Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.122
Filtrar
2.
Int J Clin Oncol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017806

RESUMO

BACKGROUND: In the THOR trial (NCT03390504) Cohort 1, erdafitinib demonstrated significantly prolonged overall survival (OS) (median 12.1 versus 7.8 months) and reduced risk of death by 36% (hazard ratio 0.64, P = 0.005) compared with chemotherapy in metastatic urothelial carcinoma (mUC) patients with FGFR alterations who progressed after ≥ 1 prior treatments, including anti-PD-(L)1. There have been no reports of the Japanese subgroup results yet. METHODS: THOR Cohort 1 randomized patients to erdafitinib once daily or docetaxel/vinflunine once every 3 weeks. Primary endpoint was OS. Secondary endpoints included progression-free survival (PFS) and objective response rate (ORR). No specific statistical power was set for this Japanese subgroup analysis. RESULTS: Of 266 patients randomized, 27 (14 erdafitinib; 13 chemotherapy) were Japanese. Baseline characteristics were generally similar between treatments and to the overall population, except for more males, lower body weight, and more upper tract primary tumors among Japanese patients. Compared with chemotherapy, erdafitinib showed improved OS (median 25.4 versus 12.4 months), PFS (median 8.4 versus 2.9 months) and ORR (57.1% versus 15.4%). Any grade treatment-related adverse events (AEs) occurred in all patients from both arms but Grade 3/4 AEs and AEs leading to discontinuation were lower in the erdafitinib arm. No new safety signals were observed in the Japanese subgroup. CONCLUSION: In the Japanese subgroup, erdafitinib showed improved survival and response compared to chemotherapy, with no new safety concerns. These results support erdafitinib as a treatment option for Japanese mUC patients with FGFR alterations, and early FGFR testing after diagnosis of mUC should be considered.

3.
Biochim Biophys Acta Mol Basis Dis ; : 167341, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025373

RESUMO

Fibroblast-like synoviocytes (FLS) plays an important role in synovial inflammation and joint damage in rheumatoid arthritis (RA). As the most abundant mRNA modification, N6-methyladenosine (m6A) is involved in the development of various diseases; however, its role in RA remains to be defined. In this study, we reported the elevated expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in FLS and synovium from RA patients. Functionally, FTO knockdown or treatment with FB23-2, an inhibitor of the mRNA m6A demethylase FTO, inhibited the migration, invasion and inflammatory response of RA FLS, however, FTO-overexpressed RA FLS exhibited increased migration, invasion and inflammatory response. We further demonstrated that FTO promoted ADAMTS15 mRNA stability in an m6A-IGF2BP1 dependent manner. Notably, the severity of arthritis was significantly reduced in CIA mice with FB23-2 administration or CIA rats with intra-articular injection of FTO shRNA. Our results illustrate the contribution of FTO-mediated m6A modification to joint damage and inflammation in RA and suggest that FTO might be a potential therapeutic target in RA.

