Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 36489-36497, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38965821

RESUMO

In polymer electrolyte fuel cells (PEFCs), the gas diffusion layer (GDL) is crucial for managing the flooding tolerance, which is the ability to remove the water produced during power generation from the assembled cell. However, an improved understanding of the properties of GDLs is required to develop effective waterproofing strategies. This study investigated the influence of the polytetrafluoroethylene (PTFE) content on the pore diameter, porosity, wettability, water saturation, and flooding tolerance of waterproofed carbon papers as cathode GDLs in PEFCs. The addition of minimal PTFE (∼6 wt %) to carbon paper provided external waterproofing, whereas internal waterproofing was achieved at a higher PTFE content (∼13 wt %). However, excessive PTFE (∼37 wt %) led to macropore collapse within the carbon paper, reducing fuel cell performance. Although PTFE addition was expected to improve the flooding tolerance, operando synchrotron X-ray radiography revealed that the water saturation level in carbon paper increased with increasing PTFE content. These findings provide a benchmark for assessing whether GDLs meet the flooding tolerance requirements of PEFCs and may be applicable to waterproofed GDLs in electrochemical devices for water and CO2 electrolysis.

2.
Plant Signal Behav ; 19(1): 2329841, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38521996

RESUMO

Nitric oxide (NO) and cytokinins (CKs) are known for their crucial contributions to plant development, growth, senescence, and stress response. Despite the importance of both signals in stress responses, their interaction remains largely unexplored. The interplay between NO and CKs emerges as particularly significant not only regarding plant growth and development but also in addressing plant stress response, particularly in the context of extreme weather events leading to yield loss. In this review, we summarize NO and CKs metabolism and signaling. Additionally, we emphasize the crosstalk between NO and CKs, underscoring its potential impact on stress response, with a focus on hypoxia tolerance. Finally, we address the most urgent questions that demand answers and offer recommendations for future research endeavors.


Assuntos
Citocininas , Óxido Nítrico , Citocininas/metabolismo , Óxido Nítrico/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Transdução de Sinais
3.
Plants (Basel) ; 12(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37375891

RESUMO

Seed-flooding stress is one of major abiotic constraints that adversely affects soybean production worldwide. Identifying tolerant germplasms and revealing the genetic basis of seed-flooding tolerance are imperative goals for soybean breeding. In the present study, high-density linkage maps of two inter-specific recombinant inbred line (RIL) populations, named NJIRNP and NJIR4P, were utilized to identify major quantitative trait loci (QTLs) for seed-flooding tolerance using three parameters viz., germination rate (GR), normal seedling rate (NSR), and electrical conductivity (EC). A total of 25 and 18 QTLs were detected by composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM), respectively, and 12 common QTLs were identified through both methods. All favorable alleles for the tolerance are notably from the wild soybean parent. Moreover, four digenic epistatic QTL pairs were identified, and three of them showed no main effects. In addition, the pigmented soybean genotypes exhibited high seed-flooding tolerance compared with yellow seed coat genotypes in both populations. Moreover, out of five identified QTLs, one major region containing multiple QTLs associated with all three traits was identified on Chromosome 8, and most of the QTLs within this hotspot were major loci (R2 > 10) and detectable in both populations and multiple environments. Based on the gene expression and functional annotation information, 10 candidate genes from QTL "hotspot 8-2" were screened for further analysis. Furthermore, the results of qRT-PCR and sequence analysis revealed that only one gene, GmDREB2 (Glyma.08G137600), was significantly induced under flooding stress and displayed a TTC tribasic insertion mutation of the nucleotide sequence in the tolerant wild parent (PI342618B). GmDREB2 encodes an ERF transcription factor, and the subcellular localization analysis using green fluorescent protein (GFP) revealed that GmDREB2 protein was localized in the nucleus and plasma membrane. Furthermore, overexpression of GmDREB2 significantly promoted the growth of soybean hairy roots, which might indicate its critical role in seed-flooding stress. Thus, GmDREB2 was considered as the most possible candidate gene for seed-flooding tolerance.

