Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Clin Cosmet Investig Dermatol ; 17: 1527-1541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948922

RESUMO

Purpose: This study seeks to investigate the effect of evodiamine on psoriasis and psoriatic pruritus. Methods: Imiquimod-induced psoriasiform dermatitis in mice was used as a model, and evodiamine was topically applied for seven days. The mice were observed daily for skin damage on the back, clinical score and their scratching behavior was recorded. Blood samples were collected on the final day of the experiment, and the serum levels of pruritus-associated inflammatory cytokines tumor necrosis factor (TNF) -α, interleukin (IL) -23, and IL-17A were measured using enzyme-linked immunosorbent assay. Histopathological changes were observed in Hematoxylin and Eosin-stained skin specimens. The expression levels of transient receptor potential vanilloid (TRPV) 1, TRPV3, TRPV4, and the pruritus-related mediators Substance P (SP), nerve growth factor (NGF), and calcitonin gene-related peptide (CGRP) in the skin lesions were analyzed using Western blot and qRT-PCR. The effect of evodiamine on the exploratory behavior, motor, and coordination abilities of mice was assessed using open field, suspension, and Rota-Rod experiments. Molecular docking was utilized to verify the binding of evodiamine to the residues of TRPV1, TRPV3, and TRPV4. Results: Evodiamine reduced pruritus and inhibited inflammation by decreasing the levels of inflammatory mediators TNF-α, IL-23, and IL-17A in the serum of Imiquimod-induced mice and attenuated the mRNA and protein expression levels of SP, NGF, CGRP, TRPV1, TRPV3, and TRPV4 in the skin. Conclusion: Evodiamine is an effective treatment for psoriasis and pruritus, due to its ability to inhibit immune inflammation and pruritic mediators.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38956908

RESUMO

BACKGROUND: Evodiamine (EVO) is an alkaloid extracted from the dried and nearly ripe fruits of Euodia rutaecarpa and used as an anti-cancer, anti-inflammatory and anti-obesity agent. However, robust evidence of preclinical experiments has been lacking so far. Therefore, the purpose of this article was to investigate the effect of EVO in combination with other treatments on tumors in animal experiments. METHODS: A systematic review and meta-analysis were conducted to assess the anti-tumor effect of evodiamine-combined therapy. The search engine and electronic databases included PubMed, Scopus, China Knowledge Resource Integrated Database (CNKI), and SinoMed. The research method was based on the PRISMA checklist. RESULTS: A total of 7 studies and 108 animals were included. As a result, EVO combined therapy was found to be more effective than EVO monotherapy. The SMD was -25.64(95% CI: -5.77 -3.13) in tumor growth. In tumor weight, the SMD was -8.91(95% CI: -16.37, -1.44). CONCLUSION: EVO has the potential to alleviate the toxicity of chemotherapeutic agents, which increases the translatability to the clinical situation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38941037

RESUMO

Evodiamine (EVO), a natural bioactive compound extracted from Evodia rutaecarpa, shows therapeutic ability against malignant melanoma. However, the poor solubility and bioavailability of EVO limit its clinical application. Metal-organic frameworks (MOFs) have shown excellent physical and chemical properties and are widely used as drug delivery systems. Among them, zeolitic imidazolate framework-8 (ZIF-8) is a research popular material because of its unique properties, such as hydrothermal stability, non-toxicity, biocompatibility, and pH sensitivity. In this study, in order to load EVO, a drug carrier that hyaluronic acid (HA) modified zeolitic imidazolate framework-8 (ZIF-8) is synthesized. This drug carrier has shown drug loading with 6.2 ± 0.6%, and the nano drugs (EVO@ZIF-8/HA) have good dispersibility. Owing to the decoration HA of EVO@ZIF-8, the potential of the nano drugs is reversed from the positive charge to the negative charge, which is beneficial to blood circulation in vivo. Furthermore, because the CD44-expressing in tumor cells is excessed, the endocytosis and accumulation of nano drugs in tumor cells are beneficial to improvement. Compared with free EVO, EVO@ZIF-8/HA has shown a significantly improved anti-tumor efficacy in vitro and in vivo. In summary, the drug carrier effectively addresses the challenges that are caused by the strong hydrophobicity and low bioavailability of EVO, thereby targeted tumor therapy of EVO can be achieved.