4.
J Vet Intern Med ; 38(4): 2180-2195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952053

RESUMO

BACKGROUND: Plasma total magnesium concentration (tMg) is a prognostic indicator in cats with chronic kidney disease (CKD), shorter survival time being associated with hypomagnesemia. Whether this risk factor is modifiable with dietary magnesium supplementation remains unexplored. OBJECTIVES: Evaluate effects of a magnesium-enriched phosphate-restricted diet (PRD) on CKD-mineral bone disorder (CKD-MBD) variables. ANIMALS: Sixty euthyroid client-owned cats with azotemic CKD, with 27 and 33 allocated to magnesium-enriched PRD or control PRD, respectively. METHODS: Prospective double-blind, parallel-group randomized trial. Cats with CKD, stabilized on a PRD, without hypermagnesemia (tMg >2.43 mg/dL) or hypercalcemia (plasma ionized calcium concentration, (iCa) >6 mg/dL), were recruited. Both intention-to-treat and per-protocol (eating ≥50% of study diet) analyses were performed; effects of dietary magnesium supplementation on clinicopathological variables were evaluated using linear mixed effects models. RESULTS: In the per-protocol analysis, tMg increased in cats consuming a magnesium-enriched PRD (ß, 0.25 ± .07 mg/dL/month; P < .001). Five magnesium supplemented cats had tMg >2.92 mg/dL, but none experienced adverse effects. Rate of change in iCa differed between groups (P = .01), with decreasing and increasing trends observed in cats fed magnesium-enriched PRD and control PRD, respectively. Four control cats developed ionized hypercalcemia versus none in the magnesium supplemented group. Log-transformed plasma fibroblast growth factor-23 concentration (FGF23) increased significantly in controls (ß, 0.14 ± .05 pg/mL/month; P = .01), but remained stable in the magnesium supplemented group (ß, 0.05±.06 pg/mL/month; P =.37). CONCLUSIONS AND CLINICAL IMPORTANCE: Magnesium-enriched PRD is a novel therapeutic strategy for managing feline CKD-MBD in cats, further stabilizing plasma FGF23 and preventing hypercalcemia.


Assuntos
Doenças do Gato , Suplementos Nutricionais , Magnésio , Insuficiência Renal Crônica , Animais , Gatos , Magnésio/sangue , Magnésio/administração & dosagem , Magnésio/uso terapêutico , Doenças do Gato/dietoterapia , Doenças do Gato/tratamento farmacológico , Insuficiência Renal Crônica/veterinária , Insuficiência Renal Crônica/dietoterapia , Método Duplo-Cego , Feminino , Masculino , Estudos Prospectivos , Dieta/veterinária , Fator de Crescimento de Fibroblastos 23 , Fosfatos/sangue , Cálcio/sangue
5.
J Mol Cell Cardiol ; 194: 70-84, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969334

RESUMO

We recently discovered that steroid receptor coactivators (SRCs) SRCs-1, 2 and 3, are abundantly expressed in cardiac fibroblasts (CFs) and their activation with the SRC small molecule stimulator MCB-613 improves cardiac function and dramatically lowers pro-fibrotic signaling in CFs post-myocardial infarction. These findings suggest that CF-derived SRC activation could be beneficial in the mitigation of chronic heart failure after ischemic insult. However, the cardioprotective mechanisms by which CFs contribute to cardiac pathological remodeling are unclear. Here we present studies designed to identify the molecular and cellular circuitry that governs the anti-fibrotic effects of an MCB-613 derivative, MCB-613-10-1, in CFs. We performed cytokine profiling and whole transcriptome and proteome analyses of CF-derived signals in response to MCB-613-10-1. We identified the NRF2 pathway as a direct MCB-613-10-1 therapeutic target for promoting resistance to oxidative stress in CFs. We show that MCB-613-10-1 promotes cell survival of anti-fibrotic CFs exposed to oxidative stress by suppressing apoptosis. We demonstrate that an increase in HMOX1 expression contributes to CF resistance to oxidative stress-mediated apoptosis via a mechanism involving SRC co-activation of NRF2, hence reducing inflammation and fibrosis. We provide evidence that MCB-613-10-1 acts as a protectant against oxidative stress-induced mitochondrial damage. Our data reveal that SRC stimulation of the NRF2 transcriptional network promotes resistance to oxidative stress and highlights a mechanistic approach toward addressing pathologic cardiac remodeling.

6.
Open Biol ; 14(7): 240089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981514

RESUMO

Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.


