR and electrochemical sensing, elucidating their roles in rapid and precise biosensing platforms. CRISPR, renowned for its remarkable precision in genome editing and programmability capability, has found a novel application in conjunction with electrochemical sensors, promising highly sensitive and specific detection of nucleic acids and biomarkers associated with diverse diseases. This article navigates through fundamental principles, research developments, and applications of CRISPR-based electrochemical sensors, highlighting their potential to revolutionize healthcare accessibility and patient outcomes. In addition, some key points and challenges regarding applying CRISPR-powered electrochemical sensors in real POC settings are presented. By discussing recent advancements and challenges in this interdisciplinary field, this review evaluates the potential of these innovative sensors as an alternative for decentralized, rapid, and accurate POC testing, offering some insights into their applications across clinical scenarios and their impact on the future of diagnostics.

7.
RNA Biol ; 21(1): 31-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38952121

RESUMO

Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of ß-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Peptidil Transferases , Biossíntese de Proteínas , RNA Ribossômico , Ribossomos , Peptidil Transferases/metabolismo , Peptidil Transferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ribossomos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/genética , Cinética
8.
Sci Rep ; 14(1): 15062, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956110

RESUMO

Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.


Assuntos
Carvão Vegetal , Fotossíntese , Folhas de Planta , Estresse Salino , Spinacia oleracea , Óxido de Zinco , Zinco , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Fotossíntese/efeitos dos fármacos , Zinco/farmacologia , Zinco/metabolismo , Nutrientes/metabolismo , Clorofila/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Antioxidantes/metabolismo , Solo/química , Estresse Oxidativo/efeitos dos fármacos , Salinidade
9.
Cell Biochem Funct ; 42(5): e4084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963282

RESUMO

Safe chemicals for drug withdrawal can be extracted from natural sources. This study investigates the effects of clonidine and Thymbra spicata extract (TSE) on mice suffering from morphine withdrawal syndrome. Thymol, which is the active constituent in TSE, was also tested. A total of 90 mice were divided into nine groups. Group 1 was the control group, while Group 2 was given only morphine, and Group 3 received morphine and 0.2 mg/kg of clonidine. Groups 4-6 were given morphine along with 100, 200, and 300 mg/kg of TSE, respectively. Groups 7-9 received morphine plus 30, 60, and 90 mg/kg of Thymol, respectively, for 7 days. An oral naloxone challenge of 3 mg/kg was used to induce withdrawal syndrome in all groups. Improvement of liver enzyme levels (aspartate aminotransferase, alkaline phosphatase, and alanine transaminase) (p < .01) and behavioral responses (frequencies of jumping, frequencies of two-legged standing, Straub tail reaction) (p < .01) were significantly observed in the groups receiving TSE and Thymol (Groups 4-9) compared to Group 2. Additionally, antioxidant activity in these groups was improved compared to Group 2. Nitric oxide significantly decreased in Groups 4 and 6 compared to Groups 2 and 3 (p < .01). Superoxide dismutase increased dramatically in Groups 5, 8, and 9 compared to Groups 2 and 3 (p < .01). Groups 5-9 were significantly different from Group 2 in terms of malondialdehyde levels (p < .01). Certain doses of TSE and Thymol were found to alleviate the narcotics withdrawal symptoms. This similar effect to clonidine can pave the way for their administration in humans.


Assuntos
Antioxidantes , Fígado , Morfina , Extratos Vegetais , Síndrome de Abstinência a Substâncias , Timol , Animais , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Timol/farmacologia , Timol/uso terapêutico , Antioxidantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Morfina/farmacologia , Masculino , Comportamento Animal/efeitos dos fármacos , Clonidina/farmacologia , Clonidina/uso terapêutico , Lamiaceae/química , Óxido Nítrico/metabolismo
10.
Cell Biochem Biophys ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963603