4.
Ecotoxicol Environ Saf ; 281: 116563, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878560

RESUMO

Evodiamine (EVO), the main active alkaloid in Evodia rutaecarpa, was shown to exert various pharmacological activities, especially anti-tumor. Currently, it is considered a potential anti-cancer drug due to its excellent anti-tumor activity, which unfortunately has adverse reactions, such as the risk of liver and kidney injury, when Evodia rutaecarpa containing EVO is used clinically. In the present study, we aim to clarify the potential toxic target organs and toxicity mechanism of EVO, an active monomer in Evodia rutaecarpa, and to develop mitigation strategies for its toxicity mechanism. Transcriptome analysis and related experiments showed that the PI3K/Akt pathway induced by calcium overload was an important step in EVO-induced apoptosis of renal cells. Specifically, intracellular calcium ions were increased, and mitochondrial calcium ions were decreased. In addition, EVO-induced calcium overload was associated with TRPV1 receptor activation. In vivo TRPV1 antagonist and calcium chelator effects were observed to significantly reduce body weight loss and renal damage in mice due to EVO toxicity. The potential nephrotoxicity of EVO was further confirmed by an in vivo test. In conclusion, TRPV1-mediated calcium overload-induced apoptosis is one of the mechanisms contributing to the nephrotoxicity of EVO due to its toxicity, whereas maintaining body calcium homeostasis is an effective measure to reduce toxicity. These studies suggest that the clinical use of EVO-containing herbal medicines should pay due attention to the changes in renal function of patients as well as the off-target effects of the drugs.

5.
J Asian Nat Prod Res ; : 1-11, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945152

RESUMO

Histone deacetylase 6 (HDAC6) was a potential target for Alzheimer's disease (AD). In this study, a series of novel oxyevodiamine-based HDAC6 inhibitors with a variety of linker moieties were designed, synthesized and evaluated. Compound 12 with a benzyl linker was identified as a high potent and selective HDAC6 inhibitor. It inhibited HDAC6 with an IC50 value of 6.2 nM and was more than 200 fold selectivity over HDAC1. It also had lower cytotoxicity and higher anti-H2O2 activity in vitro comparing with other derivatives. Compound 12 might be a good lead as novel HDAC6 inhibitor for the treatment of AD.

6.
Nutrients ; 16(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931311

RESUMO

Post-traumatic stress disorder (PTSD) is a persistent psychiatric condition that arises following exposure to traumatic events such as warfare, natural disasters, or other catastrophic incidents, typically characterized by heightened anxiety, depressive symptoms, and cognitive dysfunction. In this study, animals subjected to single prolonged stress (SPS) were administered evodiamine (EVO) and compared to a positive control group receiving sertraline. The animals were then assessed for alterations in anxiety, depression, and cognitive function. Histological analysis was conducted to examine neuronal changes in the hippocampus. In order to predict the core targets and related mechanisms of evodiamine intervention in PTSD, network pharmacology was used. The metabolic markers pre- and post-drug administration were identified using nontargeted serum metabolomics techniques, and the intersecting Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were screened. Finally, the core targets were validated through molecular docking, enzyme-linked immunosorbent assays, and immunofluorescence staining to confirm the anti-PTSD effects and mechanisms of these targets. As well as improving cognitive impairment, evodiamine reversed anxiety- and depression-like behaviors. It also inhibited the reduction in the number of hippocampal neuronal cells and Nissl bodies in SPS mice inhibited angiotensin converting enzyme (ACE) levels in the hippocampus of SPS mice, and modulated the renin angiotensin pathway and its associated serum metabolites in brain tissue. Evodiamine shows promise as a potential candidate for alleviating the symptoms of post-traumatic stress disorder.