Assuntos
Fatores de Transcrição ARNTL , Artrite Experimental , Ritmo Circadiano , Fibroblastos , Sinoviócitos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Relógios Circadianos/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Camundongos Knockout , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino
7.
Artigo em Inglês | MEDLINE | ID: mdl-38982914

RESUMO

Synovial inflammation plays a key role in osteoarthritis (OA) pathogenesis. Fibroblast-like synoviocytes (FLSs) represent a distinct cell subpopulation within the synovium, and their unique phenotypic alterations are considered significant contributors to inflammation and fibrotic responses. The underlying mechanism by which acetyl-11-keto-ß-boswellic acid (AKBA) modulates FLS activation remains unclear. This study aims to assess the beneficial effects of AKBA through both in vitro and in vivo investigations. Network pharmacology evaluation is used to identify potential targets of AKBA in OA. We evaluate the effects of AKBA on FLSs activation in vitro and the regulatory role of AKBA on the Nrf2/HO-1 signaling pathway. ML385 (an Nrf2 inhibitor) is used to verify the binding of AKBA to its target in FLSs. We validate the in vivo efficacy of AKBA in alleviating OA using anterior cruciate ligament transection and destabilization of the medial meniscus (ACLT+DMM) in a rat model. Network pharmacological analysis reveals the potential effect of AKBA on OA. AKBA effectively attenuates lipopolysaccharide (LPS)-induced abnormal migration and invasion and the production of inflammatory mediators, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS) in FLSs, contributing to the restoration of the synovial microenvironment. After treatment with ML385, the effect of AKBA on FLSs is reversed. In vivo studies demonstrate that AKBA mitigates synovial inflammation and fibrotic responses induced by ACLT+DMM in rats via activation of the Nrf2/HO-1 axis. AKBA exhibits theoretical potential for alleviating OA progression through the Nrf2/HO-1 pathway and represents a viable therapeutic candidate for this patient population.

8.
Int J Biol Sci ; 20(9): 3412-3425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993571

RESUMO

Chronic kidney disease (CKD) is linked to greater prevalence and rapid progression of calcific aortic valve disease (CAVD) characterized by valvular leaflet fibrosis and calcification. Fibroblast growth factor 23 (FGF23) level is elevated, and anti-aging protein Klotho is reduced in CKD patients. However, the roles of FGF23 and Klotho in the mechanism of aortic valve fibrosis and calcification remain unclear. We hypothesized that FGF23 mediates CKD-induced CAVD by enhancing aortic valve interstitial cell (AVIC) fibrosis and calcification, while soluble Klotho inhibits FGF23 effect. Methods and Results: In an old mouse model of CKD, kidney damages were accompanied by aortic valve thickening and calcification. FGF23 levels in plasma and aortic valve were increased, while Klotho levels were decreased. Recombinant FGF23 elevated the inflammatory, fibrogenic, and osteogenic activities in AVICs. Neutralizing antibody or shRNA targeting FGF23 suppressed the pathobiological activities in AVICs from valves affected by CAVD. FGF23 exerts its effects on AVICs via FGF receptor (FGFR)/Yes-associated protein (YAP) signaling, and inhibition of FGFR/YAP reduced FGF23's potency in AVICs. Recombinant Klotho downregulated the pathobiological activities in AVICs exposed to FGF23. Incubation of FGF23 with Klotho formed complexes and decreased FGF23's potency. Further, treatment of CKD mice with recombinant Klotho attenuated aortic valve lesions. Conclusion: This study demonstrates that CKD induces FGF23 accumulation, Klotho insufficiency and aortic valve lesions in old mice. FGF23 upregulates the inflammatory, fibrogenic and osteogenic activities in AVICs via the FGFR/YAP signaling pathway. Soluble Klotho suppresses FGF23 effect through molecular interaction and is capable of mitigating CKD-induced CAVD.


