Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
PeerJ Comput Sci ; 10: e2110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983218

RESUMO

Recognizing hand-object interactions presents a significant challenge in computer vision. It arises due to the varying nature of hand-object interactions. Moreover, estimating the 3D position of a hand from a single frame can be problematic, especially when the hand obstructs the view of the object from the observer's perspective. In this article, we present a novel approach to recognizing objects and facilitating virtual interactions, using a steering wheel as an illustrative example. We propose a real-time solution for identifying hand-object interactions in eXtended reality (XR) environments. Our approach relies on data captured by a single RGB camera during a manipulation scenario involving a steering wheel. Our model pipeline consists of three key components: (a) a hand landmark detector based on the MediaPipe cross-platform hand tracking solution; (b) a three-spoke steering wheel model tracker implemented using the faster region-based convolutional neural network (Faster R-CNN) architecture; and (c) a gesture recognition module designed to analyze interactions between the hand and the steering wheel. This approach not only offers a realistic experience of interacting with steering-based mechanisms but also contributes to reducing emissions in the real-world environment. Our experimental results demonstrate the natural interaction between physical objects in virtual environments, showcasing precision and stability in our system.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38960934

RESUMO

PURPOSE: Patients with total knee arthroplasty (TKA) often suffer from severe postoperative pain, which seriously hinders postoperative rehabilitation. Extended reality (XR), including virtual reality, augmented reality, and mixed reality, has been increasingly used to relieve pain after TKA. The purpose of this study was to evaluate the effectiveness of XR on relieving pain after TKA. METHODS: The electronic databases including PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov were searched for studies from inception to July 20, 2023. The outcomes were pain score, anxiety score, and physiological parameters related to pain. Meta-analysis was performed using the Review Manager 5.4 software. RESULTS: Overall, 11 randomized control trials (RCTs) with 887 patients were included. The pooled results showed XR had lower pain scores (SMD = - 0.31, 95% CI [- 0.46 to - 0.16], P < 0.0001) and anxiety scores (MD = - 3.95, 95% CI [- 7.76 to - 0.13], P = 0.04) than conventional methods. The subgroup analysis revealed XR had lower pain scores within 2 weeks postoperatively (SMD = - 0.49, 95% CI [- 0.76 to - 0.22], P = 0.0004) and XR had lower pain scores when applying XR combined with conventional methods (SMD = - 0.43, 95% CI [- 0.65 to - 0.20], P = 0.0002). CONCLUSION: This systematic review and meta-analysis found applying XR could significantly reduce postoperative pain and anxiety after TKA. When XR was combined with conventional methods, postoperative pain can be effectively relieved, especially within 2 weeks after the operation. XR is an effective non-pharmacological analgesia scheme.

3.
Psychol Sport Exerc ; : 102684, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830499

RESUMO

Evidence-based interventions are needed to promote engagement in physical activity. Audio-visual stimuli are frequently employed to enhance the exercise experience. Nonetheless, there is a paucity of research that examines the qualities of technological devices that are employed. Using the Embodiment-Presence-Interactivity Cube (Flavián et al., 2019) as a guiding conceptual framework, the aim of this registered report was to examine how each dimension of the cube (i.e., embodiment, presence and interactivity) influenced a range of exercise-related affective and perceptual variables. A counterbalanced within-subjects design was employed (N = 24). Participants completed 20-min exercise bouts on a cycle ergometer under four conditions: Television, augmented reality, 360° video and virtual reality. A repeated-measures ANOVA indicated a significant Condition × Timepoint interaction for affective valence (p = 0.046), with greater embodiment offered by technological devices leading to more positive responses. Analyses also indicated main effects of condition for exercise enjoyment, remembered pleasure and forecasted pleasure, with greater presence of technological devices leading to more positive responses. Technologies that combine high levels of embodiment, presence and interactivity (e.g., virtual reality) appear to yield several benefits in terms of in-task (e.g., affective valence) and post-task (e.g., remembered pleasure) responses for exercise conducted at ventilatory threshold.

