RESUMO
This article presents a comprehensive collection of formulas and calculations for hand-crafted feature extraction of condition monitoring signals. The documented features include 123 for the time domain and 46 for the frequency domain. Furthermore, a machine learning-based methodology is presented to evaluate the performance of features in fault classification tasks using seven data sets of different rotating machines. The evaluation methodology involves using seven ranking methods to select the best ten hand-crafted features per method for each database, to be subsequently evaluated by three types of classifiers. This process is applied exhaustively by evaluation groups, combining our databases with an external benchmark. A summary table of the performance results of the classifiers is also presented, including the percentage of classification and the number of features required to achieve that value. Through graphic resources, it has been possible to show the prevalence of certain features over others, how they are associated with the database, and the order of importance assigned by the ranking methods. In the same way, finding which features have the highest appearance percentages for each database in all experiments has been possible. The results suggest that hand-crafted feature extraction is an effective technique with low computational cost and high interpretability for fault identification and diagnosis.
RESUMO
Open or short-circuit faults, as well as discrete parameter faults, are the most commonly used models in the simulation prior to testing methodology. However, since analog circuits exhibit continuous responses to input signals, faults in specific circuit elements may not fully capture all potential component faults. Consequently, diagnosing faults in analog circuits requires three key aspects: identifying faulty components, determining faulty element values, and considering circuit tolerance constraints. To tackle this problem, a methodology is proposed and implemented for fault diagnosis using swarm intelligence. The investigated optimization techniques are Particle Swarm Optimization (PSO) and the Bat Algorithm (BA). In this methodology, the nonlinear equations of the tested circuit are employed to calculate its parameters. The primary objective is to identify the specific circuit component that could potentially exhibit the fault by comparing the responses obtained from the actual circuit and the responses obtained through the optimization process. Two circuits are used as case studies to evaluate the performance of the proposed methodologies: the Tow-Thomas Biquad filter (case study 1) and the Butterworth filter (case study 2). The proposed methodologies are able to identify or at least reduce the number of possible faulty components. Four main performance metrics are extracted: accuracy, precision, sensitivity, and specificity. The BA technique demonstrates superior performance by utilizing the maximum combination of accessible nodes in the tested circuit, with an average accuracy of 95.5%, while PSO achieved only 93.9%. Additionally, the BA technique outperforms in terms of execution time, with an average time reduction of 7.95% reduction for the faultless circuit and an 8.12% reduction for the faulty cases. Compared to the machine-learning-based approach, using BA with the proposed methodology achieves similar accuracy rates but does not require any datasets nor any time-demanding training to proceed with circuit diagnostic.
RESUMO
This work presents a novel Automated Machine Learning (AutoML) approach for Real-Time Fault Detection and Diagnosis (RT-FDD). The approach's particular characteristics are: it uses only data that are commonly available in industrial automation systems; it automates all ML processes without human intervention; a non-ML expert can deploy it; and it considers the behavior of cyclic sequential machines, combining discrete timed events and continuous variables as features. The capacity for fault detection is analyzed in two case studies, using data from a 3D machine simulation system with faulty and non-faulty conditions. The enhancement of the RT-FDD performance when the proposed approach is applied is proved with the Feature Importance, Confusion Matrix, and F1 Score analysis, reaching mean values of 85% and 100% in each case study. Finally, considering that faults are rare events, the sensitivity of the models to the number of faulty samples is analyzed.
Assuntos
Algoritmos , Aprendizado de Máquina , Simulação por Computador , HumanosRESUMO
Induction motors play a key role in the industrial sector. Thus, the correct diagnosis and classification of faults on these machines are important, even in the initial stages of evolution. Such analysis allows for increased productivity, avoids unexpected process interruptions, and prevents damage to machines. Usually, fault diagnosis is carried out by analyzing the characteristic effects caused by the faults. Thus, it is necessary to know and understand the behavior during the operation of the faulty machine. In general, monitoring these characteristics is complex, as it is necessary to acquire signals from the same motor with and without failures for comparison purposes. Whether in an industrial environment or in laboratories, the experimental characterization of failures can become unfeasible for several reasons. Thus, computer simulation of faulty motors digital twins can be an important alternative for failure analysis, especially in large motors. From this perspective, this paper presents and discusses several limitations found in the technical literature that can be minimized with the implementation of digital twins. In addition, a 3D finite element model of an induction motor with broken rotor bars is demonstrated, and motor current signature analysis is used to verify the fault effects. Results are analyzed in the time and frequency domain. Additionally, an artificial neural network of the multilayer perceptron type is used to classify the failure of broken bars in the 3D model rotor.
