Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Magn Reson ; 26(1): 101001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38244931

RESUMO

BACKGROUND: Acute myocardial injury is a common diagnosis in the emergency department and differential diagnoses are numerous. Cardiac magnetic resonance (CMR) strain sequences, such as fast strain ENCoded (fSENC), are early predictors of myocardial function loss. This study assessed the potential diagnostic and prognostic benefits of a layer-specific approach. METHODS: For this prospective study, patients in the emergency department fulfilling rule-in criteria for non-ST-elevation myocardial infarction (NSTEMI) received an ultra-fast fSENC CMR. Volunteers without cardiac diseases (controls) were recruited for comparison. Measurements were performed in a single heartbeat acquisition to measure global longitudinal strain (GLS) and segmental longitudinal strain and dysfunctional segments. The GLS was measured in two layers and a difference (GLSdifference = GLSepicardial - GLSendocardial) was calculated. The performance of those strain features was compared to standard care (physical examination, cardiac biomarkers, electrocardiogram). According to the final diagnosis after discharge, patients were divided into groups and followed up for 2 years. RESULTS: A total of 114 participants, including 50 controls, were included. The 64 patients (51 male) were divided into a NSTEMI (25), myocarditis (16), and other myocardial injury group (23). GLS served as a potent predictor of myocardial injury (area under the curve (AUC) 91.8%). The GLSdifference provided an excellent diagnostic performance to identify a NSTEMI (AUC 83.2%), further improved by including dysfunctional segments (AUC 87.5%, p = 0.01). An optimal test was achieved by adding fSENC to standard care (AUC 95.5%, sensitivity 96.0%, specificity 86.5%, p = 0.03). No death occurred in 2 years for patients with normal GLS and ≤5 dysfunctional segments, while three patients died that showed abnormal GLS or >5 dysfunctional segments. CONCLUSIONS: Layer-specific strain is a potential new marker with high diagnostic performance in the identification and differentiation of acute myocardial injuries.


Assuntos
Imagem Cinética por Ressonância Magnética , Infarto do Miocárdio sem Supradesnível do Segmento ST , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Humanos , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos de Casos e Controles , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio sem Supradesnível do Segmento ST/fisiopatologia , Função Ventricular Esquerda , Adulto , Diagnóstico Diferencial , Reprodutibilidade dos Testes , Contração Miocárdica , Prognóstico , Fatores de Tempo , Interpretação de Imagem Assistida por Computador , Frequência Cardíaca , Fenômenos Biomecânicos
2.
Front Cardiovasc Med ; 8: 755759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912862

RESUMO

Background: Cardiac magnetic resonance (CMR) pharmacological stress-testing is a well-established technique for detecting myocardial ischemia. Although stressors and contrast agents seem relatively safe, contraindications and side effects must be considered. Substantial costs are further limiting its applicability. Dynamic handgrip exercise (DHE) may have the potential to address these shortcomings as a physiological stressor. We therefore evaluated the feasibility and physiologic stress response of DHE in relation to pharmacological dobutamine-stimulation within the context of CMR examinations. Methods: Two groups were prospectively enrolled: (I) volunteers without relevant disease and (II) patients with known CAD referred for stress-testing. A both-handed, metronome-guided DHE was performed over 2 min continuously with 80 contractions/minute by all participants, whereas dobutamine stress-testing was only performed in group (II). Short axis strain by fast-Strain-ENCoded imaging was acquired at rest, immediately after DHE and during dobutamine infusion. Results: Eighty middle-aged individuals (age 56 ± 17 years, 48 men) were enrolled. DHE triggered significant positive chronotropic (HRrest: 68 ± 10 bpm, HRDHE: 91 ± 13 bpm, p < 0.001) and inotropic stress response (GLSrest: -19.4 ± 1.9%, GLSDHE: -20.6 ± 2.1%, p < 0.001). Exercise-induced increase of longitudinal strain was present in healthy volunteers and patients with CAD to the same extent, but in general more pronounced in the midventricular and apical layers (p < 0.01). DHE was aborted by a minor portion (7%) due to peripheral fatigue. The inotropic effect of DHE appears to be non-inferior to intermediate dobutamine-stimulation (GLSDHE= -19.5 ± 2.3%, GLSDob= -19.1 ± 3.1%, p = n.s.), whereas its chronotropic effect was superior (HRDHE= 89 ± 14 bpm, HRDob= 78 ± 15 bpm, p < 0.001). Conclusions: DHE causes positive ino- and chronotropic effects superior to intermediate dobutamine-stimulation, suggesting a relevant increase of myocardial oxygen demand. DHE appears to be safe and timesaving with broad applicability. The data encourages further studies to determine its potential to detect obstructive CAD.