4.
J Am Coll Radiol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866067

RESUMO

Medical Extended Reality (MXR), encompassing augmented reality (AR), virtual reality (VR), and mixed reality (MR), presents a novel paradigm in radiology training by offering immersive, interactive, and realistic learning experiences in healthcare. While traditional educational tools in the field of radiology are essential, it is necessary to capitalize on the innovative and emerging educational applications of XR technologies. At the most basic level of learning anatomy, XR has been extensively utilized with an emphasis on its superiority over conventional learning methods, especially in spatial understanding and recall. For imaging interpretation, XR has fostered the concepts of virtual reading rooms by enabling collaborative learning environments and enhancing image analysis and understanding. Moreover, image-guided interventions in interventional radiology have witnessed an uptick in XR utilization, illustrating its effectiveness in procedural training and skill acquisition for medical students and residents in a safe and risk-free environment. However, there remain several challenges and limitations for XR in radiology education, including technological, economic, ergonomic, and integration into existing curricula. This review explores the transformative potential of MXR in radiology education and training along with insights on the future of XR in radiology education, forecasting advancements in immersive simulations, AI integration for personalized learning, and the potential of cloud-based XR platforms for remote and collaborative training. In summation, MXR's burgeoning role in reshaping radiology education offers a safer, scalable, and more efficient training model that aligns with the dynamic healthcare landscape.

5.
J Imaging Inform Med ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862851

RESUMO

3D data from high-resolution volumetric imaging is a central resource for diagnosis and treatment in modern medicine. While the fast development of AI enhances imaging and analysis, commonly used visualization methods lag far behind. Recent research used extended reality (XR) for perceiving 3D images with visual depth perception and touch but used restrictive haptic devices. While unrestricted touch benefits volumetric data examination, implementing natural haptic interaction with XR is challenging. The research question is whether a multisensory XR application with intuitive haptic interaction adds value and should be pursued. In a study, 24 experts for biomedical images in research and medicine explored 3D medical shapes with 3 applications: a multisensory virtual reality (VR) prototype using haptic gloves, a simple VR prototype using controllers, and a standard PC application. Results of standardized questionnaires showed no significant differences between all application types regarding usability and no significant difference between both VR applications regarding presence. Participants agreed to statements that VR visualizations provide better depth information, using the hands instead of controllers simplifies data exploration, the multisensory VR prototype allows intuitive data exploration, and it is beneficial over traditional data examination methods. While most participants mentioned manual interaction as the best aspect, they also found it the most improvable. We conclude that a multisensory XR application with improved manual interaction adds value for volumetric biomedical data examination. We will proceed with our open-source research project ISH3DE (Intuitive Stereoptic Haptic 3D Data Exploration) to serve medical education, therapeutic decisions, surgery preparations, or research data analysis.

6.
J Surg Case Rep ; 2024(6): rjae383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38832054

RESUMO

A 73-year-old male presented with angina symptoms and was diagnosed with three-vessel coronary artery disease by use of computed tomography angiography and coronary angiography. This diagnosis necessitated coronary artery bypass grafting (CABG) surgery. A custom made AI-driven algorithm was used to generate a patient-specific three-dimensional coronary artery model from computed tomography angiography imaging data. This framework enabled precise segmentation and reconstruction of the coronary vasculature, yielding an accurate anatomical and pathological representation. Subsequently, this generated model was integrated into a novel extended reality tool for preoperative planning and intraoperative guidance in CABG surgery. Both preoperatively and intraoperatively, the tool augmented spatial orientation and facilitated precise stenosis localization, thereby enhancing the surgeon's operative proficiency. This case report underscores the utility of advanced extended reality tools in cardiovascular surgery, emphasizing their pivotal role in refining surgical planning and execution.