RESUMO

Oxidative stress hurts the survival of transplanted mesenchymal stem cells (MSCs). Lipopolysaccharide (LPS) preconditioning inhibits apoptotic death in MSCs. Also, Lovastatin's protective effect was reported on MSCs. Here, we investigated the potential of LPS and Lovastatin combination therapy on the survival and proliferation of MSCs. MSCs harvested from adult rats (240-260 g) femur and tibia bone marrow. Third passage MSCs were divided into 6 groups control group, LPS, LPS + Lovastatin (10 and 15 µM), and Lovastatin (10 and 15 µM). Cell survival and proliferation were assessed using an MTT assay 24 h after LPS, Lovastatin, or LPS + Lovastatin treatment. Also, Malondialdehyde (MDA) as a lipid peroxidation marker and antioxidant enzymes such as Glutathione peroxidase (GPX) and Superoxide dismutase (SOD) activity levels evaluated. Finally, the expression level of tumor protein P53 (P53) and octamer-binding transcription factor 4 (OCT4) genes were measured by qRT-PCR test. Lovastatin 10 µM potentiated proliferation and survival of MSCs. It can increase the activity of GPX and SOD. 10 µM Lovastatin could not affect MDA amounts but decreased the expression levels of P53 and Oct4 significantly. Nevertheless, treatment with LPS reduced the survival and proliferation of MSCs, along with a significant reduction in GPX activity. LPS + Lovastatin could increase SOD activity, however, GPX enzyme activity and MSCs proliferation did not change so, and it was not effective. We propose Lovastatin at the dose of 10 µM as a suitable combination agent to increase the survival and proliferation of MSCs in oxidative stress conditions.

11.
Chemistry ; : e202401487, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963680

RESUMO

Vitamin D deficiency affects nearly half the population, with many requiring or opting for supplements with vitamin D3(VD3), the precursor of vitamin D (1α,25-dihydroxyVD3). 25-HydroxyVD3, the circulating form of vitamin D, is a more effective supplement than VD3 but its synthesis is complex. We report here the engineering of cytochrome P450BM3(CYP102A1) for the selective oxidation of VD3 to 25-hydroxyVD3. Long-range effects of the substrate-channel mutation Glu435Ile promoted binding of the VD3 side chain close to the heme, enhancing VD3 oxidation activity that reached 6.62 g of 25-hydroxyVD3 isolated from a 1-litre scale reaction (69.1% yield; space-time-yield 331 mg/L/h).

12.
Arh Hig Rada Toksikol ; 75(2): 125-136, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963142

RESUMO

Recent research has raised concern about the biocompatibility of iron oxide nanoparticles (IONPs), as they have been reported to induce oxidative stress and inflammatory responses, whilst prolonged exposure to high IONP concentrations may lead to cyto-/genotoxicity. Besides, there is concern about its environmental impact. The aim of our study was to investigate the effects of IONPs on the antioxidant defence system in freshwater fish Mozambique tilapia (Oreochromis mossambicus, Peters 1852). The fish were exposed to IONP concentration of 15 mg/L over 1, 3, 4, 15, 30, and 60 days and the findings compared to a control, unexposed group. In addition, we followed up the fish for 60 days after exposure had stopped to estimate the stability of oxidative stress induced by IONPs. Exposure affected the activity of antioxidant and marker enzymes and increased the levels of hydrogen peroxide and lipid peroxidation in the gill, liver, and brain tissues of the fish. Even after 60 days of depuration, adverse effects remained, indicating long-term nanotoxicity. Moreover, IONPs accumulated in the gill, liver, and brain tissues. Our findings underscore the potential health risks posed to non-target organisms in the environment, and it is imperative to establish appropriate guidelines for safe handling and disposal of IONPs to protect the aquatic environment.