4.
Plants (Basel) ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771761

RESUMO

As a flooding-tolerant tree species, Taxodium distichum has been utilized in afforestation projects and proven to have important value in flooding areas. Alcohol dehydrogenase (ADH), which participates in ethanol fermentation, is essential for tolerance to the anaerobic conditions caused by flooding. In a comprehensive analysis of the ADH gene family in T. distichum, TdADHs were cloned on the basis of whole-genome sequencing, and then bioinformatic analysis, subcellular localization, and gene expression level analysis under flooding were conducted. The results show that the putative protein sequences of 15 cloned genes contained seven TdADHs and eight TdADH-like genes (one Class III ADH included) that were divided into five clades. All the sequences had an ADH_N domain, and except for TdADH-likeE2, all the other genes had an ADH_zinc_N domain. Moreover, the TdADHs in clades A, B, C, and D had a similar motif composition. Additionally, the number of TdADH amino acids ranged from 277 to 403, with an average of 370.13. Subcellular localization showed that, except for TdADH-likeD3, which was not expressed in the nucleus, the other genes were predominantly expressed in both the nucleus and cytosol. TdADH-likeC2 was significantly upregulated in all three organs (roots, stems, and leaves), and TdADHA3 was also highly upregulated under 24 h flooding treatment; the two genes might play key roles in ethanol fermentation and flooding tolerance. These findings offer a comprehensive understanding of TdADHs and could provide a foundation for the molecular breeding of T. distichum and current research on the molecular mechanisms driving flooding tolerance.

5.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203688

RESUMO

Flooding stress, which reduces plant growth and seed yield, is a serious problem for soybean. To improve the productivity of flooded soybean, flooding-tolerant soybean was produced by gamma-ray irradiation. Three-day-old wild-type and mutant-line plants were flooded for 2 days. Protein, RNA, and genomic DNA were then analyzed based on oppositely changed proteins between the wild type and the mutant line under flooding stress. They were associated with cell organization, RNA metabolism, and protein degradation according to proteomic analysis. Immunoblot analysis confirmed that the accumulation of beta-tubulin/beta-actin increased in the wild type under flooding stress and recovered to the control level in the mutant line; however, alpha-tubulin increased in both the wild type and the mutant line under stress. Ubiquitin was accumulated and genomic DNA was degraded by flooding stress in the wild type; however, they were almost the same as control levels in the mutant line. On the other hand, the gene expression level of RNase H and 60S ribosomal protein did not change in either the wild type or the mutant line under flooding stress. Furthermore, chlorophyll a/b decreased and increased in the wild type and the mutant line, respectively, under flooding stress. These results suggest that the regulation of cell organization and protein degradation might be an important factor in the acquisition of flooding tolerance in soybean.


Assuntos
Glycine max , Proteômica , Raios gama , Glycine max/genética , Clorofila A , Actinas , RNA , DNA
6.
J Plant Res ; 135(2): 323-336, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35050423

RESUMO

Flooding negatively influences the growth and development of several plant species. Here, we show that the flood tolerance of young Handroanthus chrysotrichus plants involves growth deficit, carbon assimilation reductions, starch remobilization, and energy regulation. The effect of hypoxia was evaluated in a controlled experiment consisting of plants subjected to normoxia and water-logging, with later recovery. We measured morphological changes, gas exchange, photosynthetic pigments, soluble carbohydrates and starch contents, the activity of the enzymes alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC), and ATP and ADP levels. While control plants showed normal appearance and growth, flooded plants exhibited a drastic decrease in growth, necrosis of some root tips, hypertrophic lenticels on the stems, and foliar chlorosis. Oxygen deprivation in root cells led to a significant decrease in stomatal conductance. The low Amax rates caused a decline in foliar soluble sugar content at 20 days and a subsequent increase in the leaves and roots, coinciding with starch degradation at 40 days. We also observed increases of 220.5% in ADH and 292% in PDC activities in the roots at 20 and 40 days of flooding. The activation of anaerobic metabolism in stressed plants was an essential mechanism for ATP regulation in both tissues used to maintain a minimal metabolism to cope with hypoxia to the detriment of growth. The post-stress recovery process in H. chrysotrichus occurred slowly, with gas exchange gradually resumed and anaerobic metabolism and sugar content maintained to improve energy regulation.


Assuntos
Inundações , Raízes de Plantas , Metabolismo dos Carboidratos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo
7.
Genes (Basel) ; 11(9)2020 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842571