Assuntos
Valva Aórtica , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Glucuronidase , Proteínas Klotho , Insuficiência Renal Crônica , Proteínas Klotho/metabolismo , Fator de Crescimento de Fibroblastos 23/metabolismo , Animais , Insuficiência Renal Crônica/metabolismo , Glucuronidase/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Masculino , Transdução de Sinais , Camundongos Endogâmicos C57BL , Humanos , Estenose da Valva Aórtica/metabolismo , Modelos Animais de Doenças
9.
Int J Biol Sci ; 20(9): 3353-3371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993568

RESUMO

Radiation-induced pulmonary fibrosis (RIPF) represents a serious complication observed in individuals undergoing thoracic radiation therapy. Currently, effective interventions for RIPF are unavailable. Prior research has demonstrated that nintedanib, a Food and Drug Administration (FDA)-approved anti-fibrotic agent for idiopathic pulmonary fibrosis, exerts therapeutic effects on chronic fibrosing interstitial lung disease. This research aimed to investigate the anti-fibrotic influences of nintedanib on RIPF and reveal the fundamental mechanisms. To assess its therapeutic impact, a mouse model of RIPF was established. The process involved nintedanib administration at various time points, both prior to and following thoracic radiation. In the RIPF mouse model, an assessment was conducted on survival rates, body weight, computed tomography features, histological parameters, and changes in gene expression. In vitro experiments were performed to discover the mechanism underlying the therapeutic impact of nintedanib on RIPF. Treatment with nintedanib, administered either two days prior or four weeks after thoracic radiation, significantly alleviated lung pathological changes, suppressed collagen deposition, and improved the overall health status of the mice. Additionally, nintedanib demonstrated significant mitigation of radiation-induced inflammatory responses in epithelial cells by inhibiting the PI3K/AKT and MAPK signaling pathways. Furthermore, nintedanib substantially inhibited fibroblast-to-myofibroblast transition by suppressing the TGF-ß/Smad and PI3K/AKT/mTOR signaling pathways. These findings suggest that nintedanib exerts preventive and therapeutic effects on RIPF by modulating multiple targets instead of a single anti-fibrotic pathway and encourage the further clinical trials to determine the efficacy of nintedanib in patients with RIPF.


Assuntos
Fibroblastos , Indóis , Fibrose Pulmonar , Animais , Indóis/uso terapêutico , Indóis/farmacologia , Camundongos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células Epiteliais/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
10.
Genes Dis ; 11(5): 101040, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38993791

RESUMO

Fibroblast activation and extracellular matrix (ECM) deposition play an important role in the tracheal abnormal repair process and fibrosis. As a transcription factor, SOX9 is involved in fibroblast activation and ECM deposition. However, the mechanism of how SOX9 regulates fibrosis after tracheal injury remains unclear. We investigated the role of SOX9 in TGF-ß1-induced fibroblast activation and ECM deposition in rat tracheal fibroblast (RTF) cells. SOX9 overexpression adenovirus (Ad-SOX9) and siRNA were transfected into RTF cells. We found that SOX9 expression was up-regulated in RTF cells treated with TGF-ß1. SOX9 overexpression activated fibroblasts and promoted ECM deposition. Silencing SOX9 inhibited cell proliferation, migration, and ECM deposition, induced G2 arrest, and increased apoptosis in RTF cells. RNA-seq and chromatin immunoprecipitation sequencing (ChIP-seq) assays identified MMP10, a matrix metalloproteinase involved in ECM deposition, as a direct target of SOX9, which promotes ECM degradation by increasing MMP10 expression through the Wnt/ß-catenin signaling pathway. Furthermore, in vivo, SOX9 knockdown ameliorated granulation proliferation and tracheal fibrosis, as manifested by reduced tracheal stenosis. In conclusion, our findings indicate that SOX9 can drive fibroblast activation, cell proliferation, and apoptosis resistance in tracheal fibrosis via the Wnt/ß-catenin signaling pathway. The SOX9-MMP10-ECM biosynthesis axis plays an important role in tracheal injury and repair. Targeting SOX9 and its downstream target MMP10 may represent a promising therapeutic approach for tracheal fibrosis.