Assuntos
Antioxidantes , Estresse Oxidativo , Tilápia , Animais , Estresse Oxidativo/efeitos dos fármacos , Tilápia/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
13.
Int J Biol Macromol ; 275(Pt 1): 133566, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960264

RESUMO

The present review elaborates on the details of the enzyme, its structure, specificity, and the mechanism of action of selected enzymes as well as structural changes and loss or gain of activity after non-thermal treatments for food-based applications. Enzymes are biological catalysts found in various systems such as plants, animals, and microorganisms. Most of the enzymes have their optimum pH, temperature, and substrate or group of substrates. The conformational modification of enzymes either increases or decreases the rate of reaction at different pH, and temperature conditions. Enzymes are modified by different techniques to enhance the activity of enzymes for their commercial applications mainly due to the high cost of enzymes, stability, and difficulties that occur during the use of enzymes in different conditions. On the opposite, enzyme inactivation provides its application to extend the shelf life of fruits and vegetables by denaturation and partial inactivation of enzymes. Hence, the activation and inactivation of enzymes are studied by non-thermal techniques in both the model and the food system. The highly reactive species generated during non-thermal techniques cause chemical and structural modification. The enzyme modifications depend on the type and source of the enzyme, type of technique, and the parameters used.

14.
Trop Anim Health Prod ; 56(6): 191, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951353

RESUMO

To predict the sex of the foetus, healthy pregnant dromedary camels (n = 24) were included. Blood samples were collected for measurements of progesterone, estradiol, testosterone, and cortisol as well as total proteins, albumin, glucose, creatinine, blood urea nitrogen, phosphorus, calcium, creatine kinase, alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT), calcium, phosphorus, and magnesium. Statistical analysis revealed differences between pregnant camels and pregnant camels in terms of female or male foetuses depending on the actual sex of the born calf. The results revealed that testosterone and ALP concentrations were significantly (P < 0.001) greater in camels given to males than in those given to calves. There were strong positive correlations between male calf birth and testosterone and ALP concentrations (r = 0.864; P < 0.0001 and r = 0.637; P < 0.001, respectively). On the other hand, the cortisol, glucose and creatinine concentrations were significantly lower (P lower in camel calved males than in females). There were significant negative correlations between male calf birth and the cortisol, glucose and creatinine concentrations (r =-0.401; P = 0.052; r =-0.445; P = 0.029 and r =-0.400; P = 0.053, respectively). The concentrations of calcium, phosphorus, calcium/phosphorus ratio, magnesium, and albumin and the albumin/globulin ratio were not significantly different (P > 0.05) between the two groups. In conclusion, testosterone could be used as a biomarker to determine the sex of foetuses in dromedary camels.


Assuntos
Camelus , Animais , Camelus/sangue , Feminino , Masculino , Gravidez , Análise para Determinação do Sexo/veterinária , Análise para Determinação do Sexo/métodos , Hidrocortisona/sangue , Testosterona/sangue , Creatinina/sangue , Feto , Estradiol/sangue , Hormônios Esteroides Gonadais/sangue
15.
Braz J Microbiol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951478

RESUMO

Chitinases are promising enzymes for a multitude of applications, including chitooligosaccharide (COS) synthesis for food and pharmaceutical uses and marine waste management. Owing to fungal diversity, fungal chitinases may offer alternatives for chitin degradation and industrial applications. The rapid reproduction cycle, inexpensive growth media, and ease of handling of fungi may also contribute to reducing enzyme production costs. Thus, this study aimed to identify fungal species with chitinolytic potential and optimize chitinase production by submerged culture and enzyme characterization using shrimp chitin. Three fungal species, Coriolopsis byrsina, Trichoderma reesei, and Trichoderma harzianum, were selected for chitinase production. The highest endochitinase production was achieved in C. byrsina after 168 h cultivation (0.3 U mL- 1). The optimal temperature for enzyme activity was similar for the three fungal species (up to 45 and 55 ºC for endochitinases and exochitinases, respectively). The effect of pH on activity indicated maximum hydrolysis in acidic pH (4-7). In addition, the crude T. reesei extract showed promising properties for removing Candida albicans biofilms. This study showed the possibility of using shrimp chitin to induce chitinase production and enzymes that can be applied in different industrial sectors.

