RESUMO
Hydrogels based on natural polymers have aroused interest from the scientific community. The aim of this investigation was to obtain natural extracts from mango peels and to evaluate their addition (1, 3, and 5%) on the rheological behavior of mango starch hydrogels. The total phenolic content, antioxidant activities, and phenolic acid profile of the natural extracts were evaluated. The viscoelastic and thixotropic behavior of hydrogels with the addition of natural extracts was evaluated. The total phenol content and antioxidant activity of the extracts increased significantly (p<0.05) with the variation of the ethanol-water ratio; the phenolic acid profile showed the contain of p-coumaric, ellagic, ferulic, chlorogenic acids, epicatechein, catechin, querecetin, and mangiferin. The viscoelastic behavior of the hydrogels showed that the storage modulus G' is larger than the loss modulus G'' indicating a viscoelastic solid behavior. The addition of extract improved the thermal stability of the hydrogels. 1% of the extracts increase viscoelastic and thixotropic properties, while concentrations of 3 to 5% decreased. The recovery percentage (%Re) decreases at concentrations from 0% to 1% of natural extracts, however, at concentrations from 3% to 5% increased.
Assuntos
Antioxidantes , Hidrogéis , Mangifera , Extratos Vegetais , Reologia , Amido , Mangifera/química , Hidrogéis/química , Extratos Vegetais/química , Amido/química , Antioxidantes/química , Viscosidade , Frutas/química , Fenóis/químicaRESUMO
This study investigates the effectiveness of coagulation-flocculation and sedimentation (CFS) for separating microalgae, focusing on the use of various Moringa oleifera extracts as natural coagulants. We examined photobioreactor effluent (PBR) both with and without microplastic PVC (MP-PVC) contamination, referred to as PBR R2 and PBR R1, respectively. Utilising response surface methodology, we identified optimal conditions for the removal of microalgae and MP-PVC. Validation tests demonstrated that the aqueous extract of delipidated Moringa oleifera powder (AEDMOP) achieved high removal efficiencies, with coagulant dosages of 630 mg L-1 for PBR R1 and 625 mg L-1 for PBR R2. Both conditions showed microalgae removal efficiencies exceeding 83% for turbidity, colour, OD540 nm, OD680 nm, and OD750 nm, and 63% for OD254 nm. Interestingly, the optimised conditions for PBR R2 required slightly less coagulant, likely due to the additional particulate matter from MP-PVC. While extracellular polymeric substances (EPS) exhibited a marginal effect on flocculation, further investigation into their role in CFS is necessary. Our findings highlight the potential of AEDMOP for efficient microalgae separation, even in the presence of microplastics.
RESUMO
Introduction: Microsporum canis is a dermatophyte that mainly affects dogs and cats. However, it can be transmitted to humans by direct contact. This makes it one of the most frequent causative agents of dermatophytosis in humans, reflecting the frequent human close relationships with pets. Conventional treatment relies on antifungal pharmacological agents. However, errors in application have led to the occurrence of fungal resistance and toxic effects. Consequently, new therapeutic alternatives are needed for M. canis infections. Plant extracts have been explored as phytotherapeutics for the treatment of dermatophyte infections, which prompted an attempt to apply extracts of the ethnopharmacologically important plants Artemisia ludoviciana and Cordia boissieri. Material and Methods: Methanolic extracts of these two plants were obtained using a Soxhlet method and were characterised by phytochemical screening. Extracts were evaluated against a M. canis commercial strain (ATCC-11621) using the microdilution method described in the Clinical and Laboratory Standards Institute protocol M38-A, determining its minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). Subsequently, these concentrations were tested in a human keratinocyte human cell line. Results: Artemisia ludoviciana and C. boissieri extracts showed MIC values of 2,500 and 1,250 µg/mL, and MFC values of 5,000 and 2,500 µg/mL against M. canis, respectively. These extracts did not inhibit HaCaT cell proliferation in vitro. Conclusion: The evaluated extracts showed potential for the treatment of M. canis fungal infections. However, further studies on their phytochemical characterisation, purification, clinical safety and formulation are required.