Assuntos
Modelos Animais de Doenças , Hipocampo , Neurônios , Quinazolinas , Sistema Renina-Angiotensina , Transtornos de Estresse Pós-Traumáticos , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Quinazolinas/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Sistema Renina-Angiotensina/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Depressão/tratamento farmacológico , Simulação de Acoplamento Molecular , Ansiedade/tratamento farmacológico , Camundongos Endogâmicos C57BL , Farmacologia em Rede
7.
Bioorg Med Chem ; 107: 117759, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795572

RESUMO

Small molecule drugs sourced from natural products are pivotal for novel therapeutic discoveries. However, their clinical deployment is often impeded by non-specific activity and severe adverse effects. This study focused on 3-fluoro-10-hydroxy-Evodiamine (F-OH-Evo), a potent derivative of Evodiamine, whose development is curtailed due to suboptimal tumor selectivity and heightened cytotoxicity. By harnessing the remarkable stability, specificity, and αvß3 integrin affinity of c(RGDFK), a novel prodrug by conjugating F-OH-Evo with cRGD was synthesized. This innovative prodrug substantially enhanced the tumor-specific targeting of F-OH-Evo and improved the anti-tumor activities. Among them, compound 3c demonstrated the best selective inhibitory activity toward U87 cancer cells in vitro. It selectively enterd U87 cells by binding to αvß3 integrin, releasing the parent molecule under the dual response of ROS and GSH to exert inhibitory activity on topo I. The results highlight the potential of cRGD-conjugated prodrugs in targeted cancer therapy. This approach signifies a significant advancement in developing safer and more effective chemotherapy drugs, emphasizing the role of prodrug strategies in overcoming the limitations of traditional cancer treatments.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Peptídeos Cíclicos , Pró-Fármacos , Quinazolinas , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Relação Estrutura-Atividade , Quinazolinas/química , Quinazolinas/farmacologia
8.
Ecotoxicol Environ Saf ; 279: 116448, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754199

RESUMO

Evodiae Fructus (EF), an herbal medicine, possesses remarkable anti-inflammatory and analgesic properties. It exhibits insecticidal activity as a potent insecticide candidate. However, the toxic characteristics of EF and the underlying mechanisms have not been comprehensively elucidated comprehensively. Thus, we comprehensively explored the toxic components of EF and established the relationship between the therapeutic and toxic effects of EF, encouraging its therapeutic use. We found that evodiamine (EVO), one of the main ingredients of EF, can truly reflect its analgesic properties. In phenotype observation trials, low doses of EVO (< 35 ng/mL) exhibited distinct analgesic activity without any adverse effects in zebrafish. However, EVO dose-dependently led to gross morphological abnormalities in the liver, followed by pericardial edema, and increased myocardial concentrations. Furthermore, the toxic effects of EVO decreased after processing in liver microsomes but increased after administering CYP450 inhibitors in zebrafish, highlighting the prominent effect of CYP450s in EVO-mediated hepatotoxicity. EVO significantly changed the expression of genes enriched in multiple pathways and biological processes, including lipid metabolism, inflammatory response, tight junction damage, and cell apoptosis. Importantly, the PPAR/PI3K/AKT/NF-кB/tight junction-mediated apoptosis pathway was confirmed as a critical functional signaling pathway inducing EVO-mediated hepatotoxicity. This study provided a typical example of the overall systematic evaluation of traditional Chinese medicine (TCM) and its active ingredients with significant therapeutic effects and simultaneous toxicities, especially metabolic toxicities.


Assuntos
Apoptose , Evodia , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quinazolinas , Peixe-Zebra , Animais , Quinazolinas/toxicidade , Apoptose/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Evodia/química , Transdução de Sinais/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia
9.
Front Pharmacol ; 15: 1380304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783957