11.
Mater Today Bio ; 27: 101132, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994471

RESUMO

Pancreatic cancer is an aggressive and challenging malignancy with limited treatment options, largely attributed to the dense tumor stroma and intrinsic drug resistance. Here, we introduce a novel iron-containing nanoparticle formulation termed PTFE, loaded with the ferroptosis inducer Erastin, to overcome these obstacles and enhance pancreatic cancer therapy. The PTFE nanoparticles were prepared through a one-step assembly process, consisting of an Erastin-loaded PLGA core stabilized by a MOF shell formed by coordination between Fe3+ and tannic acid. PTFE demonstrated a unique capability to repolarize tumor-associated macrophages (TAMs) into the M1 phenotype, leading to the regulation of dense tumor stroma by modulating the activation of tumor-associated fibroblasts (TAFs) and reducing collagen deposition. This resulted in enhanced nanoparticle accumulation and deep penetration, as confirmed by in vitro multicellular tumor spheroids and in vivo mesenchymal-rich subcutaneous pancreatic tumor models. Moreover, PTFE effectively combated tumor resistance by synergistically employing the Fe3+-induced Fenton reaction and Erastin-induced ferroptosis, thereby disrupting the redox balance. As a result, significant tumor growth inhibition was achieved in mice-bearing tumor model. Comprehensive safety evaluations demonstrated PTFE's favorable biocompatibility, highlighting its potential as a promising therapeutic platform to effectively address the formidable challenges in pancreatic cancer treatment.

12.
Cells ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38994970

RESUMO

The escalating elderly population worldwide has prompted a surge of interest in longevity medicine. Its goal is to interfere with the speed of ageing by slowing it down or even reversing its accompanying effects. As a field, it is rapidly growing and spreading into different branches. One of these is the use of nutraceuticals as anti-ageing drugs. This field is gaining massive popularity nowadays, as people are shifting towards a more natural approach to life and seeking to use natural products as a source of medicine. The present article focuses on the cellular effect of Haberlea rhodopensis Friv. in vitro culture total ethanol extract (HRT), produced by a sustainable biotechnological approach. The extract showed a similar phytochemical profile to plant leaf extract and was rich in primary bioactive ingredients-caffeoyl phenylethanoid glycosides, myconoside, and paucifloside. This study examined the biosafety potential, cytotoxicity, genotoxicity, and mitochondrial activity of the extract using in vitro cultures. The results showed high cell survival rates and minimal cytotoxic effects on Lep3 cells, with no induction of reactive oxygen species nor genotoxicity. Additionally, the extract positively influenced mitochondrial activity, indicating potential benefits for cellular health. The results are promising and show the beneficial effect of HRT without the observation of any adverse effects, which sets the foundation for its further testing and potential therapeutic applications.


Assuntos
Etanol , Mitocôndrias , Extratos Vegetais , Extratos Vegetais/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Humanos , Sobrevivência Celular/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos , Linhagem Celular , Camundongos
13.
Cells ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38994992

RESUMO

Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.


Assuntos
Retículo Endoplasmático , Resposta ao Choque Térmico , Termogênese , Humanos , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Hipertermia/metabolismo , Hipertermia/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
14.
Plant Foods Hum Nutr ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001986

RESUMO

Apple pomace is the residue left after apples are squeezed. The majority of pomace produced worldwide is produced by the apple manufacturing industry, however, most of the pomace produced by the industry is discarded. Apple pomace contains functional ingredients, such as polyphenols and triterpenoids, and exerts several beneficial effects on human health; however, studies on its cosmetic effects on the skin are lacking. Therefore, herein, we investigated the effects of apple pomace extract (APE) on human skin fibroblasts (HSFs) in vitro. When HSFs were cultured with the extract for 72 h, the number of HSFs increased at concentrations of 10 and 20 µg/mL. Transcriptome analysis and reverse transcription-quantitative PCR results revealed that the extract upregulated the expression of hyaluronan synthase (HAS) 1, HAS2, and HAS3 and downregulated the expression of HYAL1, a gene encoding the hyaluronan-degrading enzyme, in HSFs. Additionally, enzyme-linked immunosorbent assay revealed increased amounts of factors related to skin extracellular matrix, such as type I collagen and hyaluronic acid, secreted in the culture supernatant. The western blotting results suggested that the extract induced extracellular signal-regulated kinase and protein kinase B phosphorylation in HSFs. Additionally, several GO_Terms related to mitosis were detected in the Gene Ontology analysis. This is the first study to show that APE induces the proliferation of HSFs and production of factors related to skin anti-aging.