RESUMO

Flooding is an important strategy for weed control in paddy rice fields. However, terrestrial weeds had evolved mechanisms of tolerance to flooding, resulting in new 'snorkeling' ecotypes. The aim of this review is to discuss the mechanisms of flooding tolerance in cultivated and weedy rice at different plant stages and the putative utility of this trait for weed management. Knowledge about flooding tolerance is derived primarily from crop models, mainly rice. The rice model informs us about the possible flooding tolerance mechanisms in weedy rice, Echinochloa species, and other weeds. During germination, the gene related to carbohydrate mobilization and energy intake (RAmy3D), and genes involved in metabolism maintenance under anoxia (ADH, PDC, and OsB12D1) are the most important for flooding tolerance. Flooding tolerance during emergence involved responses promoted by ethylene and induction of RAmy3D, ADH, PDC, and OsB12D1. Plant species tolerant to complete submersion also employ escape strategies or the ability to become quiescent during the submergence period. In weedy rice, the expression of PDC1, SUS3, and SUB1 genes is not directly related to flooding tolerance, contrary to what was learned in cultivated rice. Mitigation of flooding tolerance in weeds could be achieved with biotechnological approaches and genetic manipulation of flood tolerance genes through RNAi and transposons, providing a potential new tool for weed management.


Assuntos
Adaptação Fisiológica , Inundações , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Plantas Daninhas/crescimento & desenvolvimento , Controle de Plantas Daninhas/métodos , Germinação , Fenótipo , Proteínas de Plantas/genética
8.
Sci Total Environ ; 747: 141101, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771779

RESUMO

Human-induced disturbances such as dam construction and regulation often change the duration and frequency of flooding and thus notably influence plant dominance in riparian zones. Even though numerous studies have indicated that the oxidative stress and antioxidative stress systems are essential for plant defenses against adverse flooding stress, the mechanism of vegetation distribution due to hydrological regimes is still unclear. In the current study, the riparian zone of the Three Gorges Reservoir (TGR), which experiences seasonal and anti-seasonal water-level fluctuations, was used to investigate the dominant species. To our knowledge, this is the first study that links molecular-physiological-morphological mechanisms to explore the development of flooding tolerance of dominant riparian species. Physiological traits (e.g., chlorophyll and protein contents), morphological traits (e.g., leaf length), and molecular traits (e.g., enzymatic antioxidant activity and the malondialdehyde content) were analyzed at different water-level gradient zones of the dominant species to evaluate the influence of flooding. To explore the regulation mechanisms of submergence for the vegetation distribution, correlation analysis, PCA (principal component analysis) and laboratory flooding experiments were conducted. The results showed that Cynodon dactylon, which has a rapid antioxidative system, was the dominant species in the riparian zone of the TGR. The leaf length varied significantly along with water level gradients (p < 0.05) with the minimum values appearing in the lowest part of the riparian zone and the maximum values observed in the highest areas. The chlorophyll and protein contents fluctuated in different water level gradient zones, but significant differences were not observed. Within the antioxidative system, catalase was found to be essential for riparian plants in their response to flooding. The current study could provide insight to explore the specific mechanism of resistance for dominant plants to periodic flooding, and the reason why dominant species can survive adverse stress.


Assuntos
Inundações , Plantas , China , Cynodon , Água
9.
Front Genet ; 11: 612131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584812

RESUMO

Soybean [Glycine max (L.) Merr.] is one of the most important legume crops abundant in edible protein and oil in the world. In recent years there has been increasingly more drastic weather caused by climate change, with flooding, drought, and unevenly distributed rainfall gradually increasing in terms of the frequency and intensity worldwide. Severe flooding has caused extensive losses to soybean production and there is an urgent need to breed strong soybean seeds with high flooding tolerance. The present study demonstrates bioinformatics big data mining and integration, meta-analysis, gene mapping, gene prioritization, and systems biology for identifying prioritized genes of flooding tolerance in soybean. A total of 83 flooding tolerance genes (FTgenes), according to the appropriate cut-off point, were prioritized from 36,705 test genes collected from multidimensional genomic features linking to soybean flooding tolerance. Several validation results using independent samples from SoyNet, genome-wide association study, SoyBase, GO database, and transcriptome databases all exhibited excellent agreement, suggesting these 83 FTgenes were significantly superior to others. These results provide valuable information and contribution to research on the varieties selection of soybean.