RESUMO
Background/Objectives: The antinociceptive and anti-inflammatory effects of a patent-pending ointment containing plant extracts from Eucalyptus globulus, Curcuma longa, Hamamelis virginiana, Echinacea purpurea, and Zingiber officinale were evaluated. Methods: Plant extracts were chemically characterized by gas chromatography-mass spectroscopy. The antinociceptive activity of the ointment was assessed using the hot plate, tail flick, and formalin tests, whereas the anti-inflammatory activity was measured using the acute and chronic TPA-induced ear edema tests. Mechanisms of action were evaluated using inhibitors from signaling pathways related to pain response and by using histological analysis and assessing the expression and activity of pro-inflammatory mediators. Results: The ointment showed antinociceptive and anti-inflammatory effects like those observed with diclofenac gel (1.16% v/v) and ketoprofen gel (2.5% v/v). The antinociceptive actions of the ointment are mediated by the possible participation of the opiodergic system and the nitric oxide pathway. The anti-inflammatory response was characterized by a decrease in myeloperoxidase (MPO) activity and by a reduction in ear swelling and monocyte infiltration in the acute inflammation model. In the chronic model, the mechanism of action relied on a decrease in pro-inflammatory mediators such as COX-2, IL-1ß, TNF-α, and MPO. An in-silico study with myristic acid, one of the compounds identified in the ointment's plant mixture, corroborated the in vivo results. Conclusions: The ointment showed antinociceptive activities mediated by the decrease in COX-2 and NO levels, and anti-inflammatory activity due to the reduction in IL-1ß and TNFα levels, a reduction in MPO activity, and a decrease in NF-κB and COX-2 expression.
RESUMO
Lemna aequinoctialis (duckweed) is the smallest and fast-growing aquatic plant species producing protein-rich biomass with high protein nutritional value, phytoremediation capacity, and nutrient removal from wastewater. Duckweed may also be used as a new potential bioreactor for biological products, such as vaccines, antibodies, and pharmaceutical proteins. Based upon the potential importanc of L. aequinoctialis in phytoremediation and as a bioreactor the aim of this study was to (1) characterize the chemical and nutritional profiles of L. aequinoctialis biomass utilizing an integrated multi-trophic aquaculture system (IMTA) and a pond, and (2) investigate the cytotoxic potential of different concentrations of organic extracts and fractions using the MTT bioassay. EDXRF and ICP-MS analyses indicated the presence of trace elements in lower amounts in relation to the biomass of L. aequinoctialis in the lagoon, emphasizing the importance of plant inclusion management to reduce bioaccumulation of these elements. Analysis of mineral profiles, fatty acids, and amino acids indicated a satisfactory nutritional composition for the use of biomass as a bioproduct. Pigment analysis showed a high concentration of carotenoids, especially astaxanthin. After standardizing the controls, the MTT cell viability test was carried out utilizing rat hepatoma cell line (HTC), which are metabolizing cells that were treated with aqueous or ethanolic extracts and the dichloromethane, ethyl acetate, and methanol fractions at different concentrations. No apparent cytotoxic potential was observed following treatments, since there was no significant reduction in cell viability. Therefore, this study provides information regarding the biomass of L. aequinoctialis derived from the IMTA system, which might support further research into the application of this species as a bioproduct.
Assuntos
Araceae , Biomassa , Extratos Vegetais , Araceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Biodegradação Ambiental , Aquicultura , Valor NutritivoRESUMO
Rhipicephalus microplus is among the most important ectoparasites for livestock. The use of synthetic acaricides has raised some concerns due to the selection of tick populations that are resistant to acaricides and environmental contamination. Therefore, plant extracts have been used as alternatives for the treatment of animals infested with ticks. In this study, R. microplus populations from seven different dairy farms were collected and assessed for their resistance to the acaricides cypermethrin or trichlorfon. Larvae of the most resistant population were used in assays to evaluate the acaricide effect of leaf extracts from plants of the Brazilian savanna. The most active extracts were also tested against fully engorged females. Among seven tick populations, five and three showed resistance level ≥ III for cypermethrin or trichlorfon, respectively. The most resistant tick population was evaluated in mortality assays with the plants Piptadenia viridiflora, Annona crassiflora, Caryocar brasiliense, Ximenia americana, and Schinopsis brasilienses. The ethanolic extracts of C. brasiliense, X. americana and S. brasilienses showed higher larvicidal effects in comparison to the other extracts and cypermethrin. The ethanolic extract of X. americana showed 60.79â¯% efficacy against fully engorged females of the acaricide resistant tick strain. The ethanolic extracts of C. brasiliense, X. americana, and S. brasilienses showed peaks in HPLC-DAD, indicating the presence of tannins and flavonoids. Three of the plants showed promising results and should be explored in further studies to develop novel tools to control R. microplus in cattle.