7.
Front Digit Health ; 6: 1425769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832348

RESUMO

Immersive media, particularly Extended Reality (XR), is at the forefront of revolutionizing the healthcare industry. Healthcare provides XR with "silver bullet" use cases that add value and societal effect to the technology. Healthcare interventions frequently require imaging or visualization to be applied correctly, and the sensation of presence that XR can provide is crucial as a training aid for healthcare learners. From anatomy to surgical training, multimodal immersion in the reality of a medical situation increases the impact of an XR resource compared to the usual approach. Thus, healthcare has become a specialized focus for the immersive media sector, with a multitude of development and research underway. This research subject, which followed on from the previous one, yielded an eclectic group of works spanning the gamut of immersive media applications in healthcare. The underlying theme in these works remains a consistent focus on calibrating, validating, verifying, and standardizing procedures, instruments, and technologies in order to constantly rigorously streamline the means and materials that will integrate immersive technologies in healthcare. In that spirit, we share the findings from this research topic as a motivator for rigorous and evidence-based use of immersive media in digital and connected health.

8.
Laryngoscope ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924127

RESUMO

OBJECTIVES: Virtual reality (VR) and augmented reality (AR) are innovative technologies that have a wide range of potential applications in the health care industry. The aim of this study was to investigate the body of research on AR and VR applications in rhinology by performing a scoping review. DATA SOURCES: PubMed, Scopus, and Embase. REVIEW METHODS: According to PRISM-ScR guidelines, a scoping review of literature on the application of AR and/or VR in the context of Rhinology was conducted using PubMed, Scopus, and Embase. RESULTS: Forty-nine articles from 1996 to 2023 met the criteria for review. Five broad types of AR and/or VR applications were found: preoperative, intraoperative, training/education, feasibility, and technical. The subsequent clinical domains were recognized: craniovertebral surgery, nasal endoscopy, transsphenoidal surgery, skull base surgery, endoscopic sinus surgery, and sinonasal malignancies. CONCLUSION: AR and VR have comprehensive applications in Rhinology. AR for surgical navigation may have the most emerging potential in skull base surgery and endoscopic sinus surgery. VR can be utilized as an engaging training tool for surgeons and residents and as a distraction analgesia for patients undergoing office-based procedures. Additional research is essential to further understand the tangible effects of these technologies on measurable clinical results. Laryngoscope, 2024.

9.
J Dent ; 146: 105058, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38729286

RESUMO

OBJECTIVES: This review aimed to map taxonomy frameworks, descriptions, and applications of immersive technologies in the dental literature. DATA: The Preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR) guidelines was followed, and the protocol was registered at open science framework platform (https://doi.org/10.17605/OSF.IO/H6N8M). SOURCES: Systematic search was conducted in MEDLINE (via PubMed), Scopus, and Cochrane Library databases, and complemented by manual search. STUDY SELECTION: A total of 84 articles were included, with 81 % between 2019 and 2023. Most studies were experimental (62 %), including education (25 %), protocol feasibility (20 %), in vitro (11 %), and cadaver (6 %). Other study types included clinical report/technique article (24 %), clinical study (9 %), technical note/tip to reader (4 %), and randomized controlled trial (1 %). Three-quarters of the included studies were published in oral and maxillofacial surgery (38 %), dental education (26 %), and implant (12 %) disciplines. Methods of display included head mounted display device (HMD) (55 %), see through screen (32 %), 2D screen display (11 %), and projector display (2 %). Descriptions of immersive realities were fragmented and inconsistent with lack of clear taxonomy framework for the umbrella and the subset terms including virtual reality (VR), augmented reality (AR), mixed reality (MR), augmented virtuality (AV), extended reality, and X reality. CONCLUSIONS: Immersive reality applications in dentistry are gaining popularity with a notable surge in the number of publications in the last 5 years. Ambiguities are apparent in the descriptions of immersive realities. A taxonomy framework based on method of display (full or partial) and reality class (VR, AR, or MR) is proposed. CLINICAL SIGNIFICANCE: Understanding different reality classes can be perplexing due to their blurred boundaries and conceptual overlapping. Immersive technologies offer novel educational and clinical applications. This domain is fast developing. With the current fragmented and inconsistent terminologies, a comprehensive taxonomy framework is necessary.