Assuntos
Algoritmos , Redes Neurais de Computação , Simulação por Computador , Análise de Elementos Finitos , IndústriasRESUMO
This paper addresses the two simultaneous leak diagnosis problem in pipelines based on a state vector reconstruction as a strategy to improve water shortages in large cities by only considering the availability of the flow rate and pressure head measurements at both ends of the pipeline. The proposed algorithm considers the parameters of both leaks as new state variables with constant dynamics, which results in an extended state representation. By applying a suitable persistent input, an invertible mapping in x can be obtained as a function of the input and output, including their time derivatives of the third-order. The state vector can then be reconstructed by means of an algebraic-like observer through the computation of time derivatives using a Numerical Differentiation with Annihilatorsconsidering its inherent noise rejection properties. Experimental results showed that leak parameters were reconstructed with accuracy using a test bed plant built at Cinvestav Guadalajara.
Assuntos
Algoritmos , Ruído , Cidades , ÁguaRESUMO
Induction motors (IM) are key components of any industrial process; hence, it is important to carry out continuous monitoring to detect incipient faults in them in order to avoid interruptions on production lines. Broken rotor bars (BRBs), which are among the most regular and most complex to detect faults, have attracted the attention of many researchers, who are searching for reliable methods to recognize this condition with high certainty. Most proposed techniques in the literature are applied during the IM startup transient, making it necessary to develop more efficient fault detection techniques able to carry out fault identification during the IM steady state. In this work, a novel methodology based on motor current signal analysis and contrast estimation is introduced for BRB detection. It is worth noting that contrast has mainly been used in image processing for analyzing texture, and, to the best of the authors' knowledge, it has never been used for diagnosing the operative condition of an induction motor. Experimental results from applying the approach put forward validate Unser and Tamura contrast definitions as useful indicators for identifying and classifying an IM operational condition as healthy, one broken bar (1BB), or two broken bars (2BB), with high certainty during its steady state.
Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Simulação por Computador , IndústriasRESUMO
The classic monitoring methods for detecting faults in automotive vehicles based on on-board diagnostics (OBD) are insufficient when diagnosing several mechanical failures. Other sensing techniques present drawbacks such as high invasiveness and limited physical range. The present work presents a fully noninvasive system for fault detection and isolation in internal combustion engines through sound signals processing. An acquisition system was developed, whose data are transmitted to a smartphone in which the signal is processed, and the user has access to the information. A study of the chaotic behavior of the vehicle was carried out, and the feasibility of using fractal dimensions as a tool to diagnose engine misfire and problems in the alternator belt was verified. An artificial neural network was used for fault classification using the fractal dimension data extracted from the sound of the engine. For comparison purposes, a strategy based on wavelet multiresolution analysis was also implemented. The proposed solution allows a diagnosis without having any contact with the vehicle, with low computational cost, without the need for installing sensors, and in real time. The system and method were validated through experimental tests, with a success rate of 99% for the faults under consideration.
Assuntos
Algoritmos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Análise de OndaletasRESUMO
Scientific and technological advances in the field of rotatory electrical machinery are leading to an increased efficiency in those processes and systems in which they are involved. In addition, the consideration of advanced materials, such as hybrid or ceramic bearings, are of high interest towards high-performance rotary electromechanical actuators. Therefore, most of the diagnosis approaches for bearing fault detection are highly dependent of the bearing technology, commonly focused on the metallic bearings. Although the mechanical principles remain as the basis to analyze the characteristic patterns and effects related to the fault appearance, the quantitative response of the vibration pattern considering different bearing technology varies. In this regard, in this work a novel data-driven diagnosis methodology is proposed based on deep feature learning applied to the diagnosis and identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems. The proposed methodology consists of three main stages: first, a deep learning-based model, supported by stacked autoencoder structures, is designed with the ability of self-adapting to the extraction of characteristic fault-related features from different signals that are processed in different domains. Second, in a feature fusion stage, information from different domains is integrated to increase the posterior discrimination capabilities during the condition assessment. Third, the bearing assessment is achieved by a simple softmax layer to compute the final classification results. The achieved results show that the proposed diagnosis methodology based on deep feature learning can be effectively applied to the diagnosis and identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems. The proposed methodology is validated in front of two different electromechanical systems and the obtained results validate the adaptability and performance of the proposed approach to be considered as a part of the condition-monitoring strategies where different bearing technologies are involved.