Assuntos
Acaricidas , Extratos Vegetais , Piretrinas , Rhipicephalus , Triclorfon , Animais , Rhipicephalus/efeitos dos fármacos , Piretrinas/farmacologia , Acaricidas/farmacologia , Brasil , Feminino , Extratos Vegetais/farmacologia , Triclorfon/farmacologia , Larva/efeitos dos fármacos , Pradaria , Bovinos , Resistência a Medicamentos , Folhas de Planta/química , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/tratamento farmacológicoRESUMO
Tumor metabolism is a crucial aspect of cancer development, and mitochondria plays a significant role in the aggressiveness and metastasis of tumors. As a result, mitochondria have become a promising therapeutic target in cancer treatment, leading to the development of compounds known as mitocans. In our group, we have consolidated the search of anticancer therapies based on natural products derived from plants, obtaining extracts such as P2Et from Caesalpinia spinosa and Anamu-SC from Petiveria alliacea, which have been shown to have antitumor activities in different cancer models. These extracts, due to their complex molecular composition, can interfere with multiple functions during tumor progression. To better understand how these natural products operate (P2Et and Anamu-SC), we constructed a model using 4T1 murine breast cancer cells with reduced expression of genes associated with glycolysis (Hexokinase-2) and mitochondrial function (Cqbp). The results indicate that the cells were more sensitive to the Anamu-SC extract, showing significant decreases in glucose consumption, ATP production, and oxygen consumption rate. Additionally, we observed changes in mitochondrial function, which reduced the cells' ability to migrate, particularly when C1qbp was silenced. This triple-negative breast cancer model allows us to identify potential natural products that can modulate tumor cell metabolism.
Assuntos
Movimento Celular , Mitocôndrias , Extratos Vegetais , Neoplasias de Mama Triplo Negativas , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Movimento Celular/efeitos dos fármacos , Camundongos , Feminino , Linhagem Celular Tumoral , Humanos , Glicólise/efeitos dos fármacos , Fabaceae/químicaRESUMO
Toxicological studies are important to investigate the genotoxic effects of various substances. Allium cepa can be used as test model for this purpose. This review summarizes the scope and applications for this A. cepa test model. For this, an up-to-date (April 2023) literature search was made in the Science Direct, PubMed, and Web of Science databases to find published evidence on studies performed using A. cepa as a test model. Out of 3,748 studies, 74 fit the inclusion criteria. The results showed that the use of the test model A. cepa contributed considerably to measuring the toxicological potential of plant extracts, proving the efficacy of the test as a potent bioindicator of toxic effects. In addition, 27 studies used more than one test system to verify the toxicological potential of extracts and fractions. Studies have shown that the A. cepa model has the potential to replace other test systems that make use of animals and cell cultures, besides having other advantages such as low cost, ease of execution, and good conditions for the observation of chromosomes. In conclusion, the A. cepa test can be considered one of the potential biomonitoring systems in toxicological studies of crude extracts.