RESUMO

Introduction: Human topoisomerase 1 (TOP1) is an important target of various anticancer compounds. The design and discovery of inhibitors targeting TOP1 are of great significance for the development of anticancer drugs. Evodiamine and thieno [2,3-d] pyridine hybrids show potential antitumor activity. Herein, the anti-gastric cancer activities of these hybrids were investigated. Methods: The inhibitory effects of different concentrations of ten evodiamine derivatives on the gastric cancer cell line SGC-7901 were assessed using a methyl thiazolyl tetrazolium assay. Compounds EVO-1 and EVO-6 strongly inhibited gastric cancer cell proliferation, with inhibition rates of 81.17% ± 5.08% and 80.92% ± 2.75%, respectively. To discover the relationship between the structure and activity of these two derivatives, density functional theory was used to investigate their optimized geometries, natural population charges, frontier molecular orbitals, and molecular electrostatic potentials. To clarify their anti-gastric cancer mechanisms, molecular docking, molecular dynamics simulations, and binding free energy calculations were performed against TOP1. Results: The results demonstrated that these compounds could intercalate into the cleaved DNA-binding site to form a TOP1-DNA-ligand ternary complex, and the ligand remained secure at the cleaved DNA-binding site to form a stable ternary complex. As the binding free energy of compound EVO-1 with TOP1 (-38.33 kcal·mol-1) was lower than that of compound EVO-6 (-33.25 kcal·mol-1), compound EVO-1 could be a more potent anti-gastric cancer agent than compound EVO-6. Discussion: Thus, compound EVO-1 could be a promising anti-gastric cancer drug candidate. This study may facilitate the design and development of novel TOP1 inhibitors.

10.
J Sci Food Agric ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821861

RESUMO

Evodiamine is a bioactive alkaloid extracted from the Evodia rutaecarpa plant. It has various pharmacological effects including anti-cancer, anti-bacterial, anti-obesity, anti-neurodegenerative, anti-depressant, and cardiac protective properties. Evodiamine demonstrates potent anti-cancer activity by inhibiting the proliferation of cancer cells in vitro and in vivo. Despite the health-promoting properties of evodiamine, its clinical use is hindered by low water solubility, poor bioavailability, and toxicity. Thus, there is a need to develop alternative drug delivery systems for evodiamine to enhance its solubility, permeability, and stability, as well as to facilitate targeted, prolonged, and controlled drug release. Nanocarriers can increase the therapeutic potential of evodiamine in cancer therapy while reducing adverse side effects. To date, numerous attempts have been made through the development of smart nanocarriers to overcome the drawbacks of evodiamine. This review focuses on the pharmacological applications, anti-cancer mechanisms, and limitations of evodiamine. Various nanocarriers, including lipid-based nanoparticles, polymeric nanoparticles, cyclodextrins, and so forth, have been discussed extensively for evodiamine delivery. Nano-drug delivery systems could increase the solubility, bioavailability, stability, and therapeutic efficacy of evodiamine. This review aims to present a comprehensive and critical evaluation of several nano-formulations of evodiamine for cancer therapy. © 2024 Society of Chemical Industry.

11.
Mol Biol Rep ; 51(1): 523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630183

RESUMO

BACKGROUND: In recent decades, phytotherapy has remained as a key therapeutic option for the treatment of various cancers. Evodiamine, an excellent phytocompound from Evodia fructus, exerts anticancer activity in several cancers by modulating drug resistance. However, the role of evodiamine in cisplatin-resistant NSCLC cells is not clear till now. Therefore, we have used evodiamine as a chemosensitizer to overcome cisplatin resistance in NSCLC. METHODS: Here, we looked into SOX9 expression and how it affects the cisplatin sensitivity of cisplatin-resistant NSCLC cells. MTT and clonogenic assays were performed to check the cell proliferation. AO/EtBr and DAPI staining, ROS measurement assay, transfection, Western blot analysis, RT-PCR, Scratch & invasion, and comet assay were done to check the role of evodiamine in cisplatin-resistant NSCLC cells. RESULTS: SOX9 levels were observed to be higher in cisplatin-resistant A549 (A549CR) and NCI-H522 (NCI-H522CR) compared to parental A549 and NCI-H522. It was found that SOX9 promotes cisplatin resistance by regulating ß-catenin. Depletion of SOX9 restores cisplatin sensitivity by decreasing cell proliferation and cell migration and inducing apoptosis in A549CR and NCI-H522CR. After evodiamine treatment, it was revealed that evodiamine increases cisplatin-induced cytotoxicity in A549CR and NCI-H522CR cells through increasing intracellular ROS generation. The combination of both drugs also significantly inhibited cell migration by inhibiting epithelial to mesenchymal transition (EMT). Mechanistic investigation revealed that evodiamine resensitizes cisplatin-resistant cells toward cisplatin by decreasing the expression of SOX9 and ß-catenin. CONCLUSION: The combination of evodiamine and cisplatin may be a novel strategy for combating cisplatin resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinazolinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , beta Catenina , Transição Epitelial-Mesenquimal , Espécies Reativas de Oxigênio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Morte Celular , Fatores de Transcrição SOX9/genética
12.
Life (Basel) ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672764