Assuntos
Odontologia , Humanos , Classificação , Educação em Odontologia , Realidade Virtual , Realidade Aumentada
10.
JMIR Form Res ; 8: e56916, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814705

RESUMO

BACKGROUND: Although family caregivers play a critical role in care delivery, research has shown that they face significant physical, emotional, and informational challenges. One promising avenue to address some of caregivers' unmet needs is via the design of digital technologies that support caregivers' complex portfolio of responsibilities. Augmented reality (AR) applications, specifically, offer new affordances to aid caregivers as they perform care tasks in the home. OBJECTIVE: This study explored how AR might assist family caregivers with the delivery of home-based cancer care. The specific objectives were to shed light on challenges caregivers face where AR might help, investigate opportunities for AR to support caregivers, and understand the risks of AR exacerbating caregiver burdens. METHODS: We conducted a qualitative video elicitation study with clinicians and caregivers. We created 3 video elicitations that offer ways in which AR might support caregivers as they perform often high-stakes, unfamiliar, and anxiety-inducing tasks in postsurgical cancer care: wound care, drain care, and rehabilitative exercise. The elicitations show functional AR applications built using Unity Technologies software and Microsoft Hololens2. Using elicitations enabled us to avoid rediscovering known usability issues with current AR technologies, allowing us to focus on high-level, substantive feedback on potential future roles for AR in caregiving. Moreover, it enabled nonintrusive exploration of the inherently sensitive in-home cancer care context. RESULTS: We recruited 22 participants for our study: 15 clinicians (eg, oncologists and nurses) and 7 family caregivers. Our findings shed light on clinicians' and caregivers' perceptions of current information and communication challenges caregivers face as they perform important physical care tasks as part of cancer treatment plans. Most significant was the need to provide better and ongoing support for execution of caregiving tasks in situ, when and where the tasks need to be performed. Such support needs to be tailored to the specific needs of the patient, to the stress-impaired capacities of the caregiver, and to the time-constrained communication availability of clinicians. We uncover opportunities for AR technologies to potentially increase caregiver confidence and reduce anxiety by supporting the capture and review of images and videos and by improving communication with clinicians. However, our findings also suggest ways in which, if not deployed carefully, AR technologies might exacerbate caregivers' already significant burdens. CONCLUSIONS: These findings can inform both the design of future AR devices, software, and applications and the design of caregiver support interventions based on already available technology and processes. Our study suggests that AR technologies and the affordances they provide (eg, tailored support, enhanced monitoring and task accuracy, and improved communications) should be considered as a part of an integrated care journey involving multiple stakeholders, changing information needs, and different communication channels that blend in-person and internet-based synchronous and asynchronous care, illness, and recovery.

11.
Cureus ; 16(4): e59240, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38813326

RESUMO

Background and objectives Mixed reality (MR) is one of the image processing technologies that allows the user to manipulate three-dimensional (3D) virtual images (hologram). The aim of this study was to evaluate the accuracy of MR-based pedicle screw (PS) placement using 3D spine models. Materials and methods Using the preoperative CT data of a patient with adolescent idiopathic scoliosis (AIS) who had undergone posterior spinal fusion in our hospital, a 3D-printed spine model was created. On the other hand, a 3D hologram of the same patient was automatically created using the preoperative CT data uploaded to the Holoeyes MD service website (Holoeyes Inc., Tokyo, Japan). Using a Magic Leap One® headset (Magic Leap Inc., Plantation, FL), the 3D hologram with lines of predetermined PS trajectories was superimposed onto the 3D-printed spine model and PS were inserted bilaterally along with the trajectory lines from T5 to L3. As a control, we used a readymade 3D spine model of AIS and inserted PS bilaterally with a freehand technique from T4 to L3. The rate of pedicle violation was compared between the MR-based and freehand techniques. Results A total of 22 and 24 PS were placed into the 3D-printed spine model of our patient and the readymade 3D spine model, respectively. The rate of pedicle violation was 4.5% (1/22 screws) in the MR-based technique and 29.2% (7/24 screws) in the freehand technique (P = 0.049). Conclusions We demonstrated a significantly lower rate of PS misplacement in the MR-based technique than in the freehand technique. Therefore, an MR-assisted system is a promising tool for PS placement in terms of feasibility, safety, and accuracy, warranting further studies including cadaveric and clinical studies.