RESUMO
BACKGROUND: This study aimed to engineer and optimise a dysbiotic biofilm model to develop in vitro root caries for investigating microbial modulation strategies. The model involved growing complex biofilms from a saliva inoculum collected from four volunteers using two strategies. In the first strategy ("pre-treatment strategy"), bovine root slabs were used, and two natural compounds were incorporated at time 0 of the 10-day biofilm experiment, which included sucrose cycles mimicking the cariogenic environment. In the second strategy ("post-treatment strategy"), mature biofilms were grown in a modified Calgary biofilm device coated with collagen and hydroxyapatite for 7 days and then were exposed to the same natural compounds. The metatranscriptome of each biofilm was then determined and analysed. Collagenase activity was examined, and the biofilms and dentine were imaged using confocal and scanning electron microscopy (SEM). Mineral loss and lesion formation were confirmed through micro-computed tomography (µ-CT). RESULTS: The pH confirmed the cariogenic condition. In the metatranscriptome, we achieved a biofilm compositional complexity, showing a great diversity of the metabolically active microbiome in both pre- and post-treatment strategies, including reads mapped to microorganisms other than bacteria, such as archaea and viruses. Carbohydrate esterases had increased expression in the post-treated biofilms and in samples without sugar cycles, while glucosyltransferases were highly expressed in the presence of sucrose cycles. Enrichment for functions related to nitrogen compound metabolism and organic cyclic component metabolism in groups without sucrose compared to the sucrose-treated group. Pre-treatment of the roots with cranberry reduced microbial viability and gelatinase (but not collagenase) activity (p < 0.05). SEM images showed the complexity of biofilms was maintained, with a thick extracellular polysaccharides layer. CONCLUSIONS: This root caries model was optimized to produce complex cariogenic biofilms and root caries-like lesions, and could be used to test microbial modulation in vitro. Pre-treatments before biofilm development and cariogenic challenges were more effective than post-treatments. The clinical significance lies in the potential to apply the findings to develop varnish products for post-professional tooth prophylaxis, aiming at implementing a strategy for dysbiosis reversal in translational research. Video Abstract.
Assuntos
Biofilmes , Microbiota , Cárie Radicular , Saliva , Humanos , Cárie Radicular/microbiologia , Saliva/microbiologia , Bovinos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Dentina/microbiologia , Colagenases/metabolismoRESUMO
Staphylococcus aureus and Acinetobacter baumannii are opportunistic pathogens, and both are involved in different oral infections. This work aimed to analyze the phytochemical composition of Myrciaria cauliflora hydroethanolic extract and to evaluate its antimicrobial and antibiofilm action against Staphylococcus aureus (ATCC 6538) and Acinetobacter baumannii (ATCC 19606; multi-resistant clinical strains 58004, 50098, 566006, and H557). Myrciaria cauliflora hydroethanolic extract was prepared, and the content of soluble solids, flavonoids, and phenols was quantified. High-performance liquid chromatography (HPLC) was performed later. The minimum inhibitory concentration was determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute, standard M7-A6, and subsequently, its minimum bactericidal concentration was determined. Then, the most effective concentrations were analyzed against biofilms. Statistical analysis was performed using the ANOVA method with Tukey's test. The soluble solids content in the prepared hydroethanolic extract of M. cauliflora was 2.22%. Additionally, the total flavonoid content, measured using the quercetin standard curve, was 0.040 mg/mL. Furthermore, the total phenol content, determined using the gallic acid standard curve, was 0.729 mg/mL. HPLC analysis presented peaks of gallic acid (11.80 m), p-coumaric acid (12.09 m), cinnamic acid derivative (19.02 m), and ellagic acid (29.83 m). The extract demonstrated antimicrobial and antibiofilm action against all tested strains. However, the most effective antibacterial concentration against all the tested bacteria was 5.55 mg/mL. Therefore, these chemical components justify that M. cauliflora hydroethanolic extract is effective in reducing biofilm formation in S. aureus (standard strain) and A. baumannii (standard and clinical strains).