RESUMO

Evodiamine is an alkaloid found in Evodia fruits, a traditional Chinese medicine. Preclinical studies have demonstrated its anti-inflammatory and neuroprotective properties. The 2,4-dinitro-1-chloro-benzene (DNCB) was used to test the effects of evodiamine on a chemically induced atopic dermatitis-like model in BALB/c mice. Evodiamine significantly lowered serum immunoglobulin E levels, which increased as an immune response to the long-term application of DNCB. Several atopic dermatitis-like skin symptoms induced by DNCB, including skin thickening and mast cell accumulation, were suppressed by evodiamine therapy. DNCB induced higher levels of pro-inflammatory cytokines in type 2 helper T (Th2) cells (IL-4 and IL-13), Th1 cells (IFN-γ and IL-12A), Th17 cells (IL-17A), Th22 cells (IL-22), and chemokines (IL-6 and IL-8). These increases were suppressed in the lymph nodes and skin following evodiamine treatment. The results of our study indicate that evodiamine suppresses atopic dermatitis-like responses in mice and may therefore be useful in treating these conditions.

13.
Cytotechnology ; 76(2): 153-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495298

RESUMO

Degradation of extracellular matrix (ECM), reactive oxygen species (ROS) production, and inflammation are critical players in the pathogenesis of intervertebral disc degeneration (IDD). Evodiamine exerts functions in inhibiting inflammation and maintaining mitochondrial antioxidant functions. However, the biological functions of evodiamine and its related mechanisms in IDD progression remain unknown. The IDD-like conditions in vivo were stimulated via needle puncture. Hematoxylin and eosin staining, Safranin O/Fast Green staining and Alcian staining were performed to determine the degenerative status. The primary nucleus pulposus cells (NPCs) were isolated from Sprague-Dawley rats and then treated with tert-butyl peroxide (TBHP) to induce cellular senescence and oxidative stress. The cell viability was assessed by cell counting kit-8 assays. The mitochondria-derived ROS in NPCs was evaluated by MitoSOX staining. The mitochondrial membrane potential in NPCs was identified by JC-1 staining and flow cytometry. The expression of collagen II in NPCs was measured by immunofluorescence staining. The levels of mRNAs and proteins were measured by RT-qPCR and western blotting. The Nrf2 expression in rat nucleus pulposus tissues was measured by immunohistochemistry staining. Evodiamine alleviated TBHP-induced mitochondrial dysfunctions in NPCs. The enhancing effect of TBHP on the ECM degradation was reversed by evodiamine. The TBHP-stimulated inflammatory response was ameliorated by evodiamine. Evodiamine alleviated the IDD process in the puncture-induced rat model. Evodiamine promoted the activation of Nrf2 pathway and inactivated the MAPK pathway in NPCs. In conclusion, evodiamine ameliorates the progression of IDD by inhibiting mitochondrial dysfunctions, ECM degradation and inflammation via the Nrf2/HO-1 and MAPK pathways.