16.
World J Gastroenterol ; 30(22): 2839-2842, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38947289

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most prevalent chronic liver condition worldwide. Current liver enzyme-based screening methods have limitations that may missed diagnoses and treatment delays. Regarding Chen et al, the risk of developing MAFLD remains elevated even when alanine aminotransferase levels fall within the normal range. Therefore, there is an urgent need for advanced diagnostic techniques and updated algorithms to enhance the accuracy of MAFLD diagnosis and enable early intervention. This paper proposes two potential screening methods for identifying individuals who may be at risk of developing MAFLD: Lowering these thresholds and promoting the use of noninvasive liver fibrosis scores.


Assuntos
Fígado , Programas de Rastreamento , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/patologia , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/sangue , Programas de Rastreamento/métodos , Alanina Transaminase/sangue , Algoritmos , Biomarcadores/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/sangue , Fatores de Risco , Diagnóstico Precoce
17.
Artigo em Inglês | MEDLINE | ID: mdl-38961843

RESUMO

Sex differences in renal physiology and pathophysiology are well established in rodent models and humans. While renal epigenetics play a crucial role in injury, the impact of biological sex on aging kidney epigenome is less known, as most of the studies are from male rodents. We sought to determine the influence of sex and age on kidney epigenetic and injury markers, using male and female mice at 4-month (4M; young), 12-month (12M), and 24-month (24M; aged) of age. Females exhibited a significant increase in kidney and body weight and serum creatinine and decreased serum albumin levels from ages 4M to 24M, whereas minor changes were observed in male mice. Males exhibited higher levels of circulating histone 3 (H3; damage-associated molecular pattern molecules) compared with age-matched females. Kidney injury molecule-1 levels increased in serum and renal tissues from 12M to 24M in both sexes. Overall, females had markedly high histone acetyltransferase activity than age-matched males. Aged females had substantially decreased H3 methylation at lysine 9 and 27 and histone methyltransferase activity compared to aged males. Klotho levels were significantly higher in young males than females and decreased with age in males, whereas epigenetic repressor of Klotho, H3K27me3 and its enzyme, EZH2 augmented with age in both sexes. Proinflammatory NF-κB (p65) signaling increased with age in both sexes. Taken together, our data suggest that renal aging may lie in a range between normal and diseased kidneys, but differ between female and male mice, highlighting sex-specific regulation of renal epigenome in aging.

18.
Explor Target Antitumor Ther ; 5(3): 522-542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966182

RESUMO

Aim: Metal nanoclusters are emerging nanomaterials applicable for drug delivery. Here, the toxicity and oxidative stress induction of divalent cationic cadmium (Cd2+) was compared with a Cd in the form of nanocluster. Then, it was used for targeted drug delivery into breast cancer cell lines. Methods: Using a green chemistry route, a Cd nanocluster (Cd-NC) was synthesized based on bovine serum albumin. After characterization, its genotoxicity and oxidative stress induction were studied in both in vitro and in vivo. After that, it was conjugated with hyaluronic acid (HA). The efficiency of hyaloronized-Cd-CN (HA-Cd-NC) for loading and releasing crocin (Cro), an anticancer phytochemical, was studied. Finally, it was applied for cell death induction in a panel of breast cancer cell lines. Results: The comet assay results indicated that, unlike Cd2+ and potassium permanganate (KMnO4), no genotoxicity and oxidative stress was induced by Cd-NC in vitro. Then, the pharmacokinetics of this Cd-NC was studied in vivo. The data showed that Cd-NC has accumulated in the liver and excreted from the feces of mice. Unlike Cd2+, no toxicity and oxidative stress were induced by this Cd-NC in animal tissues. Then, the Cd-NC was targeted toward breast cancer cells by adding HA, a ligand for the CD44 cell surface receptor. After that, Cro was loaded on HA-Cd-NC and it was used for the treatment of a panel of human breast cancer cell lines with varying degrees of CD44. The half-maximal drug inhibitory concentration (IC50) of Cro was significantly decreased when it was loaded on HA-Cd-NC, especially in MDA-MB-468 with a higher degree of CD44 at the surface. These results indicate the higher toxicity of Cro toward breast cancers when carried out by HA-Cd-NC. Conclusions: The Cd-NC was completely safe and is a promising candidate for delivering anticancer drugs/phytochemicals into the targeted breast tumors.