RESUMO
The aim of this work was to assess the effect of in vitro human digestion on the chemical composition (carbohydrates and phenolic compounds) and bioactivity of hydro-alcoholic-acid pomace extracts from two mandarin varieties (Clemenule and Ortanique) by measuring their antioxidant, antidiabetic, anti-glycative, hypolipidemic, and anti-inflammatory properties. The phenolic compound profile showed that nobiletin was the main flavonoid found in the extracts and digests of Clemenule pomace and extract, while isosinensetin/sinensetin/tangeretin were the ones in the Ortanique samples. The digests of Clemenule and Ortanique extracts showed Folin reaction values of 9.74 and 9.20 mg gallic acid equivalents (GAE)/g of sample, ABTS values of 83.2 and 91.7 µmol Trolox equivalents (TE)/g of sample, and ORAC-FL values of 142.8 and 891.6 µmol TE/g of sample, respectively. Extracts (50-500 µg/mL) inhibited intracellular reactive oxygen species (ROS) formation in CCD-18Co cells under physiological and oxidative-induced conditions. Clemenule and Ortanique extract digests showed IC50 values of 13.50 and 11.07 mg/mL for α-glucosidase, 28.79 and 69.64 mg/mL for α-amylase, and 16.50 and 12.77 mg/mL for AGEs, and 2.259 ± 0.267 and 0.713 ± 0.065 mg/mL for pancreatic lipase inhibition, respectively. Ortanique extract (250-1000 µg/mL) inhibited the production of nitric oxide in RAW264.7 macrophages under inflammation-induced conditions, and intracellular ROS formation. In conclusion, altogether, the results supported the potential of mandarin extracts to be used as health promoters by reducing the risk of non-communicable chronic diseases.
Assuntos
Anti-Inflamatórios , Antioxidantes , Citrus , Fenóis , Extratos Vegetais , Extratos Vegetais/farmacologia , Fenóis/farmacologia , Fenóis/análise , Antioxidantes/farmacologia , Humanos , Anti-Inflamatórios/farmacologia , Citrus/química , Espécies Reativas de Oxigênio/metabolismo , Hipoglicemiantes/farmacologia , Camundongos , Animais , Hipolipemiantes/farmacologia , Frutas/química , Flavonoides/farmacologia , Flavonoides/análiseRESUMO
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. In addition to hypertension, there are other cardiometabolic risk factors (CRFs) such as visceral adiposity, dyslipidemia, insulin resistance, diabetes, elevated levels of fibrinogen and C-reactive protein, and others, all of which increase the risk of CVD events. The mechanisms involved between obesity and CVD mainly include insulin resistance, oxidative stress, inflammation, and adipokine dysregulation, which cause maladaptive structural and functional alterations of the heart, particularly left-ventricular remodeling and diastolic dysfunction. Natural products of plants provide a diversity of nutrients and different bioactive compounds, including phenolics, flavonoids, terpenoids, carotenoids, anthocyanins, vitamins, minerals, fibers, and others, which possess a wide range of biological activities including antihypertensive, antilipidemic, antidiabetic, and other activities, thus conferring cardiometabolic benefits. In this review, we discuss the main therapeutic interventions using extracts from herbs and plants in preclinical and clinical trials with protective properties targeting CRFs. Molecular mechanisms and therapeutic targets of herb and plant extracts for the prevention and treatment of CRFs are also reviewed.
RESUMO
This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping. It reviews commonly used endodontic irrigant, namely sodium hypochlorite (NaOCl), herbal extracts, chlorhexidine (CHX), and chelating agents, highlighting their properties, applications, and potential drawbacks. NaOCl, a key antimicrobial agent, demonstrates effectiveness against various microorganisms but poses challenges such as high cytotoxicity. Herbal extracts, gaining recognition in endodontics, present an alternative with potential advantages in preserving dentin integrity. CHX, known for its broad-spectrum antimicrobial activity, is discussed in both liquid and gel formulations, emphasizing its role in reducing smear layer formation and preserving hybrid layer durability. Chelating agents, specifically ethylenediaminetetraacetic acid and citric acid, play a vital role in removing the smear layer, enhancing dentin permeability, and facilitating the penetration of antimicrobial agents. The review article underscores the importance of careful application and consideration of each irrigant's properties to ensure safe and effective endodontic procedures. It serves as a valuable guide for clinicians in selecting appropriate irrigants based on specific treatment requirements.