3.
Front Cardiovasc Med ; 8: 764496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796219

RESUMO

Aims: Cardiac strain parameters are increasingly measured to overcome shortcomings of ejection fraction. For broad clinical use, this study provides reference values for the two strain assessment methods feature tracking (FT) and fast strain-encoded (fSENC) cardiovascular magnetic resonance (CMR) imaging, including the child/adolescent group and systematically evaluates the influence of temporal resolution and muscle mass on strain. Methods and Results: Global longitudinal (GLS), circumferential (GCS), and radial (GRS) strain values in 181 participants (54% women, 11-70 years) without cardiac illness were assessed with FT (CVI42® software). GLS and GCS were also analyzed using fSENC (MyoStrain® software) in a subgroup of 84 participants (60% women). Fourteen patients suffering hypertrophic cardiomyopathy (HCM) were examined with both techniques. CMR examinations were done on a 3.0T MR-system. FT-GLS, FT-GCS, and FT-GRS were -16.9 ± 1.8%, -19.2 ± 2.1% and 34.2 ± 6.1%. fSENC-GLS was higher at -20.3 ± 1.8% (p < 0.001). fSENC-GCS was comparable at-19.7 ± 1.8% (p = 0.06). All values were lower in men (p < 0.001). Cardiac muscle mass correlated (p < 0.001) with FT-GLS (r = 0.433), FT-GCS (r = 0.483) as well as FT-GRS (r = -0.464) and acts as partial mediator for sex differences. FT-GCS, FT-GRS and fSENC-GLS correlated weakly with age. FT strain values were significantly lower at lower cine temporal resolutions, represented by heart rates (r = -0.301, -0.379, 0.385) and 28 or 45 cardiac phases per cardiac cycle (0.3-1.9% differences). All values were lower in HCM patients than in matched controls (p < 0.01). Cut-off values were -15.0% (FT-GLS), -19.3% (FT-GCS), 32.7% (FT-GRS), -17.2% (fSENC-GLS), and -17.7% (fSENC-GCS). Conclusion: The analysis of reference values highlights the influence of gender, temporal resolution, cardiac muscle mass and age on myocardial strain values.