12.
Front Bioeng Biotechnol ; 12: 1285107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638317

RESUMO

Immersive technology, such as extended reality, holds promise as a tool for educating ophthalmologists about the effects of low vision and for enhancing visual rehabilitation protocols. However, immersive simulators have not been evaluated for their ability to induce changes in the oculomotor system, which is crucial for understanding the visual experiences of visually impaired individuals. This study aimed to assess the REALTER (Wearable Egocentric Altered Reality Simulator) system's capacity to induce specific alterations in healthy individuals' oculomotor systems under simulated low-vision conditions. We examined task performance, eye movements, and head movements in healthy participants across various simulated scenarios. Our findings suggest that REALTER can effectively elicit behaviors in healthy individuals resembling those observed in individuals with low vision. Participants with simulated binocular maculopathy demonstrated unstable fixations and a high frequency of wide saccades. Individuals with simulated homonymous hemianopsia showed a tendency to maintain a fixed head position while executing wide saccades to survey their surroundings. Simulation of tubular vision resulted in a significant reduction in saccade amplitudes. REALTER holds promise as both a training tool for ophthalmologists and a research instrument for studying low vision conditions. The simulator has the potential to enhance ophthalmologists' comprehension of the limitations imposed by visual disabilities, thereby facilitating the development of new rehabilitation protocols.

13.
Microorganisms ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674759

RESUMO

Extended reality (XR) devices, including virtual and augmented reality head-mounted displays (HMDs), are increasingly utilised within healthcare to provide clinical interventions and education. Currently, XR devices are utilised to assist in reducing pain and improving psychological outcomes for immunocompromised patients in intensive care units, palliative care environments and surgical theatres. However, there is a paucity of research on the risks of infection from such devices in healthcare settings. Identify existing literature providing insights into the infection control risk XR HMDs pose within healthcare facilities and the efficacy of current infection control and cleaning procedures. Three databases (PubMed, Embase and CINAHL) in addition to Google Scholar were systematically searched. A total of seven studies were identified for this review. Microorganisms, including pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa), were found to be present on XR HMDs. Published cleaning and infection control protocols designed to disinfect XR HMDs and protect users were heterogeneous in nature. Current cleaning protocols displayed varying levels of efficacy with microbial load affected by multiple factors, including time in use, number of users and XR HMD design features. In healthcare settings, fitting XR HMDs harbouring microorganisms near biological and mucosal entry points presents an infection control risk. An urgent revision of the Spaulding classification is required to ensure flexibility that allows for these devices to be reclassified from 'Non-critical' to 'Semi-Critical' depending on the healthcare setting and patient population (surgery, immunocompromised, burns, etc.). This review identified evidence supporting the presence of microorganisms on XR HMDs. Due to the potential for HMDs to contact mucosal entry points, devices must be re-considered within the Spaulding classification as 'Semi-critical'. The existence of microbial contaminated XR HMDs in high-risk medical settings such as operating wards, intensive care units, emergency departments, labour and delivery wards and clinical areas with immunosuppressed patients requires urgent attention. Public health authorities have a duty of care to develop revised guidelines or new recommendations to ensure efficient sanitation of such devices.