RESUMO
The rise of antibiotic-resistant bacterial strains represents an important challenge for global health, underscoring the critical need for innovative strategies to confront this threat. Natural products and their derivatives have emerged as a promising reservoir for drug discovery. The social amoeba Dictyostelium discoideum is a potent model organism in this effort. Employing this invertebrate model, we introduce a novel perspective to investigate natural plant extracts in search of molecules with potential antivirulence activity. Our work established an easy-scalable developmental assay targeting a virulent strain of Klebsiella pneumoniae, with Helenium aromaticum as the representative plant. The main objective was to identify tentative compounds from the Helenium aromaticum extract that attenuate the virulence of K. pneumoniae virulence without inducing cytotoxic effects on amoeba cells. Notably, the methanolic root extract of H. aromaticum fulfilled these prerequisites compared to the dichloromethane extract. Using UHPLC Q/Orbitrap/ESI/MS/MS, 63 compounds were tentatively identified in both extracts, 47 in the methanolic and 29 in the dichloromethane, with 13 compounds in common. This research underscores the potential of employing D. discoideum-assisted pharmacognosy to discover new antivirulence agents against multidrug-resistant pathogens.
RESUMO
Malaria poses a global threat to human health, with millions of cases and thousands of deaths each year, mainly affecting developing countries in tropical and subtropical regions. Malaria's causative agent is Plasmodium species, generally transmitted in the hematophagous act of female Anopheles sp. mosquitoes. The main approaches to fighting malaria are eliminating the parasite through drug treatments and preventing transmission with vector control. However, vector and parasite resistance to current strategies set a challenge. In response to the loss of drug efficacy and the environmental impact of pesticides, the focus shifted to the search for biocompatible products that could be antimalarial. Plant derivatives have a millennial application in traditional medicine, including the treatment of malaria, and show toxic effects towards the parasite and the mosquito, aside from being accessible and affordable. Its disadvantage lies in the type of administration because green chemical compounds rapidly degrade. The nanoformulation of these compounds can improve bioavailability, solubility, and efficacy. Thus, the nanotechnology-based development of plant products represents a relevant tool in the fight against malaria. We aim to review the effects of nanoparticles synthesized with plant extracts on Anopheles and Plasmodium while outlining the nanotechnology green synthesis and current malaria prevention strategies.
RESUMO
Cushuro (Nostoc sphaericum) polysaccharide was used to co-microencapsulate sacha inchi oil, natural antioxidant extracts from the oleoresin of charapita chili peppers (Capsicum frutescens L.) and grape orujo (Vitis vinifera L.). Encapsulation efficiency, moisture, particle size, morphology, oxidative stability, shelf-life, solubility, essential fatty acid profile, sterol content and antioxidant capacity were evaluated. The formulations with grape orujo extract showed higher oxidative stability (4908 ± 184 h), antioxidant capacity (4835.33 ± 40.02 µg Trolox/g ms), higher phenolic contents (960.11 ± 53.59 µg AGE/g ms) and a smaller particle size (7.55 µm) than the other formulations, as well as good solubility and a low moisture content. Therefore, grape orujo extracts can be used as natural antioxidants. The fatty acid composition (ω-3) remained quite stable in all the formulations carried out, which also occurred for sterols and tocopherols. In combination with gum arabic, grape orujo extract offered oxidative protection to sacha inchi oil during the first week of storage.
RESUMO
Avocado tree wilt is a disease caused by Phytophthora cinnamomi Rands. Recently, this disease has been associated to Pythium amazonianum, another causal agent. Avocado tree wilt is being currently controlled with synthetic fungicides that kill beneficial microorganisms, polluting the environment and leading to resistance problems in plant pathogens. The current research work aims to provide alternative management using extracts from Proboscidea parviflora W. and Phaseolus lunatus L. to control the development of mycelia in P. amazonianum in vitro. Raw extracts were prepared at UAAAN Toxicology Laboratory, determining the inhibition percentages, inhibition concentrations and inhibition lethal times. Several concentrations of the plant extracts were evaluated using the poisoned medium methodology, showing that both extracts control and inhibit mycelial development, in particular P. lutatus, which inhibits mycelial growth at concentrations lower than 80 mg/L, being lower than P. parviflora extracts. These extracts are promising candidates for excellent control of Pythium amazonianum.