10.
Genes (Basel) ; 10(12)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766569

RESUMO

Seed-flooding stress is one of the major abiotic constraints severely affecting soybean yield and quality. Understanding the molecular mechanism and genetic basis underlying seed-flooding tolerance will be of greatly importance in soybean breeding. However, very limited information is available about the genetic basis of seed-flooding tolerance in soybean. The present study performed Genome-Wide Association Study (GWAS) to identify the quantitative trait nucleotides (QTNs) associated with three seed-flooding tolerance related traits, viz., germination rate (GR), normal seedling rate (NSR) and electric conductivity (EC), using a panel of 347 soybean lines and the genotypic data of 60,109 SNPs with MAF > 0.05. A total of 25 and 21 QTNs associated with all three traits were identified via mixed linear model (MLM) and multi-locus random-SNP-effect mixed linear model (mrMLM) in three different environments (JP14, HY15, and Combined). Among these QTNs, three major QTNs, viz., QTN13, qNSR-10 and qEC-7-2, were identified through both methods MLM and mrMLM. Interestingly, QTN13 located on Chr.13 has been consistently identified to be associated with all three studied traits in both methods and multiple environments. Within the 1.0 Mb physical interval surrounding the QTN13, nine candidate genes were screened for their involvement in seed-flooding tolerance based on gene annotation information and available literature. Based on the qRT-PCR and sequence analysis, only one gene designated as GmSFT (Glyma.13g248000) displayed significantly higher expression level in all tolerant genotypes compared to sensitive ones under flooding treatment, as well as revealed nonsynonymous mutation in tolerant genotypes, leading to amino acid change in the protein. Additionally, subcellular localization showed that GmSFT was localized in the nucleus and cell membrane. Hence, GmSFT was considered as the most likely candidate gene for seed-flooding tolerance in soybean. In conclusion, the findings of the present study not only increase our knowledge of the genetic control of seed-flooding tolerance in soybean, but will also be of great utility in marker-assisted selection and gene cloning to elucidate the mechanisms of seed-flooding tolerance.


Assuntos
Adaptação Fisiológica/genética , Inundações , Glycine max/genética , Nucleotídeos , Sementes , Genes de Plantas , Estudo de Associação Genômica Ampla , Genótipo , Locos de Características Quantitativas
11.
Front Plant Sci ; 10: 111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792729

RESUMO

Terrestrial plants may experience nutrient and oxygen stress when they are submerged, and increases in flooding are anticipated with climate change. It has been well reported that plants usually shift biomass allocation and produce more roots in response to nutrient deficiency. However, it is unclear whether plants experiencing oxygen deficiency stimulate biomass allocation to roots to enhance nutrient absorption, similar to how plants experiencing nutrient deficiency behave. We investigated the responses of the terrestrial species Alternanthera philoxeroides, upon root flooding, to nutrient versus dissolved oxygen deficiency in terms of plant growth, biomass allocation, root production, root efficiency (plant growth sustained per unit root surface area), and root aerenchyma formation. Both nutrient and dissolved oxygen deficiency hampered the growth of root-flooded plants. As expected, plants experiencing nutrient deficiency increased biomass allocation to roots and exhibited lower root efficiency; in contrast, plants experiencing dissolved oxygen deficiency decreased biomass allocation to roots but achieved higher root efficiency. The diameter of aerenchyma channels in roots were enlarged in plants experiencing dissolved oxygen deficiency but did not change in plants experiencing nutrient deficiency. The widening of aerenchyma channels in roots could have improved the oxygen status and thereby the nutrient absorption capability of roots in low oxygen environments, which might benefit the plants to tolerate flooding.

12.
J Plant Physiol ; 228: 134-149, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29913428

RESUMO

Analysis of the transcriptomic changes produced in response to hypoxia in root tissues from two rootstock Prunus genotypes differing in their sensitivity to waterlogging: resistant Myrobalan 'P.2175' (P. cerasifera Erhr.), and sensitive 'Felinem' hybrid [P. amygdalus Batsch × P. persica (L.) Batsch] revealed alterations in both metabolism and regulatory processes. Early hypoxia response in both genotypes is characterized by a molecular program aimed to adapt the cell metabolism to the new conditions. Upon hypoxia conditions, tolerant Myrobalan represses first secondary metabolism gene expression as a strategy to prevent the waste of resources/energy, and by the up-regulation of protein degradation genes probably leading to structural adaptations to long-term response to hypoxia. In response to the same conditions, sensitive 'Felinem' up-regulates a core of signal transduction and transcription factor genes. A combination of PLS-DA and qRT-PCR approaches revealed a set of transcription factors and signalling molecules as differentially regulated in the sensitive and tolerant genotypes including the peach orthologs for oxygen sensors. Apart from providing insights into the molecular processes underlying the differential response to waterlogging of two Prunus rootstocks, our approach reveals a set of candidate genes to be used expression biomarkers for biotech or breeding approaches to waterlogging tolerance.