14.
World Neurosurg ; 187: 114-121, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636636

RESUMO

OBJECTIVE: Augmented reality (AR) and virtual reality (VR) technologies have been introduced to neurosurgery with the goal of improving the experience of human visualization. In recent years, the application of remote AR and VR has opened new horizons for neurosurgical collaboration across diverse domains of education and patient treatment. Herein, we aimed to systematically review the literature about the feasibility of this technology and discuss the technical aspects, current limitations, and future perspectives. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 4 databases (PubMed, Embase, Scopus, and Cochrane Library) were queried for articles discussing the use of remote AR and VR technologies in neurosurgery. Data were collected in various fields, including surgery type, application type, subspecialty, software and hardware descriptions, haptic device utilization, visualization technology, internet connection, remote site descriptions, technical outcomes, and limitations. Data were summarized as counts and proportions and analyzed using IBM SPSS software. RESULTS: Our search strategy generated 466 records, out of which 9 studies satisfied the inclusion criteria. The majority of AR and VR applications were used in cranial procedures (77.8%), mainly in education (63.6%), followed by telesurgical assistance (18.2%), patient monitoring (9.1%), and surgical planning (9.1%). Local collaborations were established in 55.6% of the studies, while national and international partnerships were formed in 44.4% of the studies. AR was the main visualization technology, and 3G internet connection was predominantly used (27.5%). All studies subjectively reported the utility of remote AR and VR for real-time interaction. The major technical challenges and limitations included audiovisual latency, the requirement for higher-fidelity and resolution image reconstructions, and the level of proficiency of the patient with the software. CONCLUSIONS: The results from this systematic review suggest that AR and VR technologies are dynamically advancing to offer remote collaboration in neurosurgery. Although still incipient in development and with an imperative need for technical improvement, remote AR and VR hold a frontierless potential for patient monitoring, neurosurgical education, and long-distance surgical assistance.


Assuntos
Realidade Aumentada , Procedimentos Neurocirúrgicos , Realidade Virtual , Humanos , Procedimentos Neurocirúrgicos/métodos , Procedimentos Neurocirúrgicos/tendências , Neurocirurgia/educação
15.
Artigo em Inglês | MEDLINE | ID: mdl-38589511

RESUMO

PURPOSE: The aim of this systematic review is to assess the clinical implications of employing various Extended Reality (XR) tools for image guidance in urological surgery. METHODS: In June 2023, a systematic electronic literature search was conducted using the Medline database (via PubMed), Embase (via Ovid), Scopus, and Web of Science. The search strategy was designed based on the PICO (Patients, Intervention, Comparison, Outcome) criteria. Study protocol was registered on PROSPERO (registry number CRD42023449025). We incorporated retrospective and prospective comparative studies, along with single-arm studies, which provided information on the use of XR, Mixed Reality (MR), Augmented Reality (AR), and Virtual Reality (VR) in urological surgical procedures. Studies that were not written in English, non-original investigations, and those involving experimental research on animals or cadavers were excluded from our analysis. The quality assessment of comparative and cohort studies was conducted utilizing the Newcastle-Ottawa scale, whilst for randomized controlled trials (RCTs), the Jadad scale was adopted. The level of evidence for each study was determined based on the guidelines provided by the Oxford Centre for Evidence-Based Medicine. RESULTS: The initial electronic search yielded 1,803 papers after removing duplicates. Among these, 58 publications underwent a comprehensive review, leading to the inclusion of 40 studies that met the specified criteria for analysis. 11, 20 and 9 studies tested XR on prostate cancer, kidney cancer and miscellaneous, including bladder cancer and lithiasis surgeries, respectively. Focusing on the different technologies 20, 15 and 5 explored the potential of VR, AR and MR. The majority of the included studies (i.e., 22) were prospective non-randomized, whilst 7 and 11 were RCT and retrospective studies respectively. The included studies that revealed how these new tools can be useful both in preoperative and intraoperative setting for a tailored surgical approach. CONCLUSIONS: AR, VR and MR techniques have emerged as highly effective new tools for image-guided surgery, especially for urologic oncology. Nevertheless, the complete clinical advantages of these innovations are still in the process of evaluation.