14.
J Cancer ; 15(8): 2361-2372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495504

RESUMO

Objective: To investigate the inhibitory effect of EVO on colorectal cancer (CRC) growth and further explore the potential mechanism involving the RTKs-mediated PI3K/AKT/p53 signaling pathway. Methods: Firstly, the inhibitory effect of EVO on CRC cells was detected in vitro by cell viability assay and colony formation assay. The effects of EVO on spatial migration and invasion capacity of cells were detected by Transwell assay. The effects of EVO on apoptosis and cycle of cells were detected by flow cytometry. Then, the molecular mechanism of EVO against CRC was revealed by qRT-PCR and Western blot. Finally, the excellent anti-tumour activity of EVO was verified by in vivo experiments. Results: The results demonstrated that EVO exerts inhibitory effects on CRC cell proliferation, invasion, and colony formation. The cell cycle assay revealed that EVO induces G1/S phase arrest. Through RNA seq, we explored the influence of EVO on the transcriptional profile of colon cancer and observed significant activation of RTKs and the PI3K/AKT pathway, along with its downstream signaling pathways. Furthermore, we observed upregulation of p53 proteins by EVO, which led to the inhibition of Bcl-2 expression and an increase in Bax expression. Consistently, EVO exhibited remarkable suppression of tumor xenograft growth in nude mice. Conclusion: This study confirmed that EVO inhibits the proliferation of CRC cells and promotes cell apoptosis. The possible mechanism of action is inhibiting the expression of the RTK protein family, activating the PI3K/AKT/p53 apoptotic signaling pathway, thereby inhibiting Bcl-2 expression and increasing Bax expression, promoting apoptosis of CRC cells. As a natural product, EVO has very high potential application value.

15.
J Nat Med ; 78(2): 342-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324123

RESUMO

Evodiamine, a novel alkaloid, was isolated from the fruit of tetradium. It exerts a diversity of pharmacological effects and has been used to treat gastropathy, hypertension, and eczema. Several studies reported that evodiamine has various biological effects, including anti-nociceptive, anti-bacterial, anti-obesity, and anti-cancer activities. However, there is no research regarding its effects on drug-resistant cancer. This study aimed to investigate the effect of evodiamine on human vemurafenib-resistant melanoma cells (A375/R cells) proliferation ability and its mechanism. Cell activity was assessed using the cell counting kit-8 (CCK-8) method. Flow cytometry assay was used to assess cell apoptosis and cell cycle. A xenograft model was used to analyze the inhibitory effects of evodiamine on tumor growth. Bioinformatics analyses, network pharmacology, and molecular docking were used to explore the potential mechanism of evodiamine in vemurafenib-resistant melanoma. RT-qPCR and Western blotting were performed to reveal the molecular mechanism. The alkaloid extract of the fruit of tetradium, evodiamine showed the strongest tumor inhibitory effect on vemurafenib-resistant melanoma cells compared to treatment with vemurafenib alone. Evodiamine inhibited vemurafenib-resistant melanoma cell growth, proliferation, and induced apoptosis, conforming to a dose-effect relationship and time-effect relationship. Results from network pharmacology and molecular docking suggested that evodiamine might interact with IRS4 to suppress growth of human vemurafenib-resistant melanoma cells. Interestingly, evodiamine suppressed IRS4 expression and then inhibited PI3K/AKT signaling pathway, and thus had the therapeutic action on vemurafenib-resistant melanoma.


Assuntos
Alcaloides , Antineoplásicos , Melanoma , Quinazolinas , Humanos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Alcaloides/farmacologia , Linhagem Celular Tumoral , Proteínas Substratos do Receptor de Insulina/metabolismo
16.
Bioorg Med Chem Lett ; 99: 129619, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244939

RESUMO

Compared with single-targeted therapy, the design and synthesis of heterozygous molecules is still a significant challenge for the discovery of antitumor drugs. Quinone oxidoreductase-1 (NQO1) is a potential target for selective cancer therapy due to its overexpression in many cancer cells and its unique bioredox properties. Based on the principle of combinatorial drug design, we successfully synthesized a new hybrid molecules 13 with an indolequinone structure. We found that the synthesized compounds exhibited much higher cytotoxicity against the tested cancer cells than free drugs. Further mechanism studies confirmed that compound 13 induced cell apoptosis was achieved by regulating p53-dependent mitochondrial pathway and cell cycle arrest at the G0/G1 phase.