RESUMO
The present study aimed to evaluate the antimicrobial and modulating activity of the ethanol extract obtained from the leaves, stems, and roots of Cnidoscolus urens in multiresistant bacteria. The Minimum Inhibitory Concentration (MIC) values obtained for the extracts of leaves, stems, and roots were greater than 1024 µg/mL for all isolates. In the antimicrobial resistance modulation test, the extract of the leaves of C. urens showed a better modulating effect than that of the stems and roots for gentamicin, highlighting the reduction of MIC for Escherichia coli, Lactococcus garvieae and Staphylococcus sciuri. For erythromycin, a reduction of MIC was observed in L. garvieae, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae. The extract from the leaves of C. urens has an important modulating effect on resistance in multiresistant bacteria, especially with gentamicin and erythromycin.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Mastite Bovina , Testes de Sensibilidade Microbiana , Extratos Vegetais , Animais , Antibacterianos/farmacologia , Mastite Bovina/microbiologia , Bovinos , Extratos Vegetais/farmacologia , Feminino , Alismatales/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Eritromicina/farmacologia , Folhas de Planta/microbiologia , Folhas de Planta/químicaRESUMO
Argemone mexicana L. has been used in traditional Mexican medicine. Among its bioactive constituents, berberine (BER) has garnered attention for its cytotoxic properties against different tumor cell lines. This study investigates the in vitro toxicity against HEP-G2 (human hepatocellular carcinoma) and murine lymphoma (L5178Y-R) cells using the MTT assay of the methanol extract (AmexM), sub-partitions of A. mexicana, and BER. Selectivity indices (SIs) were determined by comparing their cytotoxic effects on VERO (monkey kidney epithelial) and PBMC (human peripheral blood mononuclear) non-tumoral cells. Additionally, the anti-hemolytic effect of these treatments was assessed using the AAPH method. The treatment with the most promising activity against tumor cells and anti-hemolytic efficacy underwent further evaluation for toxicity in Artemia salina and antioxidant activities using DPPH, ABTS, and FRAP assays. BER demonstrated an IC50 = 56.86 µg/mL in HEP-G2 cells and IC50 < 5.0 µg/mL in L5178Y-R cells, with SI values of 15.97 and >5.40 in VERO and PBMC cells, respectively. No significant hemolytic effects were observed, although AmexM and BER exhibited the highest anti-hemolytic activity. BER also demonstrated superior antioxidant efficacy, with lower toxicity in A. salina nauplii compared to the control. Additionally, BER significantly attenuated nitric oxide production. This study highlights the antiproliferative effects of A. mexicana, particularly BER, against HEP-G2 and L5178Y-R tumor cell lines, along with its selectivity towards normal cells. Furthermore, its anti-hemolytic and antioxidant potentials were demonstrated, suggesting that BER is a promising candidate for potent chemotherapeutic agents.
RESUMO
Pseudomonas aeruginosa is an opportunistic pathogen that is especially dominant in people with cystic fibrosis; the drug resistance expressed by this pathogen and its capacity for adaptation poses a significant challenge to its treatment and control, thereby increasing morbidity and mortality rates globally. In this sense, the search for new treatment alternatives is imminent today, with products of plant origin being an excellent alternative for use. The objective of this research was to evaluate the antibacterial and antibiofilm potential and to explore the possible effect of ethanolic extracts from the wood and bark of Duguetia vallicola on the cell membrane. Microdilution assays showed the inhibition of bacterial growth by more than 50%, with the lowest concentration (62.5 µg/mL) of both extracts evaluated. Furthermore, we report the ability of both extracts to inhibit mature biofilms, with inhibition percentages between 48.4% and 93.7%. Intracellular material leakage experiments (260/280 nm), extracellular pH measurements, and fluorescence microscopy with acridine orange (AO) and ethidium bromide (EB) showed cell membrane damage. This indicates that the antibacterial action of ethanolic extracts of D. vallicola is associated with damage to the integrity of the cell membrane and consequent death of these pathogens. These results serve as a reference for future studies in establishing the mechanisms of action of these extracts.