16.
Acta Neurochir (Wien) ; 166(1): 194, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662229

RESUMO

PURPOSE: This bibliometric analysis of the top 100 cited articles on extended reality (XR) in neurosurgery aimed to reveal trends in this research field. Gender differences in authorship and global distribution of the most-cited articles were also addressed. METHODS: A Web of Science electronic database search was conducted. The top 100 most-cited articles related to the scope of this review were retrieved and analyzed for trends in publications, journal characteristics, authorship, global distribution, study design, and focus areas. After a brief description of the top 100 publications, a comparative analysis between spinal and cranial publications was performed. RESULTS: From 2005, there was a significant increase in spinal neurosurgery publications with a focus on pedicle screw placement. Most articles were original research studies, with an emphasis on augmented reality (AR). In cranial neurosurgery, there was no notable increase in publications. There was an increase in studies assessing both AR and virtual reality (VR) research, with a notable emphasis on VR compared to AR. Education, surgical skills assessment, and surgical planning were more common themes in cranial studies compared to spinal studies. Female authorship was notably low in both groups, with no significant increase over time. The USA and Canada contributed most of the publications in the research field. CONCLUSIONS: Research regarding the use of XR in neurosurgery increased significantly from 2005. Cranial research focused on VR and resident education while spinal research focused on AR and neuronavigation. Female authorship was underrepresented. North America provides most of the high-impact research in this area.


Assuntos
Bibliometria , Humanos , Procedimentos Neurocirúrgicos/métodos , Procedimentos Neurocirúrgicos/tendências , Feminino , Autoria , Masculino , Neurocirurgia , Realidade Aumentada , Crânio/cirurgia , Coluna Vertebral/cirurgia , Realidade Virtual
18.
JMIR Ment Health ; 11: e52326, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437873

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a global concern with increasing prevalence. While many evidence-based psychotherapies (EBPs) have been identified to treat MDD, there are numerous barriers to patients accessing them. Virtual reality (VR) has been used as a treatment enhancement for a variety of mental health disorders, but few studies have examined its clinical use in treating MDD. Behavioral activation (BA) is a simple yet effective and established first-line EBP for MDD that has the potential to be easily enhanced and adapted with VR technology. A previous report by our group explored the feasibility and acceptability of VR-enhanced BA in a small clinical proof-of-concept pilot. This study examines the clinical efficacy of a more immersive extended reality (XR)-enhanced BA (XR-BA) prototype. This is the first clinical efficacy test of an XR-BA protocol. OBJECTIVE: This study examined whether XR-BA was feasible and efficacious in treating MDD in an ambulatory telemedicine clinic. METHODS: A nonblinded between-subject randomized controlled trial compared XR-BA to traditional BA delivered via telehealth. The study used a previously established, brief 3-week, 4-session BA EBP intervention. The experimental XR-BA participants were directed to use a Meta Quest 2 (Reality Labs) VR headset to engage in simulated pleasant or mastery activities and were compared to a control arm, which used only real-life mastery or pleasant activities as between-session homework. The Patient Health Questionnaire (PHQ)-9 was the primary outcome measure. Independent-sample and paired-sample t tests (2-tailed) were used to determine statistical significance and confirmed using structural equation modeling. RESULTS: Overall, 26 participants with MDD were randomized to receive either XR-BA (n=13, 50%) or traditional BA (n=13, 50%). The mean age of the 26 participants (n=6, 23% male; n=19, 73% female; n=1, 4% nonbinary or third gender) was 50.3 (SD 17.3) years. No adverse events were reported in either group, and no substantial differences in dropout rates or homework completion were observed. XR-BA was found to be statistically noninferior to traditional BA (t18.6=-0.28; P=.78). Both the XR-BA (t9=2.5; P=.04) and traditional BA (t10=2.3; P=.04) arms showed a statistically significant decrease in PHQ-9 and clinical severity from the beginning of session 1 to the beginning of session 4. There was a significant decrease in PHQ-8 to PHQ-9 scores between the phone intake and the beginning of session 1 for the XR-BA group (t11=2.6; P=.03) but not the traditional BA group (t11=1.4; P=.20). CONCLUSIONS: This study confirmed previous findings that XR-BA may be a feasible, non-inferior, and acceptable enhancement to traditional BA. Additionally, there was evidence that supports the potential of XR to enhance expectation or placebo effects. Further research is needed to examine the potential of XR to improve access, outcomes, and barriers to MDD care. TRIAL REGISTRATION: ClinicalTrials.gov NCT05525390; https://clinicaltrials.gov/study/NCT05525390.