15.
Dokl Biochem Biophys ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002014

RESUMO

The direct antitumor effect of bevacizumab (BEV) has long been debated. Evidence of the direct antitumor activities of drugs are mainly obtained from in vitro experiments, which are greatly affected by experimental conditions. In this study, we evaluated the effect of BEV-containing medium renewal on the results of in vitro cytotoxicity experiments in A549 and U251 cancer cells. We observed starkly different results between the experiments with and without BEV-containing medium renewal. Specifically, BEV inhibited the tumor cell growth in the timely replacement with a BEV-containing medium but promoted tumor cell growth without medium renewal. Meanwhile, compared with the control, a significant basic fibroblast growth factor (bFGF) accumulation in the supernatant was observed in the group without medium renewal but none in that with replaced medium. Furthermore, bFGF neutralization partially reversed the pro-proliferative effect of BEV in the medium non-renewed group, while exogenous bFGF attenuated the tumor cell growth inhibition of BEV in the medium-renewed group. Our data explain the controversy over the direct antitumor effect of BEV in different studies from the perspective of the compensatory autocrine cytokines in tumor cells.

16.
Immunity ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002541

RESUMO

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.

17.
Biochim Biophys Acta Mol Basis Dis ; : 167350, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002704

RESUMO

Chronic smokers have increased risk of fibrosis-related atrial fibrillation. The use of heated-tobacco products (HTPs) is increasing exponentially, and their health impact is still uncertain. We aim to investigate the effects of circulating molecules in exclusive HTP chronic smokers on the fibrotic behavior of human atrial cardiac stromal cells (CSCs). CSCs were isolated from atrial tissue of elective cardiac surgery patients, and exposed to serum lots from young healthy subjects, stratified in exclusive HTP smokers, tobacco combustion cigarette (TCC) smokers, or nonsmokers (NS). CSCs treated with TCC serum displayed impaired migration and increased expression of pro-inflammatory cytokines. Cells cultured with HTP serum showed increased levels of pro-fibrotic markers, and reduced expression of connexin-43. Both TCC and HTP sera increased collagen release and reduced secretion of angiogenic protective factors from CSCs, compared to NS sera. Paracrine support to tube-formation by endothelial cells and to viability of cardiomyocytes was significantly impaired. Treatment with sera of both smokers impaired H2O2/NO release balance by CSCs and reduced early phosphorylation of several pathways compared to NS serum, leading to mTOR activation. Cotreatment with rapamycin was able to reduce mTOR phosphorylation and differentiation into aSMA-positive myofibroblasts in CSCs exposed to TCC and HTP sera. In conclusion, the circulating molecules in the serum of chronic exclusive HTP smokers induce fibrotic behavior in CSCs through activation of the mTOR pathway, and reduce their beneficial paracrine effects on endothelial cells and cardiomyocytes. These results point to a potential risk for cardiac fibrosis in chronic HTP users.

18.
Pharmacol Res ; : 107304, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002870

RESUMO

Over the last decade, epidermal growth factor receptor (EGFR)-targeted therapies have transformed the treatment landscape for patients with advanced solid tumors. Despite these advances, resistance to anti-EGFR therapies is still a significant clinical challenge. While cell-autonomous mechanisms of resistance are well-documented, they do not fully elucidate the complexity of drug resistance. Cancer-associated fibroblasts (CAFs), key mediators within the tumor microenvironment (TME), have emerged as pivotal players in cancer progression and chemoresistance. Recent evidence implicates CAFs in resistance to anti-EGFR therapies, suggesting they may undermine treatment efficacy. This review synthesizes current data, highlighting the critical role of CAFs in resistance pathogenesis and summarizing recent therapeutic strategies targeting CAFs. We underscore the challenges and advocate for the exploration of CAFs as a potential dual-targeted approach.