Assuntos
Antineoplásicos , Indolquinonas , Cloridrato de Erlotinib/farmacologia , Antineoplásicos/química , Quinazolinas/farmacologia , Apoptose , Indolquinonas/química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Proliferação de Células , Relação Estrutura-Atividade
17.
Kaohsiung J Med Sci ; 40(4): 348-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243370

RESUMO

The effects of evodiamine (EVO) on oral squamous cell carcinoma (OSCC) are not yet understood. Based on our earlier findings, we hypothesized that evodiamine may affect OSCC cell proliferation and glutamate metabolism by modulating the expression of EPRS (glutamyl-prolyl-tRNA synthetase 1). From GEPIA, we obtained EPRS expression data in patients with OSCC as well as survival prognosis data. An animal model using Cal27 cells in BALB/c nude mice was established. The expression of EPRS was assessed by immunofluorescence, Western blotting, and quantitative PCR. Glutamate measurements were performed to evaluate the impact of evodiamine on glutamate metabolism of Cal27 and SAS tumor cells. transient transfection techniques were used to knock down and modulate EPRS in these cells. EPRS is expressed at higher levels in OSCC than in normal tissues, and it predicts poor prognosis in patients. In a nude mouse xenograft model, evodiamine inhibited tumor growth and the expression of EPRS. Evodiamine impacted cell proliferation, glutamine metabolism, and EPRS expression on Cal27 and SAS cell lines. In EPRS knockdown cell lines, both cell proliferation and glutamine metabolism are suppressed. EPRS's overexpression partially restores evodiamine's inhibitory effects on cell proliferation and glutamine metabolism. This study provides crucial experimental evidence supporting the potential therapeutic application of evodiamine in treating OSCC. Evodiamine exhibits promising anti-tumor effects by targeting EPRS to regulate glutamate metabolism.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Quinazolinas , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glutamatos/metabolismo , Glutamina , Camundongos Nus , Neoplasias Bucais/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
18.
J Agric Food Chem ; 72(2): 1292-1301, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178001

RESUMO

Pests represent an important impediment to efficient agricultural production and pose a threat to global food security. On the basis of our prior research focused on identifying insecticidal leads targeting insect ryanodine receptors (RyRs), we aimed to identify evodiamine scaffold-based novel insecticides. Thus, a variety of evodiamine-based derivatives were designed, synthesized, and assessed for their insecticidal activity against the larvae of Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). The preliminary bioassay results revealed that more than half of the target compounds exhibited superior activity compared to evodiamine, matrine, and rotenone against M. separata. Among these, compound 21m displayed the most potent larvicidal efficiency, with a remarkable mortality rate of 93.3% at 2.5 mg/L, a substantial improvement over evodiamine (10.0% at 10 mg/L), matrine (10.0% at 200 mg/L), and rotenone (30.0% at 200 mg/L). In the case of P. xylostella, compounds 21m and 21o displayed heightened larvicidal activity, boasting LC50 values of 9.37 × 10-2 and 0.13 mg/L, respectively, surpassing that of evodiamine (13.41 mg/L), matrine (291.78 mg/L), and rotenone (18.39 mg/L). A structure-activity relationship analysis unveiled that evodiamine-based derivatives featuring a cyclopropyl sulfonyl group at the nitrogen atom of the B ring and a fluorine atom in the E ring exhibited more potent larvicidal effects. This finding was substantiated by calcium imaging experiments and molecular docking, which suggested that 21m could target insect RyRs, including resistant mutant RyRs of P. xylostella (G4946E and I4790M), with higher affinity than chlorantraniliprole (CHL). Additionally, cytotoxicity assays highlighted that the potent compounds 21i, 21m, and 21o displayed favorable selectivity and low toxicity toward nontarget organisms. Consequently, compound 21m emerges as a promising candidate for further development as an insecticide targeting insect RyRs.