Assuntos
Transtorno Depressivo Maior , Adulto , Feminino , Humanos , Masculino , Terapia Comportamental , Transtorno Depressivo Maior/terapia , Emoções , Resultado do Tratamento , Pessoa de Meia-Idade , Idoso
19.
Cyberpsychol Behav Soc Netw ; 27(6): 363-371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513055

RESUMO

Virtual reality (VR) is a potent educational tool with untapped potential in medical training. However, its integration into medical schools faces challenges such as cybersickness and hesitancy among medical students and professionals. Notably, there has been no systematic assessment of the acceptance of medical educational VR applications by both students and educators. In our single-center study, we enrolled 133 medical students and 14 medical educators. Following a practical demonstration of the established VR anatomy application, Sharecare YOU VR, participants completed a self-reporting survey based on the Technology Acceptance Model (TAM), exploring user acceptance of information technologies and focusing on perceived usefulness (PU), perceived ease of use (PEU), and attitude toward using (ATU). We also sought insights into potential future applications of VR in medical education. Our findings indicate a high level of acceptance among medical students and educators upon structured exposure to VR with significantly positive responses for all three TAM variables (PU, PEU, and ATU). Intriguingly, hands-on experience influenced acceptance. Students envisioned VR's benefits in anatomy, surgery, emergency medicine, and communication skill training with patients. Both students and educators believed that VR could enhance traditional approaches and complement the existing curriculum, anticipating improved preparedness for medical students through VR training applications. In conclusion, our results demonstrate the receptivity of both students and educators to immersive technologies, including VR, in medical education. Importantly, the data suggest that the adoption of VR in this field would be welcomed rather than resisted, potentially enhancing students' self-efficacy and enriching the medical school curriculum.


Assuntos
Estudantes de Medicina , Realidade Virtual , Humanos , Estudantes de Medicina/psicologia , Masculino , Feminino , Adulto , Adulto Jovem , Docentes de Medicina/psicologia , Educação Médica/métodos
20.
J Med Ext Real ; 1(1): 4-12, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38505474

RESUMO

Medical extended reality (MXR) has emerged as a dynamic field at the intersection of health care and immersive technology, encompassing virtual, augmented, and mixed reality applications across a wide range of medical disciplines. Despite its rapid growth and recognition by regulatory bodies, the field lacks a standardized taxonomy to categorize its diverse research and applications. This American Medical Extended Reality Association guideline, authored by the editorial board of the Journal of Medical Extended Reality, introduces a comprehensive taxonomy for MXR, developed through a multidisciplinary and international collaboration of experts. The guideline seeks to standardize terminology, categorize existing work, and provide a structured framework for future research and development in MXR. An international and multidisciplinary panel of experts was convened, selected based on publication track record, contributions to MXR, and other objective measures. Through an iterative process, the panel identified primary and secondary topics in MXR. These topics were refined over several rounds of review, leading to the final taxonomy. The taxonomy comprises 13 primary topics that jointly expand into 180 secondary topics, demonstrating the field's breadth and depth. At the core of the taxonomy are five overarching domains: (1) technological integration and innovation; (2) design, development, and deployment; (3) clinical and therapeutic applications; (4) education, training, and communication; and (5) ethical, regulatory, and socioeconomic considerations. The developed taxonomy offers a framework for categorizing the diverse research and applications within MXR. It may serve as a foundational tool for researchers, clinicians, funders, academic publishers, and regulators, facilitating clearer communication and categorization in this rapidly evolving field. As MXR continues to grow, this taxonomy will be instrumental in guiding its development and ensuring a cohesive understanding of its multifaceted nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...