19.
JMIR Serious Games ; 12: e52231, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38967387

RESUMO

Background: Exercise offers substantial health benefits but can induce oxidative stress and inflammation, especially in high-intensity formats such as high-intensity interval exercise (HIIE). Exergaming has become an effective, enjoyable fitness tool for all ages, particularly older adults. Enzyme supplements may enhance exercise performance by improving lactate metabolism and reducing oxidative stress. Objective: This study investigates the efficacy of fruit and vegetable enzyme supplementation in modulating fatigue and enhancing aerobic capacity in older adults following HIIE through exergaming. Methods: The study recruited 16 older adult female participants and allocated them into 2 distinct groups (enzyme and placebo) based on their pretest lactate levels. This division used pairwise grouping to guarantee comparability between the groups, ensuring the integrity of the results. They engaged in HIIE using Nintendo Switch Ring Fit Adventure, performing 8 sets of 20 seconds of maximum effort exercise interspersed with 30 seconds of rest, totaling 370 seconds of exercise. Key metrics assessed included blood lactate levels, heart rate, rating of perceived exertion, and training impulse. Participants in the enzyme group were administered a fruit and vegetable enzyme supplement at a dosage of 30 mL twice daily over a period of 14 days. Results: The enzyme group showed significantly lower blood lactate levels compared to the placebo group, notably after the fourth (mean 4.29, SD 0.67 vs mean 6.34, SD 1.17 mmol/L; P=.001) and eighth (mean 5.84, SD 0.63 vs mean 8.20, SD 1.15 mmol/L; P<.001) exercise sessions. This trend continued at 5 minutes (mean 6.85, SD 0.82 vs mean 8.60, SD 1.13 mmol/L; P=.003) and 10 minutes (mean 5.91, SD 1.16 vs mean 8.21, SD 1.27 mmol/L; P=.002) after exercise. Although both groups exceeded 85% of their estimated maximum heart rate during the exercise, enzyme supplementation did not markedly affect the perceived intensity or effort. Conclusions: The study indicates that fruit and vegetable enzyme supplementation can significantly reduce blood lactate levels in older adults following HIIE through exergaming. This suggests a potential role for these enzymes in modulating lactate production or clearance during and after high-intensity exercise. These findings have implications for developing targeted interventions to enhance exercise tolerance and recovery in older adults.

20.
Prev Nutr Food Sci ; 29(2): 228-236, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974589

RESUMO

The ginger leaves contain terpenoids and phenolic compounds, such as gingerol and shogaol, which exert various physiological effects. This study focused on determining the optimal conditions for an enzyme (Ultimase MFC) extraction to enhance the bioactive components of underutilized ginger leaves using the response surface method. The extracted material was evaluated in terms of its yield and antioxidant capacity (total phenolic content, total flavonoid content, and activities of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid). As a result, the optimal conditions included an enzyme concentration of 0.1% (v/v), a liquid-solid ratio of 33.939 mL/g, and an extraction time of 4 h. The optimized conditions resulted in an improvement in yield and antioxidant capacity, except for the total phenolic content of ginger leaves, when compared to the reference control extract. Additionally, the possibility of improving immunity was confirmed as nitric oxide and cytokines increased in macrophage cells compared with non-treatment control. Therefore, these extraction conditions enhance the potential industrial value of ginger leaves and underscore their promise as a natural ingredient for functional foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...