Assuntos
Inseticidas , Mariposas , Quinazolinas , Animais , Inseticidas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina , Rotenona , Simulação de Acoplamento Molecular , Matrinas , Larva , Sulfonamidas
19.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1015-1023, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37555854

RESUMO

Evodiamine (EVO) was tested on acute gouty arthritis rats to investigate its anti-inflammatory effect. Seventy-two male Sprague-Dawley (SD) rats were randomly assigned into the control, model, high, medium, and low dose of EVO groups and colchicine group. The ankle swelling degrees were measured at 2 h, 6 h, and 24 h following sodium urate injection into ankle joint. Histopathological examination was performed 24 h after injection. Reactive oxygen species (ROS) content in the ankle joint was detected using chemical fluorescence. Serum interleukin-1ß (IL-1ß), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) content were determined by ELISA. Serum xanthine oxidase (XOD), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined by spectrophotometry. The expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), pro-caspase-1, caspase-1, and apoptosis-related spot like protein (ASC) in synovium were detected by Western blot. Evodiamine alleviated the ankle swelling of the affected foot in gouty arthritis rats and reduced inflammatory cell infiltration in joint synovial tissue. Evodiamine also decreased the content of serum inflammatory factors including IL-1ß, IL-18, and TNF-α, and increased serum SOD activity, while it decreased serum XOD, MDA activity, and ROS level. Moreover, evodiamine downregulated the protein expression levels of TXNIP, NLRP3, pro-caspase-1, cleaved caspae-1, and ASC. The mechanism of EVO in treating gouty arthritis is associated with the inhibition of NLRP3 inflammasome by regulating the ROS/TXNIP/NLRP3 signaling pathway.


Assuntos
Artrite Gotosa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quinazolinas , Ratos , Masculino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Interleucina-18/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Caspase 1/metabolismo , Ratos Sprague-Dawley , Superóxido Dismutase , Proteínas de Ciclo Celular/uso terapêutico
20.
Environ Toxicol ; 39(3): 1556-1566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010754

RESUMO

BACKGROUND: Bortezomib (BTZ) is a commonly used antitumor drug, but its peripheral neuropathy side effect poses a limitation on its dosage. Evodiamine (EVO) exhibits various biological activities, including antioxidant, anti-inflammatory, and anticancer effects. The purpose of this investigation is to confirm the impact of EVO on BTZ-induced peripheral neurotoxicity. METHODS: GeneCards and HERB were applied to analyze the targets of peripheral neurotoxicity and EVO. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of the hub genes were identified by DAVID. Rat dorsal root ganglion neurons (DRGs) and rat RSC96 Schwann cells (SCs) were treated with BTZ to simulate peripheral neurotoxicity. BTZ-induced peripheral neurotoxicity was assessed by detecting cell viability, proliferation, oxidative stress, and ferroptosis in DRGs and SCs. The mitogen-activated protein kinase (MAPK) signaling was scrutinized by Western blot assay. RESULTS: The Venn diagram for the overlapping targets of EVO and peripheral neurotoxicity showed that EVO might regulate peripheral neurotoxicity by influencing cell oxidative stress, ferroptosis, and MAPK signaling pathway. EVO attenuated BTZ-induced toxicity in DRGs and SCs. EVO attenuated BTZ-induced oxidative stress damage in DRGs and SCs by reducing reactive oxygen species and malondialdehyde levels and enhancing glutathione level. EVO attenuated BTZ-induced ferroptosis in DRGs and SCs. EVO inhibited BTZ-induced activation of the MAPK signaling in DRGs and SCs. Activation of the MAPK signaling reversed the neuroprotective effect of EVO on BTZ-induced oxidative stress injury and ferroptosis. CONCLUSION: EVO attenuated oxidative stress and ferroptosis by inhibiting the MAPK signaling to improve BTZ-induced peripheral neurotoxicity.


Assuntos
Ferroptose , Síndromes Neurotóxicas , Quinazolinas , Ratos , Animais , Bortezomib/toxicidade , Proteínas Quinases Ativadas por Mitógeno , Transdução de Sinais , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...