Assuntos
Hipóxia Celular/fisiologia , Raízes de Plantas/fisiologia , Prunus/fisiologia , Transcriptoma/genética , Hipóxia Celular/genética , Inundações , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/genética , Prunus/genética
13.
Rice (N Y) ; 11(1): 20, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29633040

RESUMO

The world-renowned Thai Hom Mali Rice has been the most important aromatic rice originating in Thailand. The aromatic variety was collected from Chachoengsao, a central province, and after pure-line selection, it was officially named as Khao Dawk Mali 105, (KDML105). Because of its superb fragrance and cooking quality, KDML105 has been a model variety for studying genes controlling grain quality and aroma. The aromatic gene was cloned in KDML105, as an amino aldehyde dehydrogenase (AMADH) or better known as BADH2 located on chromosome 8. Later on, all other aromatic rice genes were discovered as allelic to the AMADH. As a selection of local landrace variety found in rainfed areas, the Thai Jasmine rice showed adaptive advantages over improved irrigated rice in less fertile lowland rainfed conditions. Because KDML105 was susceptible to most diseases and insect pests, marker-assisted backcross selection (MABC) was used for the genetic improvement since 2000. After nearly 17 years of MABC for integrating new traits into KDML105, a new generation of KDML105, designated HM84, was developed which maintains the cooking quality and fragrance, and has gained advantages during flash flooding, disease, and insect outbreak.

14.
Int J Mol Sci ; 19(5)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29701710

RESUMO

Flooding negatively affects the growth of soybeans. Recently, omic approaches have been used to study abiotic stress responses in plants. To explore flood-tolerant genes in soybeans, an integrated approach of proteomics and computational genetic modification effectiveness analysis was applied to the soybean (Glycine max L. (Merrill)). Flood-tolerant mutant and abscisic acid (ABA)-treated soybean plants were used as the flood-tolerant materials. Among the primary metabolism, glycolysis, fermentation, and tricarboxylic acid cycle were markedly affected under flooding. Fifteen proteins, which were related to the affected processes, displayed similar protein profiles in the mutant and ABA-treated soybean plants. Protein levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aconitase 1, and 2-oxoglutarate dehydrogenase were higher in flood-tolerant materials than in wild-type soybean plants under flood conditions. These three proteins were positioned in each of the three enzyme groups revealed by our computational genetic modification effectiveness analysis, and the three proteins configured a candidate set of genes to promote flood tolerance. Additionally, transcript levels of GAPDH were similar in flood-tolerant materials and in unstressed plants. These results suggest that proteins related to energy metabolism might play an essential role to confer flood tolerance in soybeans.


Assuntos
Inundações , Glycine max/genética , Proteoma/metabolismo , Estresse Fisiológico , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Ciclo do Ácido Cítrico , Fermentação , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicólise , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Glycine max/metabolismo , Transcriptoma
15.
Plant J ; 94(4): 612-625, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29495079

RESUMO

Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.


Assuntos
Adaptação Fisiológica , Calcineurina/metabolismo , Cálcio/metabolismo , Oryza/genética , Regiões Promotoras Genéticas/genética , Calcineurina/genética , Ecótipo , Inundações , Variação Genética , Germinação , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sementes/genética , Sementes/fisiologia , Especificidade da Espécie , Estresse Fisiológico
16.
Front Plant Sci ; 9: 1970, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687365

RESUMO

In species that occur over a wide range of flooding conditions, plant populations may have evolved divergent strategies as a consequence of long-term adaptation to local flooding conditions. In the present study, we investigated the effects of a flooding gradient on the growth and carbohydrate reserves of Polygonum hydropiper plants originating from low- and high-elevation habitats in the Dongting Lake wetlands. The results indicated that shoot length did not differ, whereas the total biomass and carbohydrate reserves were reduced under flooded compared to well-drained conditions for plants originating from both habitat types. However, shoot length, shoot mass, rhizome mass, and total biomass were lower in plants from low-elevation habitats than in those from high-elevation habitats in the flooded condition. Soluble sugar and starch contents in belowground biomass were higher in plants from low-elevation habitats than in those from high-elevation habitats independently of the water level. Therefore, P. hydropiper plants from low-elevation habitats exhibit a lower growth rate and more conservative energy strategy to cope with flooding in comparison with plants from high-elevation habitats. Differential strategies to cope with flooding among P. hydropiper populations are most likely a response to the flooding pressures of the habitat of origin and may potentially drive ecotype differentiation within species along flooding gradients.

