RESUMO
In plants, programmed cell death (PCD) is involved in both the development and the response to biotic and abiotic aggressions. In early stages of PCD, mitochondrial membranes are made permeable by the formation of permeability transition pores, whose protein composition is debated. Cytochrome c (cyt c) is then released from mitochondria, inducing the degradation of chromatin characteristic of PCD. Since flooding stress can produce PCD in several plant species, the first goal of this study was to know if flooding stress could be used to induce PCD in Beta vulgaris roots. To do this, 2-month-old beet plants were flood-stressed from 1 to 5 days, and the alterations indicating PCD in stressed beetroot cells were observed with a confocal fluorescence microscope. As expected, nuclei were deformed, and chromatin was condensed and fragmented in flooded beetroots. In addition, cyt c was released from mitochondria. After assessing that flood stress induced PCD in beetroots, the composition of mitochondrial protein complexes was observed in control and flood-stressed beetroots. Protein complexes from isolated mitochondria were separated by native gel electrophoresis, and their proteins were identified by mass spectrometry. The spectra count of three isoforms of voltage-dependent anion-selective channels (VDACs) increased after 1 day of flooding. In addition, the size of the complexes formed by VDAC was higher in flood-stressed beetroots for 1 day (â¼200 kDa) compared with non-stressed ones (â¼100 kDa). Other proteins, such as chaperonin CPN60-2, also formed complexes with different masses in control and flood-stressed beetroots. Finally, possible interactions of VDAC with other proteins were found performing a cluster analysis. These results indicate that mitochondrial protein complexes formed by VDAC could be involved in the process of PCD in flood-stressed beetroots. Data are available via ProteomeXchange with identifier PXD027781.
RESUMO
Flooding is a major environmental constraint that obliges plants to adopt plastic responses in order to cope with it. When partially submerged, tomato plants undergo profound changes involving rearrangements in their morphology and metabolism. In this work, we observed that partial submergence markedly dampens root respiration and halts root growth. However, the flooded hypocotyl surprisingly enhances oxygen consumption. Previous results demonstrated that aerenchyma formation in the submerged tomato stem re-establishes internal oxygen tension, making aerobic respiration possible. Indeed, potassium cyanide abruptly stops oxygen uptake, indicating that the cytochrome c pathway is likely to be engaged. Furthermore, we found out that leaf-derived sugars accumulate in large amounts in hypocotyls of flooded plants. Girdling and feeding experiments point to sucrose as the main carbon source for respiration. Consistently, submerged hypocotyls are characterized by high sucrose synthase activity, indicating that sucrose is cleaved and channelled into respiration. Since inhibition of hypocotyl respiration significantly prevents sugar build-up, it is suggested that a high respiration rate is required for sucrose unloading from phloem. As substrate availability increases, respiration is fuelled even more, leading to a maintained allocation of sugars to flooded hypocotyls.