19.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000342

RESUMO

Post-burn hypertrophic scars often exhibit abnormal pigmentation. Exosomes play important roles in maintaining normal physiological homeostasis and in the pathological development of diseases. This study investigated the effects of the exosomes derived from hypertrophic scar fibroblasts (HTSFs) on melanocytes, which are pigment-producing cells. Normal fibroblasts (NFs) and HTSFs were isolated and cultured from normal skin and hypertrophic scar (HTS) tissue. Both the NF- and HTSF-exosomes were isolated from a cell culture medium and purified using a column-based technique. The normal human epidermal melanocytes were treated with both exosomes at a concentration of 100 µg/mL at different times. The cell proliferation, melanin content in the medium, apoptotic factors, transcription factors, melanin synthesis enzymes, signaling, signal transduction pathways, and activators of transcription factors (STAT) 1, 3, 5, and 6 were investigated. Compared with the Dulbecco's phosphate-buffered saline (DPBS)-treated controls and NF-exosomes, the HTSF-exosomes decreased the melanocyte proliferation and melanin secretion. The molecular patterns of apoptosis, proliferation, melanin synthesis, Smad and non-Smad signaling, and STATs were altered by the treatment with the HTSF-exosomes. No significant differences were observed between the DPBS-treated control and NF-exosome-treated cells. HTSF-derived exosomes may play a role in the pathological epidermal hypopigmentation observed in patients with HTS.


Assuntos
Proliferação de Células , Cicatriz Hipertrófica , Exossomos , Fibroblastos , Melaninas , Melanócitos , Transdução de Sinais , Humanos , Exossomos/metabolismo , Melanócitos/metabolismo , Fibroblastos/metabolismo , Melaninas/biossíntese , Melaninas/metabolismo , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Apoptose , Epiderme/metabolismo , Epiderme/patologia , Células Cultivadas , Melanogênese
20.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000348

RESUMO

Although Chimeric Antigen Receptor (CAR) T-cells have shown high efficacy in hematologic malignancies, they can cause severe to life-threatening side effects. To address these safety concerns, we have developed adaptor CAR platforms, like the UniCAR system. The redirection of UniCAR T-cells to target cells relies on a Target Module (TM), containing the E5B9 epitope and a tumor-specific binding moiety. Appropriate UniCAR-T activation thus involves two interactions: between the TM and the CAR T-cell, and the TM and the target cell. Here, we investigate if and how alterations of the amino acid sequence of the E5B9 UniCAR epitope impact the interaction between TMs and the UniCAR. We identify the new epitope E5B9L, for which the monoclonal antibody 5B9 has the greatest affinity. We then integrate the E5B9L peptide in previously established TMs directed to Fibroblast Activation Protein (FAP) and assess if such changes in the UniCAR epitope of the TMs affect UniCAR T-cell potency. Binding properties of the newly generated anti-FAP-E5B9L TMs to UniCAR and their ability to redirect UniCAR T-cells were compared side-by-side with the ones of anti-FAP-E5B9 TMs. Despite a substantial variation in the affinity of the different TMs to the UniCAR, no significant differences were observed in the cytotoxic and cytokine-release profiles of the redirected T-cells. Overall, our work indicates that increasing affinity of the UniCAR to the TM does not play a crucial role in such adaptor CAR system, as it does not significantly impact the potency of the UniCAR T-cells.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Epitopos/imunologia , Linhagem Celular Tumoral , Anticorpos Monoclonais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...