17.
Planta ; 247(4): 899-924, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29273861

RESUMO

MAIN CONCLUSION: 37 unconditional QTLs, 51 conditional QTLs and considerable epistatic QTLs were detected for waterlogging tolerance, and six favourable combinations were selected accelerating the possible application of MAS in chrysanthemum breeding. Chrysanthemum is seriously impacted by soil waterlogging. To determine the genetic characteristics of waterlogging tolerance (WAT) in chrysanthemum, a population of 162 F1 lines was used to construct a genetic map to identify the dynamic and epistatic quantitative trait loci (QTLs) for four WAT traits: wilting index (WI), dead leaf ratio (DLR), chlorosis score (Score) and membership function value of waterlogging (MFVW). The h B2 for the WAT traits ranged from 0.49 to 0.64, and transgressive segregation was observed in both directions. A total of 37 unconditional consensus QTLs with 5.81-18.21% phenotypic variation explanation (PVE) and 51 conditional consensus QTLs with 5.90-24.56% PVE were detected. Interestingly, three unconditional consensus QTLs were consistently identified across different stages, whereas no conditional consensus QTLs were consistently expressed. In addition, considerable epistatic QTLs, all with PVE values ranging from 0.01 to 8.87%, were detected by a joint analysis of WAT phenotypes. These results illustrated that the QTLs (genes) controlling WAT were environmentally dependent and selectively expressed at different times and indicated that both additive and epistatic effects underlie the inheritance of WAT in chrysanthemum. The findings of the current study provide insights into the complex genetic architecture of WAT, and the identification of favourable alleles represents an important step towards the application of molecular marker-assisted selection (MAS) and QTL pyramiding in chrysanthemum WAT breeding programmes.


Assuntos
Chrysanthemum/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Chrysanthemum/fisiologia , DNA de Plantas/genética , Epistasia Genética , Marcadores Genéticos , Genótipo , Fenótipo , Estresse Fisiológico/genética , Água
18.
Plant Cell Environ ; 40(2): 304-316, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27762444

RESUMO

A radial oxygen loss (ROL) barrier in roots of waterlogging-tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging-tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short-arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.


Assuntos
Cromossomos de Plantas/genética , Loci Gênicos , Oxigênio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Lignina/metabolismo , Lipídeos/química , Ácido Periódico/metabolismo , Permeabilidade , Mapeamento Físico do Cromossomo , Raízes de Plantas/citologia , Poaceae/citologia
19.
Cell ; 167(1): 87-98.e14, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641502

RESUMO

Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinases/genética , Permeabilidade , Fatores de Transcrição/genética
20.
Planta ; 244(6): 1241-1252, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27522648

RESUMO

MAIN CONCLUSION: Forty-five molecular markers were detected significantly associated with chrysanthemum' waterlogging tolerance, and four favorable parental lines were identified as potential donors for improving waterlogging tolerance in chrysanthemum. The productivity of chrysanthemum is downgraded by waterlogging soils, which has driven a search for germplasm showing an enhanced level of waterlogging tolerance (WT). As yet little is known regarding the mode of inheritance of WT in chrysanthemum. The study set out to characterize the extent of genetic variation for WT represented in a collection of one hundred chrysanthemum accessions by testing them under both greenhouse and field conditions. A membership function value of waterlogging (MFVW), which integrated a wilting index, a chlorosis score and the proportion of dead leaf in waterlogged plants, was used as a measure of WT. The variation for MFVW among plants grown in the greenhouse (two experiments) was generally higher than that generated in field-grown (one experiment) plants. The MFVW broad sense heritability was 0.82, and the phenotypic coefficient of variation (31.8 %) was larger than the genetic one (28.8 %). Association mapping (AM) identified 45 markers related to WT: 25 by applying the general linear model (GLM) + principal component (PC) model, 16 by applying the mixed linear model (MLM), 31 by applying the MLM + Q matrix model and 12 by applying the MLM + PC model. Of the associated markers, eight and two were predictive in two and three experiments within all models, respectively; the proportion of the phenotypic variance explained by the eight associations ranged from 6.3 to 16.4 %. On the basis of their harboring all four of the leading markers E2M16-2, SSR150-6, E19M16-1 and E10M10-12, the varieties 'Nannong Xuefeng', 'Qx097', 'Nannong Xunzhang' and 'Finch' were identified as potential donors for future improvement of WT in chrysanthemum.


Assuntos
Chrysanthemum/genética , Estresse Fisiológico/genética , Chrysanthemum/fisiologia , Marcadores Genéticos/genética , Marcadores Genéticos/fisiologia , Variação Genética/genética , Variação Genética/fisiologia , Estudo de Associação Genômica Ampla , Estresse Fisiológico/fisiologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA