Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Immunol ; 12: 711565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335627

RESUMO

Extracellular vesicles (EVs) are released by most cell types as part of an intracellular communication system in crucial processes such as inflammation, cell proliferation, and immune response. However, EVs have also been implicated in the pathogenesis of several diseases, such as cancer and numerous infectious diseases. An important feature of EVs is their ability to deliver a wide range of molecules to nearby targets or over long distances, which allows the mediation of different biological functions. This delivery mechanism can be utilized for the development of therapeutic strategies, such as vaccination. Here, we have highlighted several studies from a historical perspective, with respect to current investigations on EV-based vaccines. For example, vaccines based on exosomes derived from dendritic cells proved to be simpler in terms of management and cost-effectiveness than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells can be leveraged for therapeutics to induce strong anti-tumor immune responses. Moreover, EV-based vaccines have shown exciting and promising results against different types of infectious diseases. We have also summarized the results obtained from completed clinical trials conducted on the usage of exosome-based vaccines in the treatment of cancer, and more recently, coronavirus disease.


Assuntos
COVID-19/imunologia , Vacinas Anticâncer/imunologia , Exossomos/imunologia , Vesículas Extracelulares/imunologia , Neoplasias/imunologia , SARS-CoV-2/fisiologia , Vacinas/imunologia , Animais , Ensaios Clínicos como Assunto , Humanos , Imunidade , Imunização
2.
J Extracell Vesicles ; 8(1): 1578525, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788085

RESUMO

As one of the most abundant constituents of the tumour microenvironment (TME), cancer-associated fibroblasts (CAF) display critical roles during tumour progression and metastasis. Multiple classes of molecules including growth factors, cytokines, proteases and extracellular matrix proteins, are produced by CAF to act as mediators of the stroma-tumour interactions. One of the main channels for this communication is associated with extracellular vesicles (EV), which are secreted particles loaded with protein and genetic information. In this study, we evaluated the effects of EV derived from CAF primary human cell lines (n = 5) on proliferation, survival, migration, and invasion of oral squamous cell carcinoma (OSCC) cells. As controls, EV from human primary-established normal oral fibroblasts (NOF, n = 5) were used. Our in vitro assays showed that CAF-EV significantly induces migration and invasion of OSCC cells and promote a disseminated pattern of HSC-3 cell invasion in the 3D organotypic assay. Furthermore, gene expression analysis of EV-treated cancer cells revealed changes in the pathways associated with tumour metabolism and up-regulation of tumour invasion genes. Our findings suggest a significant role of CAF-EV in promoting the migration and invasion of OSCC cells, which are related to the activation of cancer-related pathways.

3.
Stem Cell Investig ; 4: 75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057247

RESUMO

The tumor microenvironment comprises a heterogeneous population of tumorigenic and non-tumorigenic cells. Cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) are components of this microenvironment and have been described as key regulators of different aspects of tumor physiology. They act differently on the tumor: CSCs are described as tumor initiators and are associated with tumor growth, drug resistance and metastasis; MSCs can integrate the tumor microenvironment after recruitment and interact with cancer cells to promote tumor modifications. Extracellular vesicles (EVs) have emerged as an important mechanism of cell communication under the physiological and pathological conditions. In cancer, secretion of EVs seems to be one of the main mechanisms by which stem cells interact with other tumor and non-tumor cells. The transfer of bioactive molecules (lipids, proteins and RNAs) compartmentalized into EVs triggers different responses in the target cells, regulating several processes in the tumor as angiogenesis, tumor invasiveness and immune escape. This review focuses on the role of CSCs and MSCs in modulating the tumor microenvironment through secretion of EVs, addressing different aspects of the multidirectional interactions among stem cells, tumor and tumor-associated cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA