RESUMO
Cuticular hydrocarbons (CHCs) are often used in the chemical communication among social insects. CHCs can be used in nestmate recognition and as queen pheromones, the latter allows the regulation of the reproductive division of labor. In the common wasp Vespula vulgaris, CHCs and egg-marking hydrocarbons are caste-specific, being hydrocarbon queen pheromones and egg maternity signals. Whether these compounds are conserved among other Vespinae wasps remains unknown. Queens, virgin queens, reproductive workers, and workers belonging to four different wasp species, Dolichovespula media, Dolichovespula saxonica, Vespa crabro, and Vespula germanica, were collected and studied. The cuticular hydrocarbons, egg surface, and Dufour's gland composition were characterized and it was found that chemical compounds are caste-specific in the four species. Quantitative and qualitative differences were detected in the cuticle, eggs, and Dufour's gland. Some specific hydrocarbons that were shown to be overproduced in the cuticle of queens were also present in higher quantities in queen-laid eggs and in their Dufour's gland. These hydrocarbons can be indicated as putative fertility signals that regulate the division of reproductive labor in these Vespine societies. Our results are in line with the literature for V. vulgaris and D. saxonica, in which hydrocarbons were shown to be conserved queen signals. This work presents correlative evidence that queen chemical compounds are found not only over the body surface of females but also in other sources, such as the Dufour's gland and eggs.
Assuntos
Vespas , Humanos , Gravidez , Animais , Feminino , Vespas/fisiologia , Reprodução , Fertilidade , Feromônios/química , HidrocarbonetosRESUMO
The dominance hierarchy in primitively eusocial insect societies has been shown to be mainly regulated through aggressive interactions. Females that are generally more dominant stand out and occupy the queen position, meaning that they monopolize reproduction while others perform other tasks. Chemical communication is important for maintaining social cohesion. Cuticular hydrocarbons are recognized as the main molecules responsible for mediating social interactions, especially nestmate recognition and queen signalling. Many highly eusocial groups have been studied in recent years, but primitively eusocial groups, which are key to understanding the evolution of social behavior, remain unexplored. In this study, we investigated the connection between cuticular hydrocarbons in females expressed in different social contexts in the primitively eusocial wasp Mischocyttarus cerberus. Colonies in two different ontogenetic phases, pre- and post-worker emergence, were used. We observed and categorized behavioral interactions between individual females and collected all individuals in a nest to obtain information on size, ovary activation and chemical composition. Furthermore, we conducted experiments in which the alpha (dominant) females were removed from nests to produce a new dominance hierarchy. We found that females in different hierarchical positions had small chemical difference corresponding with ovary activity. Our results support the hypothesis that cuticular hydrocarbons are associated with social context in this primitively eusocial species, with some compounds being associated with hierarchical position and ovarian activity.