Assuntos
Algoritmos , Vibração , Cerâmica , Análise de Falha de Equipamento , Modalidades de FisioterapiaRESUMO
One of the most critical devices in an electrical system is the transformer. It is continuously under different electrical and mechanical stresses that can produce failures in its components and other electrical network devices. The short-circuited turns (SCTs) are a common winding failure. This type of fault has been widely studied in literature employing the vibration signals produced in the transformer. Although promising results have been obtained, it is not a trivial task if different severity levels and a common high-level noise are considered. This paper presents a methodology based on statistical time features (STFs) and support vector machines (SVM) to diagnose a transformer under several SCTs conditions. As STFs, 19 indicators from the transformer vibration signals are computed; then, the most discriminant features are selected using the Fisher score analysis, and the linear discriminant analysis is used for dimension reduction. Finally, a support vector machine classifier is employed to carry out the diagnosis in an automatic way. Once the methodology has been developed, it is implemented on a field-programmable gate array (FPGA) to provide a system-on-a-chip solution. A modified transformer capable of emulating different SCTs severities is employed to validate and test the methodology and its FPGA implementation. Results demonstrate the effectiveness of the proposal for diagnosing the transformer condition as an accuracy of 96.82% is obtained.
RESUMO
Abstract Agricultural Machinery as an off-road vehicle is the backbone of the World agricultural industry. Its main function is to operate as a prime mover and support the power requirements to function the various type of draft implements. In this regards, the hydraulic system is an important part and is controlled by the propagated oil which is cleaned by impurities and debris using a filter system. Once it blocks, the bypass opens to avoid any pressure burst of the system, and the particles find their way into the hydraulic system and get lodged in the gears, pumps, valves, and drive train to hinder the performance of the Agricultural Machinery. This research presents an onboard Multiple Signal Classification Algorithm (MUSIC) and pseudo-spectrum analysis as a computational tool used by cellphones to analyze the particle pollution level of the hydraulic filter. This analysis is carried out on the soundtracks recorded from different cell phones in different incremental stages of fluid contamination to the particles until it being choked, based on the standard of ISO4406.
Assuntos
Acústica , Manutenção Preventiva/métodos , Hidráulica , Algoritmos , Erros de DiagnósticoRESUMO
Preliminaries convolutional neural network (CNN) applications have recently emerged in structural health monitoring (SHM) systems focusing mostly on vibration analysis. However, the SHM literature shows clearly that there is a lack of application regarding the combination of PZT-(lead zirconate titanate) based method and CNN. Likewise, applications using CNN along with the electromechanical impedance (EMI) technique applied to SHM systems are rare. To encourage this combination, an innovative SHM solution through the combination of the EMI-PZT and CNN is presented here. To accomplish this, the EMI signature is split into several parts followed by computing the Euclidean distances among them to form a RGB (red, green and blue) frame. As a result, we introduce a dataset formed from the EMI-PZT signals of 720 frames, encompassing a total of four types of structural conditions for each PZT. In a case study, the CNN-based method was experimentally evaluated using three PZTs glued onto an aluminum plate. The results reveal an effective pattern classification; yielding a 100% hit rate which outperforms other SHM approaches. Furthermore, the method needs only a small dataset for training the CNN, providing several advantages for industrial applications.
RESUMO
This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.
RESUMO
This work presents a fault-tolerant (FT) scheme based on the application of non-integer order observers also called fractional observers, the case of study is a double pipe countercurrent heat exchanger (HE). The aim of the FT is to detect sensors faults as soon as possible, and to provide a healthy signal in order to replace the faulty sensor signal by the fractional observer estimation. To develop the FT scheme a bank of high gain fractional order observers (HGFOO) is proposed. The Riemann-Liouville (RL) fractional derivative definition is used to solve each fractional observer. Experimental measures from a HE were used to test the performance of the fractional observers and the control scheme. The results show the robustness of the proposed observers.
RESUMO
There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.
RESUMO
Fault diagnosis includes the main task of classification. Bayesian networks (BNs) present several advantages in the classification task, and previous works have suggested their use as classifiers. Because a classifier is often only one part of a larger decision process, this article proposes, for industrial process diagnosis, the use of a Bayesian method called dynamic Markov blanket classifier that has as its main goal the induction of accurate Bayesian classifiers having dependable probability estimates and revealing actual relationships among the most relevant variables. In addition, a new method, named variable ordering multiple offspring sampling capable of inducing a BN to be used as a classifier, is presented. The performance of these methods is assessed on the data of a benchmark problem known as the Tennessee Eastman process. The obtained results are compared with naive Bayes and tree augmented network classifiers, and confirm that both proposed algorithms can provide good classification accuracies as well as knowledge about relevant variables.
RESUMO
This work deals with the fault diagnosis problem, some new properties are found using the left invertibility condition through the concept of differential output rank. Two schemes of nonlinear observers are used to estimate the fault signals for comparison purposes, one of these is a proportional reduced order observer and the other is a sliding mode observer. The methodology is tested in a real time implementation of a three-tank system.