4.
Magn Reson Med ; 85(1): 357-368, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32851707

RESUMO

PURPOSE: Myocardial feature-tracking (FT) deformation imaging is superior for risk stratification compared with volumetric approaches. Because there is no clear recommendation regarding FT postprocessing, we compared different FT-strain analyses with reference standard techniques, including tagging and strain-encoded (SENC) MRI. METHODS: Feature-tracking software from four different vendors (TomTec, Medis, Circle [CVI], and Neosoft), tagging (Segment), and fastSENC (MyoStrain) were used to determine left ventricular global circumferential strains (GCS) and longitudinal strains (GLS) in 12 healthy volunteers and 12 patients with heart failure. Variability and agreements were assessed using intraclass correlation coefficients for absolute agreement (ICCa) and consistency (ICCc) as well as Pearson correlation coefficients. RESULTS: For FT-GCS, consistency was excellent comparing different FT vendors (ICCc = 0.84-0.97, r = 0.86-0.95) and in comparison to fast SENC (ICCc = 0.78-0.89, r = 0.73-0.81). FT-GCS consistency was excellent compared with tagging (ICCc = 0.79-0.85, r = 0.74-0.77) except for TomTec (ICCc = 0.68, r = 0.72). Absolute FT-GCS agreements among FT vendors were highest for CVI and Medis (ICCa = 0.96) and lowest for TomTec and Neosoft (ICCa = 0.32). Similarly, absolute FT-GCS agreements were excellent for CVI and Medis compared with both tagging and fast SENC (ICCa = 0.84-0.88), good to excellent for Neosoft (ICCa = 0.77 and 0.64), and lowest for TomTec (ICCa = 0.41 and 0.47). For FT-GLS, consistency was excellent (ICCc ≥ 0.86, r ≥ 0.76). Absolute agreements among FT vendors were excellent (ICCa = 0.91-0.93) or good to excellent for TomTec (ICCa = 0.69-0.85). Absolute agreements (ICCa) were good (CVI 0.70, Medis 0.60) and fair (TomTec 0.41, Neosoft 0.59) compared with tagging, but excellent compared with fast SENC (ICCa = 0.77-0.90). CONCLUSION: Although absolute agreements differ depending on deformation assessment approaches, consistency and correlation are consistently high regardless of the method chosen, thus indicating reliable strain assessment. Further standardisation and introduction of uniform references is warranted for routine clinical implementation.


Assuntos
Imagem Cinética por Ressonância Magnética , Imageamento por Ressonância Magnética , Ventrículos do Coração/diagnóstico por imagem , Humanos , Miocárdio , Reprodutibilidade dos Testes , Função Ventricular Esquerda
5.
Int J Cardiovasc Imaging ; 36(5): 899-911, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32056087

RESUMO

Myocardial strain is a convenient parameter to quantify left ventricular (LV) function. Fast strain-encoding (fSENC) enables the acquisition of cardiovascular magnetic resonance images for strain-measurement within a few heartbeats during free-breathing. It is necessary to analyze inter-vendor agreement of techniques to determine strain, such as fSENC, in order to compare existing studies and plan multi-center studies. Therefore, the aim of this study was to investigate inter-vendor agreement and test-retest reproducibility of fSENC for three major MRI-vendors. fSENC-images were acquired three times in the same group of 15 healthy volunteers using 3 Tesla scanners from three different vendors: at the German Heart Institute Berlin, the Charité University Medicine Berlin-Campus Buch and the Theresien-Hospital Mannheim. Volunteers were scanned using the same imaging protocol composed of two fSENC-acquisitions, a 15-min break and another two fSENC-acquisitions. LV global longitudinal and circumferential strain (GLS, GCS) were analyzed by a trained observer (Myostrain 5.0, Myocardial Solutions) and for nine volunteers repeatedly by another observer. Inter-vendor agreement was determined using Bland-Altman analysis. Test-retest reproducibility and intra- and inter-observer reproducibility were analyzed using intraclass correlation coefficient (ICC) and coefficients of variation (CoV). Inter-vendor agreement between all three sites was good for GLS and GCS, with biases of 0.01-1.88%. Test-retest reproducibility of scans before and after the break was high, shown by ICC- and CoV values of 0.63-0.97 and 3-9% for GLS and 0.69-0.82 and 4-7% for GCS, respectively. Intra- and inter-observer reproducibility were excellent for both parameters (ICC of 0.77-0.99, CoV of 2-5%). This trial demonstrates good inter-vendor agreement and test-retest reproducibility of GLS and GCS measurements, acquired at three different scanners from three different vendors using fSENC. The results indicate that it is necessary to account for a possible bias (< 2%) when comparing strain measurements of different scanners. Technical differences between scanners, which impact inter-vendor agreement, should be further analyzed and minimized.DRKS Registration Number: 00013253.Universal Trial Number (UTN): U1111-1207-5874.


Assuntos
Ventrículos do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Contração Miocárdica , Função Ventricular Esquerda , Adulto , Desenho de Equipamento , Feminino , Alemanha , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA